1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
|
# Path

[](https://hackage.haskell.org/package/path)
[](http://stackage.org/lts/package/path)
[](http://stackage.org/nightly/package/path)
Support for well-typed paths in Haskell.
* [Motivation](#motivation)
* [Approach](#approach)
* [Solution](#solution)
* [Implementation](#implementation)
* [The data types](#the-data-types)
* [Parsers](#parsers)
* [Smart constructors](#smart-constructors)
* [Overloaded stings](#overloaded-strings)
* [Operations](#operations)
* [Review](#review)
* [Relative vs absolute confusion](#relative-vs-absolute-confusion)
* [The equality problem](#the-equality-problem)
* [Unpredictable concatenation issues](#unpredictable-concatenation-issues)
* [Confusing files and directories](#confusing-files-and-directories)
* [Self-documentation](#self-documentation)
* [In practice](#in-practice)
* [Doing I/O](#doing-io)
* [Doing textual manipulations](#doing-textual-manipulations)
* [Accepting user input](#accepting-user-input)
* [Comparing with existing path libraries](#comparing-with-existing-path-libraries)
* [filepath and system-filepath](#filepath-and-system-filepath)
* [system-canonicalpath, canonical-filepath, directory-tree](#system-canonicalpath-canonical-filepath-directory-tree)
* [pathtype](#pathtype)
* [data-filepath](#data-filepath)
* [Summary](#summary)
## Motivation
It was after working on a number of projects at FP Complete that use file
paths in various ways. We used the system-filepath package, which was
supposed to solve many path problems by being an opaque path type. It
occurred to me that the same kind of bugs kept cropping up:
* Expected a path to be absolute but it was relative, or vice-versa.
* Expected two equivalent paths to be equal or order the same, but they did
not (`/home//foo` vs `/home/foo/` vs `/home/bar/../foo`, etc.).
* Unpredictable behaviour with regards to concatenating paths.
* Confusing files and directories.
* Not knowing whether a path was a file or directory or relative or absolute
based on the type alone was a drag.
All of these bugs are preventable.
## Approach
My approach to problems like this is to make a type that encodes the
properties I want and then make it impossible to let those invariants be
broken, without compromise or backdoors to let the wrong value “slip
in”. Once I have a path, I want to be able to trust it fully. This theme
will be seen throughout the things I lay out below.
## Solution
After having to fix bugs due to these in our software, I put my foot down
and made:
* An opaque `Path` type (a newtype wrapper around `String`).
* Smart constructors which are very stringent in the parsing.
* Make the parsers highly normalizing.
* Leave equality and concatenation to basic string equality and
concatenation.
* Include relativity (absolute/relative) and type (directory/file) in the
type itself.
* Use the already cross-platform
[filepath](http://hackage.haskell.org/package/filepath) package for
implementation details.
## Implementation
### The data types
Here is the type:
```haskell
newtype Path b t = Path FilePath
deriving (Data, Typeable, Generic)
```
The type variables are:
* `b` — base, the base location of the path; absolute or relative.
* `t` — type, whether file or directory.
The base types can be filled with these:
```haskell
data Abs deriving (Typeable)
data Rel deriving (Typeable)
```
And the type can be filled with these:
```haskell
data File deriving (Typeable)
data Dir deriving (Typeable)
```
(Why not use data kinds like `data Type = File | Dir`? Because that imposes
an extension overhead of adding `{-# LANGUAGE DataKinds #-}` to every module
you might want to write out a path type in. Given that one cannot construct
paths of types other than these, via the operations in the module, it’s not
a concern for me.)
There is a conversion function to give you back the filepath:
```haskell
toFilePath :: Path b t -> FilePath
toFilePath (Path l) = l
```
Beginning from version 0.5.3, there are type-constrained versions of
`toFilePath` with the following signatures:
```haskell
fromAbsDir :: Path Abs Dir -> FilePath
fromRelDir :: Path Rel Dir -> FilePath
fromAbsFile :: Path Abs File -> FilePath
fromRelFile :: Path Rel File -> FilePath
```
### Parsers
To get a `Path` value, you need to use one of the four parsers:
```haskell
parseAbsDir :: MonadThrow m => FilePath -> m (Path Abs Dir)
parseRelDir :: MonadThrow m => FilePath -> m (Path Rel Dir)
parseAbsFile :: MonadThrow m => FilePath -> m (Path Abs File)
parseRelFile :: MonadThrow m => FilePath -> m (Path Rel File)
```
The following properties apply:
* Absolute parsers will reject non-absolute paths.
* The only delimiter syntax accepted is the path separator; `/` on POSIX and
`\` on Windows.
* Any other delimiter is rejected; `..`, `~/`, `/./`, etc.
* All parsers normalize into single separators: `/home//foo` → `/home/foo`.
* Directory parsers always normalize with a final trailing `/`. So `/home/foo`
parses into the string `/home/foo/`.
It was discussed briefly whether we should just have a class for parsing
rather than four separate parsing functions. In my experience so far, I have
had type errors where I wrote something `like x <- parseAbsDir
someAbsDirString` because `x` was then passed to a place that expected a
relative directory. In this way, overloading the return value would’ve just
been accepted. So I don’t think having a class is a good idea. Being
explicit here doesn’t exactly waste our time, either.
Why are these functions in `MonadThrow`? Because it means I can have it
return an `Either`, or a `Maybe`, if I’m in pure code, and if I’m in `IO`,
and I don’t expect parsing to ever fail, I can use it in IO like this:
```haskell
do x <- parseRelFile (fromCabalFileName x)
foo x
…
```
That’s really convenient and we take advantage of this at FP Complete a lot.
The instances
Equality, ordering and printing are simply re-using the `String` instances:
```haskell
instance Eq (Path b t) where
(==) (Path x) (Path y) = x == y
instance Ord (Path b t) where
compare (Path x) (Path y) = compare x y
instance Show (Path b t) where
show (Path x) = show x
```
Which gives us for free the following equational properties:
```haskell
toFilePath x == toFilePath y ≡ x == y -- Eq instance
toFilePath x `compare` toFilePath y ≡ x `compare` y -- Ord instance
toFilePath x == toFilePath y ≡ show x == show y -- Show instance
```
In other words, the representation and the path you get out at the end are
the same. Two paths that are equal will always give you back the same thing.
### Smart constructors
For when you know what a path will be at compile-time, there are
constructors for that:
```haskell
$(mkAbsDir "/home/chris")
$(mkRelDir "chris")
$(mkAbsFile "/home/chris/x.txt")
$(mkRelFile "chris/x.txt")
```
With the [QuasiQuotes](https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/glasgow_exts.html#ghc-flag--XQuasiQuotes)
language extension, paths can be written as follows:
```haskell
[absdir|/home/chris|]
[reldir|chris|]
[absfile|/home/chris/x.txt|]
[relfile|chris/x.txt|]
```
These will run at compile-time and underneath use the appropriate parser.
### Overloaded strings
No `IsString` instance is provided, because that has no way to statically
determine whether the path is correct, and would otherwise have to be a
partial function.
In practice I have written the wrong path format in a `$(mk… "")` and been
thankful it was caught early.
### Operations
There is path concatenation:
```haskell
(</>) :: Path b Dir -> Path Rel t -> Path b t
```
Get the parent directory of a path:
```haskell
parent :: Path Abs t -> Path Abs Dir
```
Get the filename of a file path:
```haskell
filename :: Path b File -> Path Rel File
```
Get the directory name of a directory path:
```haskell
dirname :: Path b Dir -> Path Rel Dir
```
Stripping the parent directory from a path:
```haskell
stripProperPrefix :: MonadThrow m => Path b Dir -> Path b t -> m (Path Rel t)
```
## Review
Let’s review my initial list of complaints and see if they’ve been
satisfied.
### Relative vs absolute confusion
Paths now distinguish in the type system whether they are relative or
absolute. You can’t append two absolute paths, for example:
```haskell
λ> [absdir|/home/chris|]</>[absdir|/home/chris|]
<interactive>:23:31-55:
Couldn't match type ‘Abs’ with ‘Rel’
```
### The equality problem
Paths are now stringently normalized. They have to be a valid path, and they
only support single path separators, and all directories are suffixed with a
trailing path separator:
```haskell
λ> $(mkAbsDir "/home/chris//") == $(mkAbsDir "/./home//chris")
True
λ> toFilePath $(mkAbsDir "/home/chris//") ==
toFilePath $(mkAbsDir "/./home//chris")
True
λ> ($(mkAbsDir "/home/chris//"),toFilePath $(mkAbsDir "/./home//chris"))
("/home/chris/","/home/chris/")
```
### Unpredictable concatenation issues
Because of the stringent normalization, path concatenation, as seen above,
is simply string concatenation. This is about as predictable as it can get:
```haskell
λ> toFilePath $(mkAbsDir "/home/chris//")
"/home/chris/"
λ> toFilePath $(mkRelDir "foo//bar")
"foo/bar/"
λ> [absdir|/home/chris//|]</>[reldir|foo//bar|]
"/home/chris/foo/bar/"
```
### Confusing files and directories
Now that the path type is encoded in the type system, our `</>` operator
prevents improper appending:
```haskell
λ> [absdir|/home/chris/|]</>[relfile|foo//bar|]
"/home/chris/foo/bar"
λ> [absfile|/home/chris|]</>[relfile|foo//bar|]
<interactive>:35:1-26:
Couldn't match type ‘File’ with ‘Dir’
```
### Self-documentation
Now I can read the path like:
```haskell
{ fooPath :: Path Rel Dir, ... }
```
And know that this refers to the directory relative to some other path,
meaning I should be careful to consider the current directory when using
this in IO, or that I’ll probably need a parent to append to it at some
point.
## In practice
We’ve been using this at FP Complete in a number of packages for some months
now, it’s turned out surprisingly sufficient for most of our path work with
only one bug found. We weren’t sure initially whether it would just be too
much of a pain to use, but really it’s quite acceptable given the
advantages. You can see its use all over the
[`stack`](https://github.com/commercialhaskell/stack) codebase.
## Doing I/O
Currently any operations involving I/O can be done by using the existing I/O
library:
```haskell
doesFileExist (toFilePath fp)
readFile (toFilePath fp)
```
etc. This has problems with respect to accidentally running something like:
```haskell
doesFileExist $(mkRelDir "foo")
```
But I/O is currently outside the scope of what this package solves. Once you
leave the realm of the `Path` type invariants are back to your responsibility.
As with the original version of this library, we’re currently building up a
set of functions in a `Path.IO` module over time that fits our real-world
use-cases. It may or may not appear in the path package eventually. It’ll
need cleaning up and considering what should really be included.
**Edit:** There is now
[`path-io`](https://hackage.haskell.org/package/path-io) package that
complements the `path` library and includes complete well-typed interface to
[`directory`](https://hackage.haskell.org/package/directory) and
[`temporary`](https://hackage.haskell.org/package/temporary). There is work
to add more generally useful functions from Stack's `Path.IO` to it and make
Stack depend on the `path-io` package.
## Doing textual manipulations
One problem that crops up sometimes is wanting to manipulate
paths. Currently the way we do it is via the filepath library and re-parsing
the path:
```haskell
parseAbsFile . addExtension "/directory/path" "ext" . toFilePath
```
It doesn’t happen too often, in our experience, to the extent this needs to
be more convenient.
## Accepting user input
Sometimes you have user input that contains `../`. The solution we went with
is to have a function like `resolveDir` (found in [`path-io`](http://hackage.haskell.org/package/path-io) package):
```haskell
resolveDir :: (MonadIO m, MonadThrow m)
=> Path Abs Dir -> FilePath -> m (Path Abs Dir)
```
Which will call `canonicalizePath` which collapses and normalizes a path and
then we parse with regular old `parseAbsDir` and we’re cooking with
gas. This and others like it might get added to the `path` package.
## Comparing with existing path libraries
### filepath and system-filepath
The [filepath](http://hackage.haskell.org/package/filepath) package is
intended as the complimentary package to be used before parsing into a Path
value, and/or after printing from a Path value. The package itself contains
no type-safety, instead contains a range of cross-platform textual
operations. Definitely reach for this library when you want to do more
involved manipulations.
The `system-filepath` package is deprecated in favour of `filepath`.
### system-canonicalpath, canonical-filepath, directory-tree
The
[`system-canonicalpath`](http://hackage.haskell.org/package/system-canonicalpath)
and the
[`canonical-filepath`](http://hackage.haskell.org/package/canonical-filepath)
packages both are a kind of subset of `path`. They canonicalize a string
into an opaque path, but neither distinguish directories from files or
absolute/relative. Useful if you just want a canonical path but doesn’t do
anything else.
The [`directory-tree`](http://hackage.haskell.org/package/directory-tree)
package contains a sum type of dir/file/etc but doesn’t distinguish in its
operations relativity or path type.
### pathtype
Finally, we come to a path library that path is similar to: the
[`pathtype`](http://hackage.haskell.org/package/pathtype) library. There are
the same types of `Path Abs File` / `Path Rel Dir`, etc.
The points where this library isn’t enough for me are:
* There is an `IsString` instance, which means people will use it, and will
make mistakes.
* Paths are not normalized into a predictable format, leading to me being
unsure when equality will succeed. This is the same problem I encountered
in `system-filepath`. The equality function normalizes, but according to
what properties I can reason about? I don’t know.
```haskell
System.Path.Posix> ("/tmp//" :: Path a Dir) == ("/tmp" :: Path a Dir)
True
System.Path.Posix> ("tmp" :: Path a Dir) == ("/tmp" :: Path a Dir)
True
System.Path.Posix> ("/etc/passwd/" :: Path a b) == ("/etc/passwd" :: Path a b)
True
System.Path.Posix> ("/tmp//" :: Path Abs Dir) == ("/tmp/./" :: Path Abs Dir)
False
System.Path.Posix> ("/tmp/../" :: Path Abs Dir) == ("/" :: Path Abs Dir)
False
```
* Empty string should not be allowed, and introduction of `.` due to that
gets weird:
```haskell
System.Path.Posix> fmap getPathString (Right ("." :: Path Rel File))
Right "."
System.Path.Posix> fmap getPathString (mkPathAbsOrRel "")
Right "."
System.Path.Posix> (Right ("." :: Path Rel File)) == (mkPathAbsOrRel "")
False
System.Path.Posix> takeDirectory ("tmp" :: Path Rel Dir)
.
System.Path.Posix> (getPathString ("." :: Path Rel File) ==
getPathString ("" :: Path Rel File))
True
System.Path.Posix> (("." :: Path Rel File) == ("" :: Path Rel File))
False
```
* It has functions like `<.>/addExtension` which lets you insert an
arbitrary string into a path.
* Some functions let you produce nonsense (could be prevented by a stricter
type), for example:
```haskell
System.Path.Posix> takeFileName ("/tmp/" :: Path Abs Dir)
tmp
```
I’m being a bit picky here, a bit unfair. But the point is really to show
the kind of things I tried to avoid in `path`. In summary, it’s just hard to
know where things can go wrong, similar to what was going on in
`system-filepath`.
### data-filepath
The [`data-filepath`](https://hackage.haskell.org/package/data-filepath) is
also very similar, I discovered it after writing my own at work and was
pleased to see it’s mostly the same. The main differences are:
* Uses `DataKinds` for the relative/absolute and file/dir distinction which
as I said above is an overhead.
* Uses a GADT for the path type, which is fine. In my case I wanted to
retain the original string which functions that work on the `FilePath`
(`String`) type already deal with well. It does change the parsing step
somewhat, because it parses into segments.
* It’s more lenient at parsing (allowing `..` and trailing `.`).
The API is a bit awkward to just parse a directory, requires a couple
functions to get it (going via `WeakFilePath`), returning only an `Either`,
and there are no functions like parent. But there’s not much to complain
about. It’s a fine library, but I didn’t feel the need to drop my own in
favor of it. Check it out and decide for yourself.
## Summary
There’s a growing interest in making practical use of well-typed file path
handling. I think everyone’s wanted it for a while, but few people have
really committed to it in practice. Now that I’ve been using `path` for a
while, I can’t really go back. It’ll be interesting to see what new packages
crop up in the coming year, I expect there’ll be more.
|