1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
|
{-# LANGUAGE CPP #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE RoleAnnotations #-}
{-# LANGUAGE UnboxedTuples #-}
{-# LANGUAGE Unsafe #-}
-- | Variant of @MutVar@ that has one less indirection for primitive types.
-- The difference is illustrated by comparing @MutVar Int@ and @PrimVar Int@:
--
-- * @MutVar Int@: @MutVar# --> I#@
-- * @PrimVar Int@: @MutableByteArray#@
--
-- This module is adapted from a module in Edward Kmett\'s @prim-ref@ library.
module Data.Primitive.PrimVar
(
-- * Primitive References
PrimVar(..)
, newPrimVar
, newPinnedPrimVar
, newAlignedPinnedPrimVar
, readPrimVar
, writePrimVar
, modifyPrimVar
, primVarContents
, primVarToMutablePrimArray
-- * Atomic Operations
-- $atomic
, casInt
, fetchAddInt
, fetchSubInt
, fetchAndInt
, fetchNandInt
, fetchOrInt
, fetchXorInt
, atomicReadInt
, atomicWriteInt
) where
import Control.Monad.Primitive
import Data.Primitive
import GHC.Exts
import GHC.Ptr (castPtr)
--------------------------------------------------------------------------------
-- * Primitive References
--------------------------------------------------------------------------------
-- | A 'PrimVar' behaves like a single-element mutable primitive array.
newtype PrimVar s a = PrimVar (MutablePrimArray s a)
type role PrimVar nominal nominal
-- | Create a primitive reference.
newPrimVar :: (PrimMonad m, Prim a) => a -> m (PrimVar (PrimState m) a)
newPrimVar a = do
m <- newPrimArray 1
writePrimArray m 0 a
return (PrimVar m)
{-# INLINE newPrimVar #-}
-- | Create a pinned primitive reference.
newPinnedPrimVar :: (PrimMonad m, Prim a) => a -> m (PrimVar (PrimState m) a)
newPinnedPrimVar a = do
m <- newPinnedPrimArray 1
writePrimArray m 0 a
return (PrimVar m)
{-# INLINE newPinnedPrimVar #-}
-- | Create a pinned primitive reference with the appropriate alignment for its contents.
newAlignedPinnedPrimVar :: (PrimMonad m, Prim a) => a -> m (PrimVar (PrimState m) a)
newAlignedPinnedPrimVar a = do
m <- newAlignedPinnedPrimArray 1
writePrimArray m 0 a
return (PrimVar m)
{-# INLINE newAlignedPinnedPrimVar #-}
-- | Read a value from the 'PrimVar'.
readPrimVar :: (PrimMonad m, Prim a) => PrimVar (PrimState m) a -> m a
readPrimVar (PrimVar m) = readPrimArray m 0
{-# INLINE readPrimVar #-}
-- | Write a value to the 'PrimVar'.
writePrimVar :: (PrimMonad m, Prim a) => PrimVar (PrimState m) a -> a -> m ()
writePrimVar (PrimVar m) a = writePrimArray m 0 a
{-# INLINE writePrimVar #-}
-- | Mutate the contents of a 'PrimVar'.
modifyPrimVar :: (PrimMonad m, Prim a) => PrimVar (PrimState m) a -> (a -> a) -> m ()
modifyPrimVar pv f = do
x <- readPrimVar pv
writePrimVar pv (f x)
{-# INLINE modifyPrimVar #-}
instance Eq (PrimVar s a) where
PrimVar m == PrimVar n = sameMutablePrimArray m n
{-# INLINE (==) #-}
-- | Yield a pointer to the data of a 'PrimVar'. This operation is only safe on pinned byte arrays allocated by
-- 'newPinnedPrimVar' or 'newAlignedPinnedPrimVar'.
primVarContents :: PrimVar s a -> Ptr a
primVarContents (PrimVar m) = castPtr $ mutablePrimArrayContents m
{-# INLINE primVarContents #-}
-- | Convert a 'PrimVar' to a one-elment 'MutablePrimArray'.
primVarToMutablePrimArray :: PrimVar s a -> MutablePrimArray s a
primVarToMutablePrimArray (PrimVar m) = m
{-# INLINE primVarToMutablePrimArray #-}
--------------------------------------------------------------------------------
-- * Atomic Operations
--------------------------------------------------------------------------------
-- $atomic
-- Atomic operations on `PrimVar s Int`. All atomic operations imply a full memory barrier.
-- | Given a primitive reference, the expected old value, and the new value, perform an atomic compare and swap i.e. write the new value if the current value matches the provided old value. Returns the value of the element before the operation.
casInt :: PrimMonad m => PrimVar (PrimState m) Int -> Int -> Int -> m Int
casInt (PrimVar (MutablePrimArray m)) (I# old) (I# new) = primitive $ \s -> case casIntArray# m 0# old new s of
(# s', result #) -> (# s', I# result #)
{-# INLINE casInt #-}
-- | Given a reference, and a value to add, atomically add the value to the element. Returns the value of the element before the operation.
fetchAddInt :: PrimMonad m => PrimVar (PrimState m) Int -> Int -> m Int
fetchAddInt (PrimVar (MutablePrimArray m)) (I# x) = primitive $ \s -> case fetchAddIntArray# m 0# x s of
(# s', result #) -> (# s', I# result #)
{-# INLINE fetchAddInt #-}
-- | Given a reference, and a value to subtract, atomically subtract the value from the element. Returns the value of the element before the operation.
fetchSubInt :: PrimMonad m => PrimVar (PrimState m) Int -> Int -> m Int
fetchSubInt (PrimVar (MutablePrimArray m)) (I# x) = primitive $ \s -> case fetchSubIntArray# m 0# x s of
(# s', result #) -> (# s', I# result #)
{-# INLINE fetchSubInt #-}
-- | Given a reference, and a value to bitwise and, atomically and the value with the element. Returns the value of the element before the operation.
fetchAndInt :: PrimMonad m => PrimVar (PrimState m) Int -> Int -> m Int
fetchAndInt (PrimVar (MutablePrimArray m)) (I# x) = primitive $ \s -> case fetchAndIntArray# m 0# x s of
(# s', result #) -> (# s', I# result #)
{-# INLINE fetchAndInt #-}
-- | Given a reference, and a value to bitwise nand, atomically nand the value with the element. Returns the value of the element before the operation.
fetchNandInt :: PrimMonad m => PrimVar (PrimState m) Int -> Int -> m Int
fetchNandInt (PrimVar (MutablePrimArray m)) (I# x) = primitive $ \s -> case fetchNandIntArray# m 0# x s of
(# s', result #) -> (# s', I# result #)
{-# INLINE fetchNandInt #-}
-- | Given a reference, and a value to bitwise or, atomically or the value with the element. Returns the value of the element before the operation.
fetchOrInt :: PrimMonad m => PrimVar (PrimState m) Int -> Int -> m Int
fetchOrInt (PrimVar (MutablePrimArray m)) (I# x) = primitive $ \s -> case fetchOrIntArray# m 0# x s of
(# s', result #) -> (# s', I# result #)
{-# INLINE fetchOrInt #-}
-- | Given a reference, and a value to bitwise xor, atomically xor the value with the element. Returns the value of the element before the operation.
fetchXorInt :: PrimMonad m => PrimVar (PrimState m) Int -> Int -> m Int
fetchXorInt (PrimVar (MutablePrimArray m)) (I# x) = primitive $ \s -> case fetchXorIntArray# m 0# x s of
(# s', result #) -> (# s', I# result #)
{-# INLINE fetchXorInt #-}
-- | Given a reference, atomically read an element.
atomicReadInt :: PrimMonad m => PrimVar (PrimState m) Int -> m Int
atomicReadInt (PrimVar (MutablePrimArray m)) = primitive $ \s -> case atomicReadIntArray# m 0# s of
(# s', result #) -> (# s', I# result #)
{-# INLINE atomicReadInt #-}
-- | Given a reference, atomically write an element.
atomicWriteInt :: PrimMonad m => PrimVar (PrimState m) Int -> Int -> m ()
atomicWriteInt (PrimVar (MutablePrimArray m)) (I# x) = primitive_ $ \s -> atomicWriteIntArray# m 0# x s
{-# INLINE atomicWriteInt #-}
|