File: Vector.hs

package info (click to toggle)
haskell-parameterized-utils 2.1.9.0-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 564 kB
  • sloc: haskell: 7,887; makefile: 6
file content (338 lines) | stat: -rw-r--r-- 11,703 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
{-# LANGUAGE ExistentialQuantification #-}
{-# LANGUAGE TypeApplications #-}
{-# Language CPP #-}
{-# Language DataKinds #-}
{-# Language ExplicitForAll #-}
{-# Language FlexibleInstances #-}
{-# Language LambdaCase #-}
{-# Language OverloadedStrings #-}
{-# Language ScopedTypeVariables #-}
{-# Language StandaloneDeriving #-}
{-# Language TypeFamilies #-}
{-# Language TypeOperators #-}
{-# OPTIONS_GHC -fno-warn-orphans #-}
#if __GLASGOW_HASKELL__ >= 805
{-# Language NoStarIsType #-}
#endif
module Test.Vector
  ( vecTests
  , SomeVector(..)
  , genSomeVector
  , genVectorOfLength
  , genOrdering
  , orderingEndomorphisms
  , orderingToStringFuns
  )
where

import           Data.Functor.Const (Const(..))
import           Data.Functor.WithIndex (imap)
import           Data.Foldable.WithIndex (ifoldMap)
import           Data.Maybe (isJust)
import qualified Data.List as List
import qualified Data.Parameterized.Context as Ctx
import           Data.Parameterized.Fin
import           Data.Parameterized.NatRepr
import           Data.Parameterized.Some
import           Data.Parameterized.Vector
import           Data.Semigroup
import           GHC.TypeLits (KnownNat)
import           Hedgehog
import qualified Hedgehog.Gen as HG
import           Hedgehog.Range
import           Numeric.Natural (Natural)
import           Prelude hiding (take, reverse, length)
import qualified Prelude as P
import           Test.Fin (genFin)
import           Test.Tasty
import           Test.Tasty.Hedgehog
import           Test.Context (genSomePayloadList, mkUAsgn)

#if __GLASGOW_HASKELL__ >= 806
import qualified Hedgehog.Classes as HC
import           Test.Tasty.HUnit (assertBool, testCase)
#endif

data SomeVector a = forall n. SomeVector (Vector n a)

instance Show a => Show (SomeVector a) where
  show (SomeVector v) = show v

genVectorOfLength :: (Monad m) => NatRepr n -> GenT m a -> GenT m (Vector (n + 1) a)
genVectorOfLength n genElem =
  do let w = widthVal n
     l <- HG.list (linear (w + 1) (w + 1)) genElem
     case testLeq (knownNat @1) (incNat n) of
       Nothing -> error "testLeq in genSomeVector"
       Just LeqProof ->
         case fromList (incNat n) l of
           Just v -> return v
           Nothing -> error ("fromList failure for size " <> show w)

genSomeVector :: (Monad m) => GenT m a -> GenT m (SomeVector a)
genSomeVector genElem =
  do Some len <- mkNatRepr <$> HG.integral (linear 0 (99 :: Natural))
     SomeVector <$> genVectorOfLength len genElem

genVectorKnownLength :: (1 <= n, KnownNat n, Monad m) => GenT m a -> GenT m (Vector n a)
genVectorKnownLength genElem =
  do let n = knownNat
         w = widthVal n
     l <- HG.list (constant w w) genElem
     case fromList n l of
       Just v -> return v
       Nothing -> error ("fromList failure for size " <> show w)

genOrdering :: Monad m => GenT m Ordering
genOrdering = HG.element [ LT, EQ, GT ]

instance Show (a -> b) where
  show _ = "unshowable"

-- Used to test e.g., 'fmap (g . f) = fmap g . fmap f' and 'imap (const f) =
-- fmap f'.
orderingEndomorphisms :: [Ordering -> Ordering]
orderingEndomorphisms =
  [ const EQ
  , id
  , \case
      EQ -> EQ
      LT -> GT
      GT -> LT
  , \case
      LT -> EQ
      EQ -> GT
      GT -> LT
  ]
  
-- | Used to test ifoldMap.
orderingToStringFuns :: [ Ordering -> String ]
orderingToStringFuns =
  [ const "s"
  , show
  ]

prop_reverse100 :: Property
prop_reverse100 = property $
  do SomeVector v <- forAll $ genSomeVector genOrdering
     case testLeq (knownNat @1) (length v) of
       Nothing -> pure ()
       Just LeqProof -> v === (reverse $ reverse v)

prop_reverseSingleton :: Property
prop_reverseSingleton = property $
  do l <- (:[]) <$> forAll genOrdering
     Just v <- return $ fromList (knownNat @1) l
     v === reverse v

prop_splitJoin :: Property
prop_splitJoin = property $
  do let n = knownNat @5
     v <- forAll $ genVectorKnownLength @(5 * 5) genOrdering
     v === (join n $ split n (knownNat @5) v)

prop_cons :: Property
prop_cons = property $
  do let n = knownNat @20
         w = widthVal n
     l <- forAll $ HG.list (constant w w) genOrdering
     x <- forAll genOrdering
     (cons x <$> fromList n l) === fromList (incNat n) (x:l)

prop_snoc :: Property
prop_snoc = property $
  do let n = knownNat @20
         w = widthVal n
     l <- forAll $ HG.list (constant w w) genOrdering
     x <- forAll genOrdering
     (flip snoc x <$> fromList n l) === fromList (incNat n) (l ++ [x])

prop_snocUnsnoc :: Property
prop_snocUnsnoc = property $
  do let n = knownNat @20
         w = widthVal n
     l <- forAll $ HG.list (constant w w) genOrdering
     x <- forAll genOrdering
     (fst  . unsnoc . flip snoc x <$> fromList n l) === Just x

prop_generate :: Property
prop_generate = property $
  do let n = knownNat @55
         w = widthVal n
         funs :: [ Int -> Ordering ]  -- some miscellaneous functions to generate Vector values
         funs =  [ const EQ
                 , \i -> if i < 10 then LT else if i > 15 then GT else EQ
                 , \i -> if i == 0 then EQ else GT
                 ]
     f <- forAll $ HG.element funs
     Just (generate n (f . widthVal)) === fromList (incNat n) (map f [0..w])

prop_unfold :: Property
prop_unfold = property $
  do let n = knownNat @55
         w = widthVal n
         funs :: [ Ordering -> (Ordering, Ordering) ]  -- some miscellaneous functions to generate Vector values
         funs =  [ const (EQ, EQ)
                 , \case
                     LT -> (LT, GT)
                     GT -> (GT, LT)
                     EQ -> (EQ, EQ)
                 ]
     f <- forAll $ HG.element funs
     o <- forAll $ HG.element [EQ, LT, GT]
     Just (unfoldr n f o) === fromList (incNat n) (P.take (w + 1) (List.unfoldr (Just . f) o))

prop_toFromAssignment :: Property
prop_toFromAssignment = property $
  do vals <- forAll genSomePayloadList
     Some a <- return $ mkUAsgn vals
     let sz = Ctx.size a
     case Ctx.viewSize sz of
       Ctx.ZeroSize -> pure ()
       Ctx.IncSize _ ->
         let a' =
               toAssignment
                 sz
                 (\_idx val -> Const val)
                 (fromAssignment Some a)
         in do assert $
                 isJust $
                   testEquality
                     (Ctx.sizeToNatRepr sz)
                     (Ctx.sizeToNatRepr (Ctx.size a'))
               viewSome
                 (\lastElem ->
                    assert $
                      isJust $
                        testEquality
                          (a Ctx.! Ctx.lastIndex sz) lastElem)
                 (getConst (a' Ctx.! Ctx.lastIndex sz))

prop_fmapId :: Property
prop_fmapId = property $
  do SomeVector v <- forAll $ genSomeVector genOrdering
     fmap id v === v

prop_fmapCompose :: Property
prop_fmapCompose = property $
  do SomeVector v <- forAll $ genSomeVector genOrdering
     f <- forAll $ HG.element orderingEndomorphisms
     g <- forAll $ HG.element orderingEndomorphisms
     fmap (g . f) v === fmap g (fmap f v)

prop_iterateNRange :: Property
prop_iterateNRange = property $
  do Some len <- mkNatRepr <$> forAll (HG.integral (linear 0 (99 :: Natural)))
     toList (iterateN len (+1) 0) === [0..(natValue len)]

prop_indicesOfRange :: Property
prop_indicesOfRange = property $
  do SomeVector v <- forAll $ genSomeVector genOrdering
     toList (fmap (viewFin natValue) (indicesOf v)) === [0..(natValue (length v) - 1)]

prop_imapConst :: Property
prop_imapConst = property $
  do f <- forAll $ HG.element orderingEndomorphisms
     SomeVector v <- forAll $ genSomeVector genOrdering
     imap (const f) v === fmap f v

prop_ifoldMapConst :: Property
prop_ifoldMapConst = property $
  do f <- forAll $ HG.element orderingToStringFuns
     SomeVector v <- forAll $ genSomeVector genOrdering
     ifoldMap (const f) v === foldMap f v

prop_imapConstIndicesOf :: Property
prop_imapConstIndicesOf = property $
  do SomeVector v <- forAll $ genSomeVector genOrdering
     imap const v === indicesOf v

prop_imapElemAt :: Property
prop_imapElemAt = property $
  do SomeVector v <- forAll $ genSomeVector genOrdering
     imap (\i _ -> viewFin (\x -> elemAt x v) i) v === v

prop_OrdEqVectorIndex :: Property
prop_OrdEqVectorIndex = property $
  do i <- forAll $ genFin (knownNat @10)
     j <- forAll $ genFin (knownNat @10)
     (i == j) === (compare i j == EQ)

-- We use @Ordering@ just because it's simple
vecTests :: IO TestTree
vecTests = testGroup "Vector" <$> return
  [ testPropertyNamed "reverse100" "prop_reverse100" prop_reverse100
  , testPropertyNamed "reverseSingleton" "prop_reverseSingleton" prop_reverseSingleton

  , testPropertyNamed "split-join" "prop_splitJoin" prop_splitJoin

  -- @cons@ is the same for vectors or lists
  , testPropertyNamed "cons" "prop_cons" prop_cons

  -- @snoc@ is like appending to a list
  , testPropertyNamed "snoc" "prop_snoc" prop_snoc

  -- @snoc@ and @unsnoc@ are inverses
  , testPropertyNamed "snoc/unsnoc" "prop_snocUnsnoc" prop_snocUnsnoc

  -- @generate@ is like mapping a function over indices
  , testPropertyNamed "generate" "prop_generate" prop_generate

  -- @unfold@ works like @unfold@ on lists
  , testPropertyNamed "unfold" "prop_unfold" prop_unfold

  -- Converting to and from assignments preserves size and last element
  , testPropertyNamed "to-from-assignment" "prop_toFromAssignment" prop_toFromAssignment

  -- NOTE: We don't use hedgehog-classes here, because the way the types work
  -- would require this to only tests vectors of some fixed size.
  --
  -- Also, for 'fmap-compose', hedgehog-classes only tests two fixed functions
  -- over integers.
  , testPropertyNamed "fmap-id" "prop_fmapId" prop_fmapId

  , testPropertyNamed "fmap-compose" "prop_fmapCompose" prop_fmapCompose

  , testPropertyNamed "iterateN-range" "prop_iterateNRange" prop_iterateNRange

  , testPropertyNamed "indicesOf-range" "prop_indicesOfRange" prop_indicesOfRange

  , testPropertyNamed "imap-const" "prop_imapConst" prop_imapConst

  , testPropertyNamed "ifoldMap-const" "prop_ifoldMapConst" prop_ifoldMapConst

  , testPropertyNamed "imap-const-indicesOf" "prop_imapConstIndicesOf" prop_imapConstIndicesOf

  , testPropertyNamed "imap-elemAt" "prop_imapElemAt" prop_imapElemAt

  , testPropertyNamed "Ord-Eq-VectorIndex" "prop_OrdEqVectorIndex" prop_OrdEqVectorIndex

#if __GLASGOW_HASKELL__ >= 806
  -- Test a few different sizes since the types force each test to use a
  -- specific size vector.
  , testCase "Eq-Vector-laws-1" $
      assertBool "Eq-Vector-laws-1" =<<
        HC.lawsCheck (HC.eqLaws (genVectorKnownLength @1 genOrdering))
  , testCase "Eq-Vector-laws-10" $
      assertBool "Eq-Vector-laws-10" =<<
        HC.lawsCheck (HC.eqLaws (genVectorKnownLength @10 genOrdering))
  , testCase "Show-Vector-laws-1" $
      assertBool "Show-Vector-laws-1" =<<
        HC.lawsCheck (HC.showLaws (genVectorKnownLength @1 genOrdering))
  , testCase "Show-Vector-laws-10" $
      assertBool "Show-Vector-laws-10" =<<
        HC.lawsCheck (HC.showLaws (genVectorKnownLength @10 genOrdering))
  , testCase "Foldable-Vector-laws-1" $
      assertBool "Foldable-Vector-laws-1" =<<
        HC.lawsCheck (HC.foldableLaws (genVectorKnownLength @1))
  , testCase "Foldable-Vector-laws-10" $
      assertBool "Foldable-Vector-laws-10" =<<
        HC.lawsCheck (HC.foldableLaws (genVectorKnownLength @10))
  , testCase "Traversable-Vector-laws-1" $
      assertBool "Traversable-Vector-laws-1" =<<
        HC.lawsCheck (HC.traversableLaws (genVectorKnownLength @1))
  , testCase "Traversable-Vector-laws-10" $
      assertBool "Traversable-Vector-laws-10" =<<
        HC.lawsCheck (HC.traversableLaws (genVectorKnownLength @10))
#endif
  ]