1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
|
{- |
A /priority search queue/ (henceforth /queue/) efficiently supports the
opperations of both a search tree and a priority queue. A 'Binding' is a
product of a key and a priority. Bindings can be inserted, deleted, modified
and queried in logarithmic time, and the binding with the least priority can be
retrieved in constant time. A queue can be built from a list of bindings,
sorted by keys, in linear time.
This implementation is due to Ralf Hinze.
* Hinze, R., /A Simple Implementation Technique for Priority Search Queues/, ICFP 2001, pp. 110-121
<http://citeseer.ist.psu.edu/hinze01simple.html>
-}
-- Some modifications by Scott Dillard
module Data.PSQueue
(
-- * Binding Type
Binding((:->))
, key
, prio
-- * Priority Search Queue Type
, PSQ
-- * Query
, size
, null
, lookup
-- * Construction
, empty
, singleton
-- * Insertion
, insert
, insertWith
-- * Delete/Update
, delete
, adjust
, adjustWithKey
, update
, updateWithKey
, alter
-- * Conversion
, keys
, toList
, toAscList
, toDescList
, fromList
, fromAscList
, fromDistinctAscList
-- * Priority Queue
, findMin
, deleteMin
, minView
, atMost
, atMostRange
-- * Fold
, foldr
, foldl
) where
import Prelude hiding (lookup,null,foldl,foldr)
import qualified Prelude as P
{-
-- testing
import Test.QuickCheck
import Data.List (sort)
-}
-- | @k :-> p@ binds the key @k@ with the priority @p@.
data Binding k p = k :-> p deriving (Eq,Ord,Show,Read)
infix 0 :->
-- | The key of a binding
key :: Binding k p -> k
key (k :-> _) = k
-- | The priority of a binding
prio :: Binding k p -> p
prio (_ :-> p) = p
-- | A mapping from keys @k@ to priorites @p@.
data PSQ k p = Void | Winner k p (LTree k p) k
instance (Show k, Show p, Ord k, Ord p) => Show (PSQ k p) where
show = show . toAscList
--show Void = "[]"
--show (Winner k1 p lt k2) = "Winner "++show k1++" "++show p++" ("++show lt++") "++show k2
-- | /O(1)/ The number of bindings in a queue.
size :: PSQ k p -> Int
size Void = 0
size (Winner _ _ lt _) = 1 + size' lt
-- | /O(1)/ True if the queue is empty.
null :: PSQ k p -> Bool
null Void = True
null (Winner _ _ _ _) = False
-- | /O(log n)/ The priority of a given key, or Nothing if the key is not
-- bound.
lookup :: (Ord k, Ord p) => k -> PSQ k p -> Maybe p
lookup k q =
case tourView q of
Null -> fail "PSQueue.lookup: Empty queue"
Single k' p
| k == k' -> return p
| otherwise -> fail "PSQueue.lookup: Key not found"
tl `Play` tr
| k <= maxKey tl -> lookup k tl
| otherwise -> lookup k tr
empty :: (Ord k, Ord p) => PSQ k p
empty = Void
-- | O(1) Build a queue with one binding.
singleton :: (Ord k, Ord p) => k -> p -> PSQ k p
singleton k p = Winner k p Start k
-- | /O(log n)/ Insert a binding into the queue.
insert :: (Ord k, Ord p) => k -> p -> PSQ k p -> PSQ k p
insert k p q =
case tourView q of
Null -> singleton k p
Single k' p' ->
case compare k k' of
LT -> singleton k p `play` singleton k' p'
EQ -> singleton k p
GT -> singleton k' p' `play` singleton k p
tl `Play` tr
| k <= maxKey tl -> insert k p tl `play` tr
| otherwise -> tl `play` insert k p tr
-- | /O(log n)/ Insert a binding with a combining function.
insertWith :: (Ord k, Ord p) => (p->p->p) -> k -> p -> PSQ k p -> PSQ k p
insertWith f = insertWithKey (\_ p p'-> f p p')
-- | /O(log n)/ Insert a binding with a combining function.
insertWithKey :: (Ord k, Ord p) => (k->p->p->p) -> k -> p -> PSQ k p -> PSQ k p
insertWithKey f k p q =
case tourView q of
Null -> singleton k p
Single k' p' ->
case compare k k' of
LT -> singleton k p `play` singleton k' p'
EQ -> singleton k (f k p p')
GT -> singleton k' p' `play` singleton k p
tl `Play` tr
| k <= maxKey tl -> insertWithKey f k p tl `unsafePlay` tr
| otherwise -> tl `unsafePlay` insertWithKey f k p tr
-- | /O(log n)/ Remove a binding from the queue.
delete :: (Ord k, Ord p) => k -> PSQ k p -> PSQ k p
delete k q =
case tourView q of
Null -> empty
Single k' p
| k == k' -> empty
| otherwise -> singleton k' p
tl `Play` tr
| k <= maxKey tl -> delete k tl `play` tr
| otherwise -> tl `play` delete k tr
-- | /O(log n)/ Adjust the priority of a key.
adjust :: (Ord p, Ord k) => (p -> p) -> k -> PSQ k p -> PSQ k p
adjust f = adjustWithKey (\_ p -> f p)
-- | /O(log n)/ Adjust the priority of a key.
adjustWithKey :: (Ord k, Ord p) => (k -> p -> p) -> k -> PSQ k p -> PSQ k p
adjustWithKey f k q =
case tourView q of
Null -> empty
Single k' p
| k == k' -> singleton k' (f k p)
| otherwise -> singleton k' p
tl `Play` tr
| k <= maxKey tl -> adjustWithKey f k tl `unsafePlay` tr
| otherwise -> tl `unsafePlay` adjustWithKey f k tr
-- | /O(log n)/ The expression (@update f k q@) updates the
-- priority @p@ bound @k@ (if it is in the queue). If (@f p@) is 'Nothing',
-- the binding is deleted. If it is (@'Just' z@), the key @k@ is bound
-- to the new priority @z@.
update :: (Ord k, Ord p) => (p -> Maybe p) -> k -> PSQ k p -> PSQ k p
update f = updateWithKey (\_ p -> f p)
-- | /O(log n)/. The expression (@updateWithKey f k q@) updates the
-- priority @p@ bound @k@ (if it is in the queue). If (@f k p@) is 'Nothing',
-- the binding is deleted. If it is (@'Just' z@), the key @k@ is bound
-- to the new priority @z@.
updateWithKey :: (Ord k, Ord p) => (k -> p -> Maybe p) -> k -> PSQ k p -> PSQ k p
updateWithKey f k q =
case tourView q of
Null -> empty
Single k' p
| k==k' -> case f k p of
Nothing -> empty
Just p' -> singleton k p'
| otherwise -> singleton k' p
tl `Play` tr
| k <= maxKey tl -> updateWithKey f k tl `unsafePlay` tr
| otherwise -> tl `unsafePlay` updateWithKey f k tr
-- | /O(log n)/. The expression (@'alter' f k q@) alters the priority @p@ bound to @k@, or absence thereof.
-- alter can be used to insert, delete, or update a priority in a queue.
alter :: (Ord k, Ord p) => (Maybe p -> Maybe p) -> k -> PSQ k p -> PSQ k p
alter f k q =
case tourView q of
Null ->
case f Nothing of
Nothing -> empty
Just p -> singleton k p
Single k' p
| k == k' -> case f (Just p) of
Nothing -> empty
Just p' -> singleton k' p'
| otherwise -> case f Nothing of
Nothing -> singleton k' p
Just p' -> insert k p' $ singleton k' p
tl `Play` tr
| k <= maxKey tl -> alter f k tl `unsafePlay` tr
| otherwise -> tl `unsafePlay` alter f k tr
-- | /O(n)/ The keys of a priority queue
keys :: (Ord k, Ord p) => PSQ k p -> [k]
keys = map key . toList
-- | /O(n log n)/ Build a queue from a list of bindings.
fromList :: (Ord k, Ord p) => [Binding k p] -> PSQ k p
fromList = P.foldr (\(k:->p) q -> insert k p q) empty
-- | /O(n)/ Build a queue from a list of bindings in order of
-- ascending keys. The precondition that the keys are ascending is not checked.
fromAscList :: (Ord k, Ord p) => [Binding k p] -> PSQ k p
fromAscList = fromDistinctAscList . stripEq
where stripEq [] = []
stripEq (x:xs) = stripEq' x xs
stripEq' x' [] = [x']
stripEq' x' (x:xs)
| x' == x = stripEq' x' xs
| otherwise = x' : stripEq' x xs
-- | /O(n)/ Build a queue from a list of distinct bindings in order of
-- ascending keys. The precondition that keys are distinct and ascending is not checked.
fromDistinctAscList :: (Ord k, Ord p) => [Binding k p] -> PSQ k p
fromDistinctAscList = foldm unsafePlay empty . map (\(k:->p) -> singleton k p)
-- Folding a list in a binary-subdivision scheme.
foldm :: (a -> a -> a) -> a -> [a] -> a
foldm (*) e x
| P.null x = e
| otherwise = fst (rec (length x) x)
where rec 1 (a : as) = (a, as)
rec n as = (a1 * a2, as2)
where m = n `div` 2
(a1, as1) = rec (n - m) as
(a2, as2) = rec m as1
-- | /O(n)/ Convert a queue to a list.
toList :: (Ord k, Ord p) => PSQ k p -> [Binding k p]
toList = toAscList
-- | /O(n)/ Convert a queue to a list in ascending order of keys.
toAscList :: (Ord k, Ord p) => PSQ k p -> [Binding k p]
toAscList q = seqToList (toAscLists q)
toAscLists :: (Ord k, Ord p) => PSQ k p -> Sequ (Binding k p)
toAscLists q = case tourView q of
Null -> emptySequ
Single k p -> singleSequ (k :-> p)
tl `Play` tr -> toAscLists tl <> toAscLists tr
-- | /O(n)/ Convert a queue to a list in descending order of keys.
toDescList :: (Ord k, Ord p) => PSQ k p -> [ Binding k p ]
toDescList q = seqToList (toDescLists q)
toDescLists :: (Ord k, Ord p) => PSQ k p -> Sequ (Binding k p)
toDescLists q = case tourView q of
Null -> emptySequ
Single k p -> singleSequ (k :-> p)
tl `Play` tr -> toDescLists tr <> toDescLists tl
-- | /O(1)/ The binding with the lowest priority.
findMin :: (Ord k, Ord p) => PSQ k p -> Maybe (Binding k p)
findMin Void = Nothing
findMin (Winner k p t m) = Just (k :-> p)
-- | /O(log n)/ Remove the binding with the lowest priority.
deleteMin :: (Ord k, Ord p) => PSQ k p -> PSQ k p
deleteMin Void = Void
deleteMin (Winner k p t m) = secondBest t m
-- | /O(log n)/ Retrieve the binding with the least priority, and the rest of
-- the queue stripped of that binding.
minView :: (Ord k, Ord p) => PSQ k p -> Maybe (Binding k p, PSQ k p)
minView Void = Nothing
minView (Winner k p t m) = Just ( k :-> p , secondBest t m )
secondBest :: (Ord k, Ord p) => LTree k p -> k -> PSQ k p
secondBest Start _m = Void
secondBest (LLoser _ k p tl m tr) m' = Winner k p tl m `play` secondBest tr m'
secondBest (RLoser _ k p tl m tr) m' = secondBest tl m `play` Winner k p tr m'
-- | /O(r(log n - log r)/ @atMost p q@ is a list of all the bindings in @q@ with
-- priority less than @p@, in order of ascending keys.
-- Effectively,
--
-- @
-- atMost p' q = filter (\\(k:->p) -> p<=p') . toList
-- @
atMost :: (Ord k, Ord p) => p -> PSQ k p -> [Binding k p]
atMost pt q = seqToList (atMosts pt q)
atMosts :: (Ord k, Ord p) => p -> PSQ k p -> Sequ (Binding k p)
atMosts _pt Void = emptySequ
atMosts pt (Winner k p t _) = prune k p t
where
prune k p t
| p > pt = emptySequ
| otherwise = traverse k p t
traverse k p Start = singleSequ (k :-> p)
traverse k p (LLoser _ k' p' tl _m tr) = prune k' p' tl <> traverse k p tr
traverse k p (RLoser _ k' p' tl _m tr) = traverse k p tl <> prune k' p' tr
-- | /O(r(log n - log r))/ @atMostRange p (l,u) q@ is a list of all the bindings in
-- @q@ with a priority less than @p@ and a key in the range @(l,u)@ inclusive.
-- Effectively,
--
-- @
-- atMostRange p' (l,u) q = filter (\\(k:->p) -> l<=k && k<=u ) . 'atMost' p'
-- @
atMostRange :: (Ord k, Ord p) => p -> (k, k) -> PSQ k p -> [Binding k p]
atMostRange pt (kl, kr) q = seqToList (atMostRanges pt (kl, kr) q)
atMostRanges :: (Ord k, Ord p) => p -> (k, k) -> PSQ k p -> Sequ (Binding k p)
atMostRanges _pt _range Void = emptySequ
atMostRanges pt range@(kl, kr) (Winner k p t _) = prune k p t
where
prune k p t
| p > pt = emptySequ
| otherwise = traverse k p t
traverse k p Start
| k `inrange` range = singleSequ (k :-> p)
| otherwise = emptySequ
traverse k p (LLoser _ k' p' tl m tr) =
guard (kl <= m) (prune k' p' tl) <> guard (m <= kr) (traverse k p tr)
traverse k p (RLoser _ k' p' tl m tr) =
guard (kl <= m) (traverse k p tl) <> guard (m <= kr) (prune k' p' tr)
inrange :: (Ord a) => a -> (a, a) -> Bool
a `inrange` (l, r) = l <= a && a <= r
-- | Right fold over the bindings in the queue, in key order.
foldr :: (Ord k,Ord p) => (Binding k p -> b -> b) -> b -> PSQ k p -> b
foldr f z q =
case tourView q of
Null -> z
Single k p -> f (k:->p) z
l`Play`r -> foldr f (foldr f z r) l
-- | Left fold over the bindings in the queue, in key order.
foldl :: (Ord k,Ord p) => (b -> Binding k p -> b) -> b -> PSQ k p -> b
foldl f z q =
case tourView q of
Null -> z
Single k p -> f z (k:->p)
l`Play`r -> foldl f (foldl f z l) r
-----------------------
------- Internals -----
----------------------
type Size = Int
data LTree k p = Start
| LLoser {-# UNPACK #-}!Size !k !p (LTree k p) !k (LTree k p)
| RLoser {-# UNPACK #-}!Size !k !p (LTree k p) !k (LTree k p)
size' :: LTree k p -> Size
size' Start = 0
size' (LLoser s _ _ _ _ _) = s
size' (RLoser s _ _ _ _ _) = s
left, right :: LTree a b -> LTree a b
left Start = error "left: empty loser tree"
left (LLoser _ _ _ tl _ _ ) = tl
left (RLoser _ _ _ tl _ _ ) = tl
right Start = error "right: empty loser tree"
right (LLoser _ _ _ _ _ tr) = tr
right (RLoser _ _ _ _ _ tr) = tr
maxKey :: PSQ k p -> k
maxKey Void = error "maxKey: empty queue"
maxKey (Winner _k _p _t m) = m
lloser, rloser :: k -> p -> LTree k p -> k -> LTree k p -> LTree k p
lloser k p tl m tr = LLoser (1 + size' tl + size' tr) k p tl m tr
rloser k p tl m tr = RLoser (1 + size' tl + size' tr) k p tl m tr
--balance factor
omega :: Int
omega = 4
lbalance, rbalance ::
(Ord k, Ord p) => k-> p -> LTree k p -> k -> LTree k p -> LTree k p
lbalance k p l m r
| size' l + size' r < 2 = lloser k p l m r
| size' r > omega * size' l = lbalanceLeft k p l m r
| size' l > omega * size' r = lbalanceRight k p l m r
| otherwise = lloser k p l m r
rbalance k p l m r
| size' l + size' r < 2 = rloser k p l m r
| size' r > omega * size' l = rbalanceLeft k p l m r
| size' l > omega * size' r = rbalanceRight k p l m r
| otherwise = rloser k p l m r
lbalanceLeft k p l m r
| size' (left r) < size' (right r) = lsingleLeft k p l m r
| otherwise = ldoubleLeft k p l m r
lbalanceRight k p l m r
| size' (left l) > size' (right l) = lsingleRight k p l m r
| otherwise = ldoubleRight k p l m r
rbalanceLeft k p l m r
| size' (left r) < size' (right r) = rsingleLeft k p l m r
| otherwise = rdoubleLeft k p l m r
rbalanceRight k p l m r
| size' (left l) > size' (right l) = rsingleRight k p l m r
| otherwise = rdoubleRight k p l m r
lsingleLeft k1 p1 t1 m1 (LLoser _ k2 p2 t2 m2 t3)
| p1 <= p2 = lloser k1 p1 (rloser k2 p2 t1 m1 t2) m2 t3
| otherwise = lloser k2 p2 (lloser k1 p1 t1 m1 t2) m2 t3
lsingleLeft k1 p1 t1 m1 (RLoser _ k2 p2 t2 m2 t3) =
rloser k2 p2 (lloser k1 p1 t1 m1 t2) m2 t3
rsingleLeft k1 p1 t1 m1 (LLoser _ k2 p2 t2 m2 t3) =
rloser k1 p1 (rloser k2 p2 t1 m1 t2) m2 t3
rsingleLeft k1 p1 t1 m1 (RLoser _ k2 p2 t2 m2 t3) =
rloser k2 p2 (rloser k1 p1 t1 m1 t2) m2 t3
lsingleRight k1 p1 (LLoser _ k2 p2 t1 m1 t2) m2 t3 =
lloser k2 p2 t1 m1 (lloser k1 p1 t2 m2 t3)
lsingleRight k1 p1 (RLoser _ k2 p2 t1 m1 t2) m2 t3 =
lloser k1 p1 t1 m1 (lloser k2 p2 t2 m2 t3)
rsingleRight k1 p1 (LLoser _ k2 p2 t1 m1 t2) m2 t3 =
lloser k2 p2 t1 m1 (rloser k1 p1 t2 m2 t3)
rsingleRight k1 p1 (RLoser _ k2 p2 t1 m1 t2) m2 t3
| p1 <= p2 = rloser k1 p1 t1 m1 (lloser k2 p2 t2 m2 t3)
| otherwise = rloser k2 p2 t1 m1 (rloser k1 p1 t2 m2 t3)
ldoubleLeft k1 p1 t1 m1 (LLoser _ k2 p2 t2 m2 t3) =
lsingleLeft k1 p1 t1 m1 (lsingleRight k2 p2 t2 m2 t3)
ldoubleLeft k1 p1 t1 m1 (RLoser _ k2 p2 t2 m2 t3) =
lsingleLeft k1 p1 t1 m1 (rsingleRight k2 p2 t2 m2 t3)
ldoubleRight k1 p1 (LLoser _ k2 p2 t1 m1 t2) m2 t3 =
lsingleRight k1 p1 (lsingleLeft k2 p2 t1 m1 t2) m2 t3
ldoubleRight k1 p1 (RLoser _ k2 p2 t1 m1 t2) m2 t3 =
lsingleRight k1 p1 (rsingleLeft k2 p2 t1 m1 t2) m2 t3
rdoubleLeft k1 p1 t1 m1 (LLoser _ k2 p2 t2 m2 t3) =
rsingleLeft k1 p1 t1 m1 (lsingleRight k2 p2 t2 m2 t3)
rdoubleLeft k1 p1 t1 m1 (RLoser _ k2 p2 t2 m2 t3) =
rsingleLeft k1 p1 t1 m1 (rsingleRight k2 p2 t2 m2 t3)
rdoubleRight k1 p1 (LLoser _ k2 p2 t1 m1 t2) m2 t3 =
rsingleRight k1 p1 (lsingleLeft k2 p2 t1 m1 t2) m2 t3
rdoubleRight k1 p1 (RLoser _ k2 p2 t1 m1 t2) m2 t3 =
rsingleRight k1 p1 (rsingleLeft k2 p2 t1 m1 t2) m2 t3
play :: (Ord k, Ord p) => PSQ k p -> PSQ k p -> PSQ k p
Void `play` t' = t'
t `play` Void = t
Winner k p t m `play` Winner k' p' t' m'
| p <= p' = Winner k p (rbalance k' p' t m t') m'
| otherwise = Winner k' p' (lbalance k p t m t') m'
unsafePlay :: (Ord k, Ord p) => PSQ k p -> PSQ k p -> PSQ k p
Void `unsafePlay` t' = t'
t `unsafePlay` Void = t
Winner k p t m `unsafePlay` Winner k' p' t' m'
| p <= p' = Winner k p (rbalance k' p' t m t') m'
| otherwise = Winner k' p' (lbalance k p t m t') m'
data TourView k p = Null | Single k p | PSQ k p `Play` PSQ k p
tourView :: (Ord k) => PSQ k p -> TourView k p
tourView Void = Null
tourView (Winner k p Start _m) = Single k p
tourView (Winner k p (RLoser _ k' p' tl m tr) m') =
Winner k p tl m `Play` Winner k' p' tr m'
tourView (Winner k p (LLoser _ k' p' tl m tr) m') =
Winner k' p' tl m `Play` Winner k p tr m'
--------------------------------------
-- Hughes's efficient sequence type --
--------------------------------------
emptySequ :: Sequ a
singleSequ :: a -> Sequ a
(<>) :: Sequ a -> Sequ a -> Sequ a
seqFromList :: [a] -> Sequ a
seqFromListT :: ([a] -> [a]) -> Sequ a
seqToList :: Sequ a -> [a]
infixr 5 <>
newtype Sequ a = Sequ ([a] -> [a])
emptySequ = Sequ (\as -> as)
singleSequ a = Sequ (\as -> a : as)
Sequ x1 <> Sequ x2 = Sequ (\as -> x1 (x2 as))
seqFromList as = Sequ (\as' -> as ++ as')
seqFromListT as = Sequ as
seqToList (Sequ x) = x []
instance Show a => Show (Sequ a) where
showsPrec d a = showsPrec d (seqToList a)
guard :: Bool -> Sequ a -> Sequ a
guard False _as = emptySequ
guard True as = as
---------------------------------
------------ Tests --------------
---------------------------------
{-
isBalanced Start = True
isBalanced (LLoser s k p l m r) =
(size' l + size' r <= 2 ||(size' l<=omega*size' r && size' r<=omega*size' l))
&& isBalanced l && isBalanced r
isBalanced (RLoser s k p l m r) =
(size' l + size' r <= 2 ||(size' l<=omega*size' r && size' r<=omega*size' l))
&& isBalanced l && isBalanced r
instance (Ord k, Ord p, Arbitrary k, Arbitrary p) => Arbitrary (PSQ k p)
where
coarbitrary = undefined
arbitrary =
do ks <- arbitrary
ps <- arbitrary
return . fromList $ zipWith (:->) ks ps
prop_Balanced :: PSQ Int Int -> Bool
prop_Balanced Void = True
prop_Balanced (Winner _ _ t _) = isBalanced t
prop_OrderedKeys :: PSQ Int Int -> Bool
prop_OrderedKeys t = let ks = map key . toAscList $ t in sort ks == ks
prop_AtMost :: (PSQ Int Int,Int) -> Bool
prop_AtMost (t,p) =
let ps = map prio . atMost p $ t
in all (<=p) ps
prop_AtMostRange :: (PSQ Int Int,Int,Int,Int) -> Bool
prop_AtMostRange (t,p,l_,r_) =
let l = min (abs l_) (abs r_)
r = max (abs l_) (abs r_)
(ks,ps) = unzip . map (\b -> (key b,prio b)) . atMostRange p (l,r) $ t
in all (flip inrange (l,r)) ks && all (<=p) ps
prop_MinView :: PSQ Int Int -> Bool
prop_MinView t =
case minView t of
Nothing -> True
Just (b1,t') ->
case minView t' of
Nothing -> True
Just (b2,_) -> prio b1 <= prio b2 && prop_MinView t'
tests =
do
putStrLn "Balanced"
quickCheck prop_Balanced
putStrLn "OrderedKeys"
quickCheck prop_OrderedKeys
putStrLn "MinView"
quickCheck prop_MinView
putStrLn "AtMost"
quickCheck prop_AtMost
putStrLn "AtMostRange"
quickCheck prop_AtMostRange
-}
|