1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
|
{-# LANGUAGE CPP, MagicHash, UnboxedTuples, DeriveDataTypeable, BangPatterns #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TemplateHaskellQuotes #-}
-- |
-- Module : Data.Primitive.Array
-- Copyright : (c) Roman Leshchinskiy 2009-2012
-- License : BSD-style
--
-- Maintainer : Roman Leshchinskiy <rl@cse.unsw.edu.au>
-- Portability : non-portable
--
-- Primitive arrays of boxed values.
module Data.Primitive.Array (
Array(..), MutableArray(..),
newArray, readArray, writeArray, indexArray, indexArrayM, indexArray##,
freezeArray, thawArray, runArray, createArray,
unsafeFreezeArray, unsafeThawArray, sameMutableArray,
copyArray, copyMutableArray,
cloneArray, cloneMutableArray,
sizeofArray, sizeofMutableArray,
emptyArray,
fromListN, fromList,
arrayFromListN, arrayFromList,
mapArray',
traverseArrayP
) where
import Control.DeepSeq
import Control.Monad.Primitive
import GHC.Exts hiding (toList)
import qualified GHC.Exts as Exts
import Data.Typeable ( Typeable )
import Data.Data
(Data(..), DataType, mkDataType, mkNoRepType, Constr, mkConstr, Fixity(..), constrIndex)
import Control.Monad.ST (ST, runST)
import Control.Applicative
import Control.Monad (MonadPlus(..), when, liftM2)
import qualified Control.Monad.Fail as Fail
import Control.Monad.Fix
import qualified Data.Foldable as Foldable
import Control.Monad.Zip
import Data.Foldable (Foldable(..), toList)
import qualified GHC.ST as GHCST
import qualified Data.Foldable as F
import Data.Semigroup
import Data.Functor.Identity
#if !MIN_VERSION_base(4,10,0)
import GHC.Base (runRW#)
#endif
import Text.Read (Read (..), parens, prec)
import Text.ParserCombinators.ReadPrec (ReadPrec)
import qualified Text.ParserCombinators.ReadPrec as RdPrc
import Text.ParserCombinators.ReadP
import Data.Functor.Classes (Eq1(..), Ord1(..), Show1(..), Read1(..))
import Language.Haskell.TH.Syntax (Lift (..))
-- | Boxed arrays.
data Array a = Array
{ array# :: Array# a }
deriving ( Typeable )
instance Lift a => Lift (Array a) where
#if MIN_VERSION_template_haskell(2,16,0)
liftTyped ary = case lst of
[] -> [|| Array (emptyArray# (##)) ||]
[x] -> [|| pure $! x ||]
x : xs -> [|| unsafeArrayFromListN' len x xs ||]
#else
lift ary = case lst of
[] -> [| Array (emptyArray# (##)) |]
[x] -> [| pure $! x |]
x : xs -> [| unsafeArrayFromListN' len x xs |]
#endif
where
len = length ary
lst = toList ary
-- | Strictly create an array from a nonempty list (represented as
-- a first element and a list of the rest) of a known length. If the length
-- of the list does not match the given length, this makes demons fly
-- out of your nose. We use it in the 'Lift' instance. If you edit the
-- splice and break it, you get to keep both pieces.
unsafeArrayFromListN' :: Int -> a -> [a] -> Array a
unsafeArrayFromListN' n y ys =
createArray n y $ \ma ->
let go !_ix [] = return ()
go !ix (!x : xs) = do
writeArray ma ix x
go (ix+1) xs
in go 1 ys
#if MIN_VERSION_deepseq(1,4,3)
instance NFData1 Array where
liftRnf r = Foldable.foldl' (\_ -> r) ()
#endif
instance NFData a => NFData (Array a) where
rnf = Foldable.foldl' (\_ -> rnf) ()
-- | Mutable boxed arrays associated with a primitive state token.
data MutableArray s a = MutableArray
{ marray# :: MutableArray# s a }
deriving ( Typeable )
-- | The number of elements in an immutable array.
sizeofArray :: Array a -> Int
sizeofArray a = I# (sizeofArray# (array# a))
{-# INLINE sizeofArray #-}
-- | The number of elements in a mutable array.
sizeofMutableArray :: MutableArray s a -> Int
sizeofMutableArray a = I# (sizeofMutableArray# (marray# a))
{-# INLINE sizeofMutableArray #-}
-- | Create a new mutable array of the specified size and initialise all
-- elements with the given value.
--
-- /Note:/ this function does not check if the input is non-negative.
newArray :: PrimMonad m => Int -> a -> m (MutableArray (PrimState m) a)
{-# INLINE newArray #-}
newArray (I# n#) x = primitive
(\s# -> case newArray# n# x s# of
(# s'#, arr# #) ->
let ma = MutableArray arr#
in (# s'# , ma #))
-- | Read a value from the array at the given index.
--
-- /Note:/ this function does not do bounds checking.
readArray :: PrimMonad m => MutableArray (PrimState m) a -> Int -> m a
{-# INLINE readArray #-}
readArray arr (I# i#) = primitive (readArray# (marray# arr) i#)
-- | Write a value to the array at the given index.
--
-- /Note:/ this function does not do bounds checking.
writeArray :: PrimMonad m => MutableArray (PrimState m) a -> Int -> a -> m ()
{-# INLINE writeArray #-}
writeArray arr (I# i#) x = primitive_ (writeArray# (marray# arr) i# x)
-- | Read a value from the immutable array at the given index.
--
-- /Note:/ this function does not do bounds checking.
indexArray :: Array a -> Int -> a
{-# INLINE indexArray #-}
indexArray arr (I# i#) = case indexArray# (array# arr) i# of (# x #) -> x
-- | Read a value from the immutable array at the given index, returning
-- the result in an unboxed unary tuple. This is currently used to implement
-- folds.
--
-- /Note:/ this function does not do bounds checking.
indexArray## :: Array a -> Int -> (# a #)
indexArray## arr (I# i) = indexArray# (array# arr) i
{-# INLINE indexArray## #-}
-- | Monadically read a value from the immutable array at the given index.
-- This allows us to be strict in the array while remaining lazy in the read
-- element which is very useful for collective operations. Suppose we want to
-- copy an array. We could do something like this:
--
-- > copy marr arr ... = do ...
-- > writeArray marr i (indexArray arr i) ...
-- > ...
--
-- But since the arrays are lazy, the calls to 'indexArray' will not be
-- evaluated. Rather, @marr@ will be filled with thunks each of which would
-- retain a reference to @arr@. This is definitely not what we want!
--
-- With 'indexArrayM', we can instead write
--
-- > copy marr arr ... = do ...
-- > x <- indexArrayM arr i
-- > writeArray marr i x
-- > ...
--
-- Now, indexing is executed immediately although the returned element is
-- still not evaluated.
--
-- /Note:/ this function does not do bounds checking.
indexArrayM :: Monad m => Array a -> Int -> m a
{-# INLINE indexArrayM #-}
indexArrayM arr (I# i#)
= case indexArray# (array# arr) i# of (# x #) -> return x
-- | Create an immutable copy of a slice of an array.
--
-- This operation makes a copy of the specified section, so it is safe to
-- continue using the mutable array afterward.
--
-- /Note:/ The provided array should contain the full subrange
-- specified by the two Ints, but this is not checked.
freezeArray
:: PrimMonad m
=> MutableArray (PrimState m) a -- ^ source
-> Int -- ^ offset
-> Int -- ^ length
-> m (Array a)
{-# INLINE freezeArray #-}
freezeArray (MutableArray ma#) (I# off#) (I# len#) =
primitive $ \s -> case freezeArray# ma# off# len# s of
(# s', a# #) -> (# s', Array a# #)
-- | Convert a mutable array to an immutable one without copying. The
-- array should not be modified after the conversion.
unsafeFreezeArray :: PrimMonad m => MutableArray (PrimState m) a -> m (Array a)
{-# INLINE unsafeFreezeArray #-}
unsafeFreezeArray arr
= primitive (\s# -> case unsafeFreezeArray# (marray# arr) s# of
(# s'#, arr'# #) ->
let a = Array arr'#
in (# s'#, a #))
-- | Create a mutable array from a slice of an immutable array.
--
-- This operation makes a copy of the specified slice, so it is safe to use the
-- immutable array afterward.
--
-- /Note:/ The provided array should contain the full subrange
-- specified by the two Ints, but this is not checked.
thawArray
:: PrimMonad m
=> Array a -- ^ source
-> Int -- ^ offset
-> Int -- ^ length
-> m (MutableArray (PrimState m) a)
{-# INLINE thawArray #-}
thawArray (Array a#) (I# off#) (I# len#) =
primitive $ \s -> case thawArray# a# off# len# s of
(# s', ma# #) -> (# s', MutableArray ma# #)
-- | Convert an immutable array to an mutable one without copying. The
-- immutable array should not be used after the conversion.
unsafeThawArray :: PrimMonad m => Array a -> m (MutableArray (PrimState m) a)
{-# INLINE unsafeThawArray #-}
unsafeThawArray a
= primitive (\s# -> case unsafeThawArray# (array# a) s# of
(# s'#, arr'# #) ->
let ma = MutableArray arr'#
in (# s'#, ma #))
-- | Check whether the two arrays refer to the same memory block.
sameMutableArray :: MutableArray s a -> MutableArray s a -> Bool
{-# INLINE sameMutableArray #-}
sameMutableArray arr brr
= isTrue# (sameMutableArray# (marray# arr) (marray# brr))
-- | Copy a slice of an immutable array to a mutable array.
--
-- /Note:/ this function does not do bounds or overlap checking.
copyArray :: PrimMonad m
=> MutableArray (PrimState m) a -- ^ destination array
-> Int -- ^ offset into destination array
-> Array a -- ^ source array
-> Int -- ^ offset into source array
-> Int -- ^ number of elements to copy
-> m ()
{-# INLINE copyArray #-}
copyArray (MutableArray dst#) (I# doff#) (Array src#) (I# soff#) (I# len#)
= primitive_ (copyArray# src# soff# dst# doff# len#)
-- | Copy a slice of a mutable array to another array. The two arrays may overlap.
--
-- /Note:/ this function does not do bounds or overlap checking.
copyMutableArray :: PrimMonad m
=> MutableArray (PrimState m) a -- ^ destination array
-> Int -- ^ offset into destination array
-> MutableArray (PrimState m) a -- ^ source array
-> Int -- ^ offset into source array
-> Int -- ^ number of elements to copy
-> m ()
{-# INLINE copyMutableArray #-}
copyMutableArray (MutableArray dst#) (I# doff#)
(MutableArray src#) (I# soff#) (I# len#)
= primitive_ (copyMutableArray# src# soff# dst# doff# len#)
-- | Return a newly allocated 'Array' with the specified subrange of the
-- provided 'Array'.
--
-- /Note:/ The provided array should contain the full subrange
-- specified by the two Ints, but this is not checked.
cloneArray :: Array a -- ^ source array
-> Int -- ^ offset into destination array
-> Int -- ^ number of elements to copy
-> Array a
{-# INLINE cloneArray #-}
cloneArray (Array arr#) (I# off#) (I# len#)
= case cloneArray# arr# off# len# of arr'# -> Array arr'#
-- | Return a newly allocated 'MutableArray'. with the specified subrange of
-- the provided 'MutableArray'. The provided 'MutableArray' should contain the
-- full subrange specified by the two Ints, but this is not checked.
--
-- /Note:/ The provided array should contain the full subrange
-- specified by the two Ints, but this is not checked.
cloneMutableArray :: PrimMonad m
=> MutableArray (PrimState m) a -- ^ source array
-> Int -- ^ offset into destination array
-> Int -- ^ number of elements to copy
-> m (MutableArray (PrimState m) a)
{-# INLINE cloneMutableArray #-}
cloneMutableArray (MutableArray arr#) (I# off#) (I# len#) = primitive
(\s# -> case cloneMutableArray# arr# off# len# s# of
(# s'#, arr'# #) -> (# s'#, MutableArray arr'# #))
-- | The empty 'Array'.
emptyArray :: Array a
emptyArray =
runST $ newArray 0 (die "emptyArray" "impossible") >>= unsafeFreezeArray
{-# NOINLINE emptyArray #-}
-- | Execute the monadic action and freeze the resulting array.
--
-- > runArray m = runST $ m >>= unsafeFreezeArray
runArray
:: (forall s. ST s (MutableArray s a))
-> Array a
runArray m = Array (runArray# m)
runArray#
:: (forall s. ST s (MutableArray s a))
-> Array# a
runArray# m = case runRW# $ \s ->
case unST m s of { (# s', MutableArray mary# #) ->
unsafeFreezeArray# mary# s'} of (# _, ary# #) -> ary#
unST :: ST s a -> State# s -> (# State# s, a #)
unST (GHCST.ST f) = f
emptyArray# :: (# #) -> Array# a
emptyArray# _ = case emptyArray of Array ar -> ar
{-# NOINLINE emptyArray# #-}
-- | Create an array of the given size with a default value,
-- apply the monadic function and freeze the result. If the
-- size is 0, return 'emptyArray' (rather than a new copy thereof).
--
-- > createArray 0 _ _ = emptyArray
-- > createArray n x f = runArray $ do
-- > mary <- newArray n x
-- > f mary
-- > pure mary
createArray
:: Int
-> a
-> (forall s. MutableArray s a -> ST s ())
-> Array a
-- This low-level business is designed to work with GHC's worker-wrapper
-- transformation. A lot of the time, we don't actually need an Array
-- constructor. By putting it on the outside, and being careful about
-- how we special-case the empty array, we can make GHC smarter about this.
-- The only downside is that separately created 0-length arrays won't share
-- their Array constructors, although they'll share their underlying
-- Array#s.
createArray 0 _ _ = Array (emptyArray# (# #))
createArray n x f = runArray $ do
mary <- newArray n x
f mary
pure mary
die :: String -> String -> a
die fun problem = error $ "Data.Primitive.Array." ++ fun ++ ": " ++ problem
arrayLiftEq :: (a -> b -> Bool) -> Array a -> Array b -> Bool
arrayLiftEq p a1 a2 = sizeofArray a1 == sizeofArray a2 && loop (sizeofArray a1 - 1)
where loop i | i < 0 = True
| (# x1 #) <- indexArray## a1 i
, (# x2 #) <- indexArray## a2 i
, otherwise = p x1 x2 && loop (i - 1)
instance Eq a => Eq (Array a) where
a1 == a2 = arrayLiftEq (==) a1 a2
-- | @since 0.6.4.0
instance Eq1 Array where
liftEq = arrayLiftEq
instance Eq (MutableArray s a) where
ma1 == ma2 = isTrue# (sameMutableArray# (marray# ma1) (marray# ma2))
arrayLiftCompare :: (a -> b -> Ordering) -> Array a -> Array b -> Ordering
arrayLiftCompare elemCompare a1 a2 = loop 0
where
mn = sizeofArray a1 `min` sizeofArray a2
loop i
| i < mn
, (# x1 #) <- indexArray## a1 i
, (# x2 #) <- indexArray## a2 i
= elemCompare x1 x2 `mappend` loop (i + 1)
| otherwise = compare (sizeofArray a1) (sizeofArray a2)
-- | Lexicographic ordering. Subject to change between major versions.
instance Ord a => Ord (Array a) where
compare a1 a2 = arrayLiftCompare compare a1 a2
-- | @since 0.6.4.0
instance Ord1 Array where
liftCompare = arrayLiftCompare
instance Foldable Array where
-- Note: we perform the array lookups eagerly so we won't
-- create thunks to perform lookups even if GHC can't see
-- that the folding function is strict.
foldr f = \z !ary ->
let
!sz = sizeofArray ary
go i
| i == sz = z
| (# x #) <- indexArray## ary i
= f x (go (i + 1))
in go 0
{-# INLINE foldr #-}
foldl f = \z !ary ->
let
go i
| i < 0 = z
| (# x #) <- indexArray## ary i
= f (go (i - 1)) x
in go (sizeofArray ary - 1)
{-# INLINE foldl #-}
foldr1 f = \ !ary ->
let
!sz = sizeofArray ary - 1
go i =
case indexArray## ary i of
(# x #) | i == sz -> x
| otherwise -> f x (go (i + 1))
in if sz < 0
then die "foldr1" "empty array"
else go 0
{-# INLINE foldr1 #-}
foldl1 f = \ !ary ->
let
!sz = sizeofArray ary - 1
go i =
case indexArray## ary i of
(# x #) | i == 0 -> x
| otherwise -> f (go (i - 1)) x
in if sz < 0
then die "foldl1" "empty array"
else go sz
{-# INLINE foldl1 #-}
foldr' f = \z !ary ->
let
go i !acc
| i == -1 = acc
| (# x #) <- indexArray## ary i
= go (i - 1) (f x acc)
in go (sizeofArray ary - 1) z
{-# INLINE foldr' #-}
foldl' f = \z !ary ->
let
!sz = sizeofArray ary
go i !acc
| i == sz = acc
| (# x #) <- indexArray## ary i
= go (i + 1) (f acc x)
in go 0 z
{-# INLINE foldl' #-}
null a = sizeofArray a == 0
{-# INLINE null #-}
length = sizeofArray
{-# INLINE length #-}
maximum ary | sz == 0 = die "maximum" "empty array"
| (# frst #) <- indexArray## ary 0
= go 1 frst
where
sz = sizeofArray ary
go i !e
| i == sz = e
| (# x #) <- indexArray## ary i
= go (i + 1) (max e x)
{-# INLINE maximum #-}
minimum ary | sz == 0 = die "minimum" "empty array"
| (# frst #) <- indexArray## ary 0
= go 1 frst
where sz = sizeofArray ary
go i !e
| i == sz = e
| (# x #) <- indexArray## ary i
= go (i + 1) (min e x)
{-# INLINE minimum #-}
sum = foldl' (+) 0
{-# INLINE sum #-}
product = foldl' (*) 1
{-# INLINE product #-}
newtype STA a = STA { _runSTA :: forall s. MutableArray# s a -> ST s (Array a) }
runSTA :: Int -> STA a -> Array a
runSTA !sz = \ (STA m) -> runST $ newArray_ sz >>= \ ar -> m (marray# ar)
{-# INLINE runSTA #-}
newArray_ :: Int -> ST s (MutableArray s a)
newArray_ !n = newArray n badTraverseValue
badTraverseValue :: a
badTraverseValue = die "traverse" "bad indexing"
{-# NOINLINE badTraverseValue #-}
instance Traversable Array where
traverse f = traverseArray f
{-# INLINE traverse #-}
traverseArray
:: Applicative f
=> (a -> f b)
-> Array a
-> f (Array b)
traverseArray f = \ !ary ->
let
!len = sizeofArray ary
go !i
| i == len = pure $ STA $ \mary -> unsafeFreezeArray (MutableArray mary)
| (# x #) <- indexArray## ary i
= liftA2 (\b (STA m) -> STA $ \mary ->
writeArray (MutableArray mary) i b >> m mary)
(f x) (go (i + 1))
in if len == 0
then pure emptyArray
else runSTA len <$> go 0
{-# INLINE [1] traverseArray #-}
{-# RULES
"traverse/ST" forall (f :: a -> ST s b). traverseArray f =
traverseArrayP f
"traverse/IO" forall (f :: a -> IO b). traverseArray f =
traverseArrayP f
"traverse/Id" forall (f :: a -> Identity b). traverseArray f =
(coerce :: (Array a -> Array (Identity b))
-> Array a -> Identity (Array b)) (fmap f)
#-}
-- | This is the fastest, most straightforward way to traverse
-- an array, but it only works correctly with a sufficiently
-- "affine" 'PrimMonad' instance. In particular, it must only produce
-- /one/ result array. 'Control.Monad.Trans.List.ListT'-transformed
-- monads, for example, will not work right at all.
traverseArrayP
:: PrimMonad m
=> (a -> m b)
-> Array a
-> m (Array b)
traverseArrayP f = \ !ary ->
let
!sz = sizeofArray ary
go !i !mary
| i == sz
= unsafeFreezeArray mary
| otherwise
= do
a <- indexArrayM ary i
b <- f a
writeArray mary i b
go (i + 1) mary
in do
mary <- newArray sz badTraverseValue
go 0 mary
{-# INLINE traverseArrayP #-}
-- | Strict map over the elements of the array.
mapArray' :: (a -> b) -> Array a -> Array b
mapArray' f a =
createArray (sizeofArray a) (die "mapArray'" "impossible") $ \mb ->
let go i | i == sizeofArray a
= return ()
| otherwise
= do x <- indexArrayM a i
-- We use indexArrayM here so that we will perform the
-- indexing eagerly even if f is lazy.
let !y = f x
writeArray mb i y >> go (i + 1)
in go 0
{-# INLINE mapArray' #-}
-- | Create an array from a list of a known length. If the length
-- of the list does not match the given length, this throws an exception.
arrayFromListN :: Int -> [a] -> Array a
arrayFromListN n l =
createArray n (die "fromListN" "uninitialized element") $ \sma ->
let go !ix [] = if ix == n
then return ()
else die "fromListN" "list length less than specified size"
go !ix (x : xs) = if ix < n
then do
writeArray sma ix x
go (ix+1) xs
else die "fromListN" "list length greater than specified size"
in go 0 l
-- | Create an array from a list.
arrayFromList :: [a] -> Array a
arrayFromList l = arrayFromListN (length l) l
instance Exts.IsList (Array a) where
type Item (Array a) = a
fromListN = arrayFromListN
fromList = arrayFromList
toList = toList
instance Functor Array where
fmap f a =
createArray (sizeofArray a) (die "fmap" "impossible") $ \mb ->
let go i | i == sizeofArray a
= return ()
| otherwise
= do x <- indexArrayM a i
writeArray mb i (f x) >> go (i + 1)
in go 0
e <$ a = createArray (sizeofArray a) e (\ !_ -> pure ())
instance Applicative Array where
pure x = runArray $ newArray 1 x
ab <*> a = createArray (szab * sza) (die "<*>" "impossible") $ \mb ->
let go1 i = when (i < szab) $
do
f <- indexArrayM ab i
go2 (i * sza) f 0
go1 (i + 1)
go2 off f j = when (j < sza) $
do
x <- indexArrayM a j
writeArray mb (off + j) (f x)
go2 off f (j + 1)
in go1 0
where szab = sizeofArray ab; sza = sizeofArray a
a *> b = createArray (sza * szb) (die "*>" "impossible") $ \mb ->
let go i | i < sza = copyArray mb (i * szb) b 0 szb *> go (i + 1)
| otherwise = return ()
in go 0
where sza = sizeofArray a; szb = sizeofArray b
a <* b = createArray (sza * szb) (die "<*" "impossible") $ \ma ->
let fill off i e | i < szb = writeArray ma (off + i) e >> fill off (i + 1) e
| otherwise = return ()
go i | i < sza
= do x <- indexArrayM a i
fill (i * szb) 0 x >> go (i + 1)
| otherwise = return ()
in go 0
where sza = sizeofArray a; szb = sizeofArray b
instance Alternative Array where
empty = emptyArray
a1 <|> a2 = createArray (sza1 + sza2) (die "<|>" "impossible") $ \ma ->
copyArray ma 0 a1 0 sza1 >> copyArray ma sza1 a2 0 sza2
where sza1 = sizeofArray a1; sza2 = sizeofArray a2
some a | sizeofArray a == 0 = emptyArray
| otherwise = die "some" "infinite arrays are not well defined"
many a | sizeofArray a == 0 = pure []
| otherwise = die "many" "infinite arrays are not well defined"
data ArrayStack a
= PushArray !(Array a) !(ArrayStack a)
| EmptyStack
-- See the note in SmallArray about how we might improve this.
instance Monad Array where
return = pure
(>>) = (*>)
ary >>= f = collect 0 EmptyStack (la - 1)
where
la = sizeofArray ary
collect sz stk i
| i < 0 = createArray sz (die ">>=" "impossible") $ fill 0 stk
| (# x #) <- indexArray## ary i
, let sb = f x
lsb = sizeofArray sb
-- If we don't perform this check, we could end up allocating
-- a stack full of empty arrays if someone is filtering most
-- things out. So we refrain from pushing empty arrays.
= if lsb == 0
then collect sz stk (i - 1)
else collect (sz + lsb) (PushArray sb stk) (i - 1)
fill _ EmptyStack _ = return ()
fill off (PushArray sb sbs) smb
| let lsb = sizeofArray sb
= copyArray smb off sb 0 lsb
*> fill (off + lsb) sbs smb
#if !(MIN_VERSION_base(4,13,0))
fail = Fail.fail
#endif
instance Fail.MonadFail Array where
fail _ = empty
instance MonadPlus Array where
mzero = empty
mplus = (<|>)
zipW :: String -> (a -> b -> c) -> Array a -> Array b -> Array c
zipW s f aa ab = createArray mn (die s "impossible") $ \mc ->
let go i | i < mn
= do
x <- indexArrayM aa i
y <- indexArrayM ab i
writeArray mc i (f x y)
go (i + 1)
| otherwise = return ()
in go 0
where mn = sizeofArray aa `min` sizeofArray ab
{-# INLINE zipW #-}
instance MonadZip Array where
mzip aa ab = zipW "mzip" (,) aa ab
mzipWith f aa ab = zipW "mzipWith" f aa ab
munzip aab = runST $ do
let sz = sizeofArray aab
ma <- newArray sz (die "munzip" "impossible")
mb <- newArray sz (die "munzip" "impossible")
let go i | i < sz = do
(a, b) <- indexArrayM aab i
writeArray ma i a
writeArray mb i b
go (i + 1)
go _ = return ()
go 0
(,) <$> unsafeFreezeArray ma <*> unsafeFreezeArray mb
instance MonadFix Array where
mfix f = createArray (sizeofArray (f err))
(die "mfix" "impossible") $ flip fix 0 $
\r !i !mary -> when (i < sz) $ do
writeArray mary i (fix (\xi -> f xi `indexArray` i))
r (i + 1) mary
where
sz = sizeofArray (f err)
err = error "mfix for Data.Primitive.Array applied to strict function."
-- | @since 0.6.3.0
instance Semigroup (Array a) where
(<>) = (<|>)
sconcat = mconcat . F.toList
stimes n arr = case compare n 0 of
LT -> die "stimes" "negative multiplier"
EQ -> empty
GT -> createArray (n' * sizeofArray arr) (die "stimes" "impossible") $ \ma ->
let go i = if i < n'
then do
copyArray ma (i * sizeofArray arr) arr 0 (sizeofArray arr)
go (i + 1)
else return ()
in go 0
where n' = fromIntegral n :: Int
instance Monoid (Array a) where
mempty = empty
#if !(MIN_VERSION_base(4,11,0))
mappend = (<>)
#endif
mconcat l = createArray sz (die "mconcat" "impossible") $ \ma ->
let go !_ [ ] = return ()
go off (a:as) =
copyArray ma off a 0 (sizeofArray a) >> go (off + sizeofArray a) as
in go 0 l
where sz = sum . fmap sizeofArray $ l
arrayLiftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> Array a -> ShowS
arrayLiftShowsPrec elemShowsPrec elemListShowsPrec p a = showParen (p > 10) $
showString "fromListN " . shows (sizeofArray a) . showString " "
. listLiftShowsPrec elemShowsPrec elemListShowsPrec 11 (toList a)
-- this need to be included for older ghcs
listLiftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> [a] -> ShowS
listLiftShowsPrec _ sl _ = sl
instance Show a => Show (Array a) where
showsPrec p a = arrayLiftShowsPrec showsPrec showList p a
-- | @since 0.6.4.0
instance Show1 Array where
liftShowsPrec = arrayLiftShowsPrec
instance Read a => Read (Array a) where
readPrec = arrayLiftReadPrec readPrec readListPrec
-- | @since 0.6.4.0
instance Read1 Array where
#if MIN_VERSION_base(4,10,0)
liftReadPrec = arrayLiftReadPrec
#else
liftReadsPrec = arrayLiftReadsPrec
#endif
-- We're really forgiving here. We accept
-- "[1,2,3]", "fromList [1,2,3]", and "fromListN 3 [1,2,3]".
-- We consider fromListN with an invalid length to be an
-- error, rather than a parse failure, because doing otherwise
-- seems weird and likely to make debugging difficult.
arrayLiftReadPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec (Array a)
arrayLiftReadPrec _ read_list = parens $ prec app_prec $ RdPrc.lift skipSpaces >>
((fromList <$> read_list) RdPrc.+++
do
tag <- RdPrc.lift lexTag
case tag of
FromListTag -> fromList <$> read_list
FromListNTag -> liftM2 fromListN readPrec read_list)
where
app_prec = 10
data Tag = FromListTag | FromListNTag
-- Why don't we just use lexP? The general problem with lexP is that
-- it doesn't always fail as fast as we might like. It will
-- happily read to the end of an absurdly long lexeme (e.g., a 200MB string
-- literal) before returning, at which point we'll immediately discard
-- the result because it's not an identifier. Doing the job ourselves, we
-- can see very quickly when we've run into a problem. We should also get
-- a slight efficiency boost by going through the string just once.
lexTag :: ReadP Tag
lexTag = do
_ <- string "fromList"
s <- look
case s of
'N':c:_
| '0' <= c && c <= '9'
-> fail "" -- We have fromListN3 or similar
| otherwise -> FromListNTag <$ get -- Skip the 'N'
_ -> return FromListTag
#if !MIN_VERSION_base(4,10,0)
arrayLiftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (Array a)
arrayLiftReadsPrec reads_prec list_reads_prec = RdPrc.readPrec_to_S $
arrayLiftReadPrec (RdPrc.readS_to_Prec reads_prec) (RdPrc.readS_to_Prec (const list_reads_prec))
#endif
arrayDataType :: DataType
arrayDataType = mkDataType "Data.Primitive.Array.Array" [fromListConstr]
fromListConstr :: Constr
fromListConstr = mkConstr arrayDataType "fromList" [] Prefix
instance Data a => Data (Array a) where
toConstr _ = fromListConstr
dataTypeOf _ = arrayDataType
gunfold k z c = case constrIndex c of
1 -> k (z fromList)
_ -> error "gunfold"
gfoldl f z m = z fromList `f` toList m
instance (Typeable s, Typeable a) => Data (MutableArray s a) where
toConstr _ = error "toConstr"
gunfold _ _ = error "gunfold"
dataTypeOf _ = mkNoRepType "Data.Primitive.Array.MutableArray"
|