File: PSQueue.hs

package info (click to toggle)
haskell-psqueue 1.1-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 72 kB
  • sloc: haskell: 360; makefile: 2
file content (664 lines) | stat: -rw-r--r-- 19,990 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
{- |

A /priority search queue/ (henceforth /queue/) efficiently supports the
opperations of both a search tree and a priority queue. A 'Binding' is a
product of a key and a priority. Bindings can be inserted, deleted, modified
and queried in logarithmic time, and the binding with the least priority can be
retrieved in constant time. A queue can be built from a list of bindings,
sorted by keys, in linear time.

This implementation is due to Ralf Hinze.

* Hinze, R., /A Simple Implementation Technique for Priority Search Queues/, ICFP 2001, pp. 110-121

<http://citeseer.ist.psu.edu/hinze01simple.html>

-}

-- Some modifications by Scott Dillard


module Data.PSQueue
    ( 
    -- * Binding Type
    Binding((:->))
    , key
    , prio
    -- * Priority Search Queue Type
    , PSQ
    -- * Query
    , size
    , null
    , lookup
    -- * Construction
    , empty
    , singleton
    -- * Insertion
    , insert
    , insertWith
    -- * Delete/Update 
    , delete
    , adjust
    , adjustWithKey
    , update
    , updateWithKey
    , alter
    -- * Conversion
    , keys
    , toList
    , toAscList
    , toDescList
    , fromList
    , fromAscList
    , fromDistinctAscList
    -- * Priority Queue
    , findMin
    , deleteMin
    , minView
    , atMost
    , atMostRange
    -- * Fold
    , foldr
    , foldl
) where

import Prelude hiding (lookup,null,foldl,foldr)
import qualified Prelude as P

{-
-- testing
import Test.QuickCheck
import Data.List (sort)
-}




-- | @k :-> p@ binds the key @k@ with the priority @p@.
data Binding k p = k :-> p deriving (Eq,Ord,Show,Read)

infix 0 :->

-- | The key of a binding
key  :: Binding k p -> k
key  (k :-> _) =  k

-- | The priority of a binding
prio :: Binding k p -> p
prio (_ :-> p) =  p



-- | A mapping from keys @k@ to priorites @p@. 

data PSQ k p = Void | Winner k p (LTree k p) k

instance (Show k, Show p, Ord k, Ord p) => Show (PSQ k p) where
  show = show . toAscList
  --show Void = "[]"
  --show (Winner k1 p lt k2) = "Winner "++show k1++" "++show p++" ("++show lt++") "++show k2




-- | /O(1)/ The number of bindings in a queue.
size :: PSQ k p -> Int
size Void = 0
size (Winner _ _ lt _) = 1 + size' lt

-- | /O(1)/ True if the queue is empty.
null :: PSQ k p -> Bool
null Void = True
null (Winner _ _ _ _) = False

-- | /O(log n)/ The priority of a given key, or Nothing if the key is not
-- bound.
lookup :: (Ord k, Ord p) => k -> PSQ k p -> Maybe p
lookup k q = 
  case tourView q of
    Null -> fail "PSQueue.lookup: Empty queue"
    Single k' p
      | k == k'   -> return p
      | otherwise -> fail "PSQueue.lookup: Key not found"
    tl `Play` tr
      | k <= maxKey tl -> lookup k tl
      | otherwise      -> lookup k tr



empty :: (Ord k, Ord p) => PSQ k p
empty = Void

-- | O(1) Build a queue with one binding.
singleton :: (Ord k, Ord p) => k -> p -> PSQ k p
singleton k p =  Winner k p Start k


-- | /O(log n)/ Insert a binding into the queue.
insert :: (Ord k, Ord p) => k -> p -> PSQ k p -> PSQ k p
insert k p q = 
  case tourView q of
    Null -> singleton k p
    Single k' p' ->
      case compare k k' of
        LT -> singleton k  p  `play` singleton k' p'
        EQ -> singleton k  p
        GT -> singleton k' p' `play` singleton k  p
    tl `Play` tr
      | k <= maxKey tl -> insert k p tl `play` tr
      | otherwise      -> tl `play` insert k p tr


-- | /O(log n)/ Insert a binding with a combining function. 
insertWith :: (Ord k, Ord p) => (p->p->p) -> k -> p -> PSQ k p -> PSQ k p
insertWith f = insertWithKey (\_ p p'-> f p p')

-- | /O(log n)/ Insert a binding with a combining function. 
insertWithKey :: (Ord k, Ord p) => (k->p->p->p) -> k -> p -> PSQ k p -> PSQ k p
insertWithKey f k p q =  
  case tourView q of
    Null -> singleton k p
    Single k' p' ->
      case compare k k' of 
        LT -> singleton k  p  `play` singleton k' p'
        EQ -> singleton k  (f k p p')
        GT -> singleton k' p' `play` singleton k  p
    tl `Play` tr
      | k <= maxKey tl -> insertWithKey f k p tl `unsafePlay` tr
      | otherwise      -> tl `unsafePlay` insertWithKey f k p tr



-- | /O(log n)/ Remove a binding from the queue.
delete :: (Ord k, Ord p) => k -> PSQ k p -> PSQ k p
delete k q = 
  case tourView q of
    Null -> empty
    Single k' p
      | k == k'   -> empty
      | otherwise -> singleton k' p
    tl `Play` tr
      | k <= maxKey tl -> delete k tl `play` tr
      | otherwise      -> tl `play` delete k tr

-- | /O(log n)/ Adjust the priority of a key.
adjust ::  (Ord p, Ord k) => (p -> p) -> k -> PSQ k p -> PSQ k p
adjust f = adjustWithKey (\_ p -> f p)

-- | /O(log n)/ Adjust the priority of a key.
adjustWithKey :: (Ord k, Ord p) => (k -> p -> p) -> k -> PSQ k p -> PSQ k p
adjustWithKey f k q =  
  case tourView q of
    Null -> empty
    Single k' p
      | k == k'   -> singleton k' (f k p)
      | otherwise -> singleton k' p
    tl `Play` tr
      | k <= maxKey tl -> adjustWithKey f k tl `unsafePlay` tr
      | otherwise      -> tl `unsafePlay` adjustWithKey f k tr


-- | /O(log n)/ The expression (@update f k q@) updates the
-- priority @p@ bound @k@ (if it is in the queue). If (@f p@) is 'Nothing',
-- the binding is deleted. If it is (@'Just' z@), the key @k@ is bound
-- to the new priority @z@.

update :: (Ord k, Ord p) => (p -> Maybe p) -> k -> PSQ k p -> PSQ k p
update f = updateWithKey (\_ p -> f p)

-- | /O(log n)/. The expression (@updateWithKey f k q@) updates the
-- priority @p@ bound @k@ (if it is in the queue). If (@f k p@) is 'Nothing',
-- the binding is deleted. If it is (@'Just' z@), the key @k@ is bound
-- to the new priority @z@.

updateWithKey :: (Ord k, Ord p) => (k -> p -> Maybe p) -> k -> PSQ k p -> PSQ k p
updateWithKey f k q =  
  case tourView q of
    Null -> empty
    Single k' p 
      | k==k' -> case f k p of
                  Nothing -> empty
                  Just p' -> singleton k p'
      | otherwise -> singleton k' p
    tl `Play` tr
      | k <= maxKey tl -> updateWithKey f k tl `unsafePlay` tr
      | otherwise      -> tl `unsafePlay` updateWithKey f k tr


-- | /O(log n)/. The expression (@'alter' f k q@) alters the priority @p@ bound to @k@, or absence thereof.
-- alter can be used to insert, delete, or update a priority in a queue.
alter :: (Ord k, Ord p) => (Maybe p -> Maybe p) -> k -> PSQ k p -> PSQ k p
alter f k q =
  case tourView q of
    Null -> 
      case f Nothing of
        Nothing -> empty
        Just p  -> singleton k p
    Single k' p 
      | k == k'   ->  case f (Just p) of
                        Nothing -> empty
                        Just p' -> singleton k' p'
      | otherwise ->  case f Nothing of
                        Nothing -> singleton k' p
                        Just p' -> insert k p' $ singleton k' p
    tl `Play` tr
      | k <= maxKey tl -> alter f k tl `unsafePlay` tr
      | otherwise      -> tl `unsafePlay` alter f k tr



-- | /O(n)/ The keys of a priority queue
keys :: (Ord k, Ord p) => PSQ k p -> [k]
keys = map key . toList

-- | /O(n log n)/ Build a queue from a list of bindings.
fromList :: (Ord k, Ord p) => [Binding k p] -> PSQ k p
fromList = P.foldr (\(k:->p) q -> insert k p q) empty

-- | /O(n)/ Build a queue from a list of bindings in order of
-- ascending keys. The precondition that the keys are ascending is not checked.
fromAscList :: (Ord k, Ord p) => [Binding k p] -> PSQ k p
fromAscList = fromDistinctAscList . stripEq 
  where stripEq []         = []
        stripEq (x:xs)     = stripEq' x xs
        stripEq' x' []     = [x']
        stripEq' x' (x:xs) 
          | x' == x   = stripEq' x' xs
          | otherwise = x' : stripEq' x xs

-- | /O(n)/ Build a queue from a list of distinct bindings in order of
-- ascending keys. The precondition that keys are distinct and ascending is not checked.
fromDistinctAscList :: (Ord k, Ord p) => [Binding k p] -> PSQ k p
fromDistinctAscList = foldm unsafePlay empty . map (\(k:->p) -> singleton k p)

-- Folding a list in a binary-subdivision scheme.
foldm :: (a -> a -> a) -> a -> [a] -> a
foldm (*) e x
  | P.null  x             = e
  | otherwise             = fst (rec (length x) x)
  where rec 1 (a : as)    = (a, as)
        rec n as          = (a1 * a2, as2)
          where m         = n `div` 2
                (a1, as1) = rec (n - m) as 
                (a2, as2) = rec m       as1

-- | /O(n)/ Convert a queue to a list.
toList :: (Ord k, Ord p) => PSQ k p -> [Binding k p]
toList = toAscList

-- | /O(n)/ Convert a queue to a list in ascending order of keys.
toAscList :: (Ord k, Ord p) => PSQ k p -> [Binding k p]
toAscList q  = seqToList (toAscLists q)

toAscLists :: (Ord k, Ord p) => PSQ k p -> Sequ (Binding k p)
toAscLists q = case tourView q of
  Null -> emptySequ
  Single k p -> singleSequ (k :-> p)
  tl `Play` tr -> toAscLists tl <> toAscLists tr

-- | /O(n)/ Convert a queue to a list in descending order of keys.
toDescList :: (Ord k, Ord p) => PSQ k p -> [ Binding k p ]
toDescList q = seqToList (toDescLists q)

toDescLists :: (Ord k, Ord p) => PSQ k p -> Sequ (Binding k p)
toDescLists q = case tourView q of 
  Null -> emptySequ
  Single k p -> singleSequ (k :-> p)
  tl `Play` tr -> toDescLists tr <> toDescLists tl


-- | /O(1)/ The binding with the lowest priority.
findMin :: (Ord k, Ord p) => PSQ k p -> Maybe (Binding k p)
findMin Void             = Nothing
findMin (Winner k p t m) = Just (k :-> p) 

-- | /O(log n)/ Remove the binding with the lowest priority.
deleteMin :: (Ord k, Ord p) => PSQ k p -> PSQ k p
deleteMin Void             = Void
deleteMin (Winner k p t m) = secondBest t m

-- | /O(log n)/ Retrieve the binding with the least priority, and the rest of
-- the queue stripped of that binding. 
minView :: (Ord k, Ord p) => PSQ k p -> Maybe (Binding k p, PSQ k p)
minView Void             = Nothing
minView (Winner k p t m) = Just ( k :-> p , secondBest t m )

secondBest :: (Ord k, Ord p) => LTree k p -> k -> PSQ k p
secondBest Start _m = Void
secondBest (LLoser _ k p tl m tr) m' = Winner k p tl m `play` secondBest tr m'
secondBest (RLoser _ k p tl m tr) m' = secondBest tl m `play` Winner k p tr m'



-- | /O(r(log n - log r)/ @atMost p q@ is a list of all the bindings in @q@ with
-- priority less than @p@, in order of ascending keys.
-- Effectively, 
--
-- @
--   atMost p' q = filter (\\(k:->p) -> p<=p') . toList
-- @
atMost :: (Ord k, Ord p) => p -> PSQ k p -> [Binding k p]
atMost pt q = seqToList (atMosts pt q)

atMosts :: (Ord k, Ord p) => p -> PSQ k p -> Sequ (Binding k p)
atMosts _pt Void  = emptySequ
atMosts pt (Winner k p t _) =  prune k p t
  where
  prune k p t
    | p > pt         = emptySequ
    | otherwise      = traverse k p t
  traverse k p Start = singleSequ (k :-> p)
  traverse k p (LLoser _ k' p' tl _m tr) = prune k' p' tl <> traverse k p tr
  traverse k p (RLoser _ k' p' tl _m tr) = traverse k p tl <> prune k' p' tr

-- | /O(r(log n - log r))/ @atMostRange p (l,u) q@ is a list of all the bindings in
-- @q@ with a priority less than @p@ and a key in the range @(l,u)@ inclusive.
-- Effectively,
-- 
-- @
--    atMostRange p' (l,u) q = filter (\\(k:->p) -> l<=k && k<=u ) . 'atMost' p'
-- @
atMostRange :: (Ord k, Ord p) => p -> (k, k) -> PSQ k p -> [Binding k p]
atMostRange pt (kl, kr) q = seqToList (atMostRanges pt (kl, kr) q)

atMostRanges :: (Ord k, Ord p) => p -> (k, k) -> PSQ k p -> Sequ (Binding k p)

atMostRanges _pt _range Void = emptySequ
atMostRanges pt range@(kl, kr) (Winner k p t _) = prune k p t
  where
  prune k p t
    | p > pt    = emptySequ
    | otherwise = traverse k p t
  traverse k p Start
    | k `inrange` range = singleSequ (k :-> p)
    | otherwise         = emptySequ
  traverse k p (LLoser _ k' p' tl m tr) =  
    guard (kl <= m) (prune k' p' tl) <> guard (m <= kr) (traverse k p tr)
  traverse k p (RLoser _ k' p' tl m tr) =  
    guard (kl <= m) (traverse k p tl) <> guard (m <= kr) (prune k' p' tr)

inrange :: (Ord a) => a -> (a, a) -> Bool
a `inrange` (l, r)  =  l <= a && a <= r




-- | Right fold over the bindings in the queue, in key order.
foldr :: (Ord k,Ord p) => (Binding k p -> b -> b) -> b -> PSQ k p -> b
foldr f z q = 
  case tourView q of
    Null -> z
    Single k p -> f (k:->p) z
    l`Play`r -> foldr f (foldr f z r) l
    

-- | Left fold over the bindings in the queue, in key order.
foldl :: (Ord k,Ord p) => (b -> Binding k p -> b) -> b -> PSQ k p -> b
foldl f z q = 
  case tourView q of
    Null -> z
    Single k p -> f z (k:->p)
    l`Play`r -> foldl f (foldl f z l) r




-----------------------
------- Internals -----
----------------------

type Size = Int

data LTree k p = Start
               | LLoser {-# UNPACK #-}!Size !k !p (LTree k p) !k (LTree k p)
               | RLoser {-# UNPACK #-}!Size !k !p (LTree k p) !k (LTree k p)


size' :: LTree k p -> Size
size' Start                = 0
size' (LLoser s _ _ _ _ _) = s
size' (RLoser s _ _ _ _ _) = s

left, right :: LTree a b -> LTree a b

left  Start                   =  error "left: empty loser tree"
left  (LLoser _ _ _ tl _ _ ) =  tl
left  (RLoser _ _ _ tl _ _ ) =  tl

right Start                   =  error "right: empty loser tree"
right (LLoser _ _ _ _  _ tr) =  tr
right (RLoser _ _ _ _  _ tr) =  tr

maxKey :: PSQ k p -> k
maxKey Void                =  error "maxKey: empty queue"
maxKey (Winner _k _p _t m) =  m

lloser, rloser :: k -> p -> LTree k p -> k -> LTree k p -> LTree k p
lloser k p tl m tr =  LLoser (1 + size' tl + size' tr) k p tl m tr
rloser k p tl m tr =  RLoser (1 + size' tl + size' tr) k p tl m tr

--balance factor
omega :: Int
omega = 4

lbalance, rbalance :: 
  (Ord k, Ord p) => k-> p -> LTree k p -> k -> LTree k p -> LTree k p

lbalance k p l m r
  | size' l + size' r < 2     = lloser        k p l m r
  | size' r > omega * size' l = lbalanceLeft  k p l m r
  | size' l > omega * size' r = lbalanceRight k p l m r
  | otherwise               = lloser        k p l m r

rbalance k p l m r
  | size' l + size' r < 2     = rloser        k p l m r
  | size' r > omega * size' l = rbalanceLeft  k p l m r
  | size' l > omega * size' r = rbalanceRight k p l m r
  | otherwise               = rloser        k p l m r

lbalanceLeft  k p l m r
  | size' (left r) < size' (right r) = lsingleLeft  k p l m r
  | otherwise                      = ldoubleLeft  k p l m r

lbalanceRight k p l m r
  | size' (left l) > size' (right l) = lsingleRight k p l m r
  | otherwise                      = ldoubleRight k p l m r


rbalanceLeft  k p l m r
  | size' (left r) < size' (right r) = rsingleLeft  k p l m r
  | otherwise                      = rdoubleLeft  k p l m r

rbalanceRight k p l m r
  | size' (left l) > size' (right l) = rsingleRight k p l m r
  | otherwise                      = rdoubleRight k p l m r




lsingleLeft k1 p1 t1 m1 (LLoser _ k2 p2 t2 m2 t3)
  | p1 <= p2  = lloser k1 p1 (rloser k2 p2 t1 m1 t2) m2 t3
  | otherwise = lloser k2 p2 (lloser k1 p1 t1 m1 t2) m2 t3

lsingleLeft k1 p1 t1 m1 (RLoser _ k2 p2 t2 m2 t3) =  
  rloser k2 p2 (lloser k1 p1 t1 m1 t2) m2 t3

rsingleLeft k1 p1 t1 m1 (LLoser _ k2 p2 t2 m2 t3) =  
  rloser k1 p1 (rloser k2 p2 t1 m1 t2) m2 t3

rsingleLeft k1 p1 t1 m1 (RLoser _ k2 p2 t2 m2 t3) =  
  rloser k2 p2 (rloser k1 p1 t1 m1 t2) m2 t3

lsingleRight k1 p1 (LLoser _ k2 p2 t1 m1 t2) m2 t3 =  
  lloser k2 p2 t1 m1 (lloser k1 p1 t2 m2 t3)

lsingleRight k1 p1 (RLoser _ k2 p2 t1 m1 t2) m2 t3 =  
  lloser k1 p1 t1 m1 (lloser k2 p2 t2 m2 t3)

rsingleRight k1 p1 (LLoser _ k2 p2 t1 m1 t2) m2 t3 =  
  lloser k2 p2 t1 m1 (rloser k1 p1 t2 m2 t3)

rsingleRight k1 p1 (RLoser _ k2 p2 t1 m1 t2) m2 t3
  | p1 <= p2  = rloser k1 p1 t1 m1 (lloser k2 p2 t2 m2 t3)
  | otherwise = rloser k2 p2 t1 m1 (rloser k1 p1 t2 m2 t3)



ldoubleLeft k1 p1 t1 m1 (LLoser _ k2 p2 t2 m2 t3) = 
  lsingleLeft k1 p1 t1 m1 (lsingleRight k2 p2 t2 m2 t3)

ldoubleLeft k1 p1 t1 m1 (RLoser _ k2 p2 t2 m2 t3) =  
  lsingleLeft k1 p1 t1 m1 (rsingleRight k2 p2 t2 m2 t3)

ldoubleRight k1 p1 (LLoser _ k2 p2 t1 m1 t2) m2 t3 =  
  lsingleRight k1 p1 (lsingleLeft k2 p2 t1 m1 t2) m2 t3

ldoubleRight k1 p1 (RLoser _ k2 p2 t1 m1 t2) m2 t3 =  
  lsingleRight k1 p1 (rsingleLeft k2 p2 t1 m1 t2) m2 t3

rdoubleLeft k1 p1 t1 m1 (LLoser _ k2 p2 t2 m2 t3) = 
  rsingleLeft k1 p1 t1 m1 (lsingleRight k2 p2 t2 m2 t3)

rdoubleLeft k1 p1 t1 m1 (RLoser _ k2 p2 t2 m2 t3) =  
  rsingleLeft k1 p1 t1 m1 (rsingleRight k2 p2 t2 m2 t3)

rdoubleRight k1 p1 (LLoser _ k2 p2 t1 m1 t2) m2 t3 =  
  rsingleRight k1 p1 (lsingleLeft k2 p2 t1 m1 t2) m2 t3

rdoubleRight k1 p1 (RLoser _ k2 p2 t1 m1 t2) m2 t3 =  
  rsingleRight k1 p1 (rsingleLeft k2 p2 t1 m1 t2) m2 t3


play :: (Ord k, Ord p) => PSQ k p -> PSQ k p -> PSQ k p

Void `play` t' = t'
t `play` Void  = t

Winner k p t m  `play`  Winner k' p' t' m'
  | p <= p'   = Winner k  p  (rbalance k' p' t m t') m'
  | otherwise = Winner k' p' (lbalance k  p  t m t') m'

unsafePlay :: (Ord k, Ord p) => PSQ k p -> PSQ k p -> PSQ k p

Void `unsafePlay` t' =  t'
t `unsafePlay` Void  =  t

Winner k p t m  `unsafePlay`  Winner k' p' t' m'
  | p <= p'   = Winner k  p  (rbalance k' p' t m t') m'
  | otherwise = Winner k' p' (lbalance k  p  t m t') m'



data TourView k p = Null | Single k p | PSQ k p `Play` PSQ k p

tourView :: (Ord k) => PSQ k p -> TourView k p

tourView Void                  =  Null
tourView (Winner k p Start _m) =  Single k p

tourView (Winner k p (RLoser _ k' p' tl m tr) m') =  
  Winner k  p  tl m `Play` Winner k' p' tr m'

tourView (Winner k p (LLoser _ k' p' tl m tr) m') =  
  Winner k' p' tl m `Play` Winner k  p  tr m'






--------------------------------------
-- Hughes's efficient sequence type --
--------------------------------------

emptySequ  :: Sequ a
singleSequ :: a -> Sequ a
(<>)       :: Sequ a -> Sequ a -> Sequ a
seqFromList   :: [a] -> Sequ a
seqFromListT  :: ([a] -> [a]) -> Sequ a
seqToList     :: Sequ a -> [a] 

infixr 5 <>

newtype Sequ a  =  Sequ ([a] -> [a])

emptySequ          = Sequ (\as -> as)
singleSequ a       = Sequ (\as -> a : as)
Sequ x1 <> Sequ x2 = Sequ (\as -> x1 (x2 as))
seqFromList as     = Sequ (\as' -> as ++ as')
seqFromListT as    = Sequ as
seqToList (Sequ x) = x []

instance Show a => Show (Sequ a) where
    showsPrec d a = showsPrec d (seqToList a)

guard :: Bool -> Sequ a -> Sequ a
guard False _as = emptySequ
guard True  as  = as




---------------------------------
------------ Tests --------------
---------------------------------

{-

isBalanced Start = True
isBalanced (LLoser s k p l m r) =
  (size' l + size' r <= 2 ||(size' l<=omega*size' r && size' r<=omega*size' l))
  && isBalanced l && isBalanced r
isBalanced (RLoser s k p l m r) =
  (size' l + size' r <= 2 ||(size' l<=omega*size' r && size' r<=omega*size' l))
  && isBalanced l && isBalanced r

instance (Ord k, Ord p, Arbitrary k, Arbitrary p) => Arbitrary (PSQ k p)
  where 
    coarbitrary = undefined
    arbitrary = 
      do ks <- arbitrary
         ps <- arbitrary
         return . fromList $ zipWith (:->) ks ps

prop_Balanced :: PSQ Int Int -> Bool
prop_Balanced Void = True
prop_Balanced (Winner _ _ t _) = isBalanced t

prop_OrderedKeys :: PSQ Int Int -> Bool
prop_OrderedKeys t = let ks = map key . toAscList $ t in sort ks == ks

prop_AtMost :: (PSQ Int Int,Int) -> Bool
prop_AtMost (t,p) = 
  let ps = map prio . atMost p $ t 
  in all (<=p) ps

prop_AtMostRange :: (PSQ Int Int,Int,Int,Int) -> Bool
prop_AtMostRange (t,p,l_,r_) = 
  let l = min (abs l_) (abs r_)
      r = max (abs l_) (abs r_)
      (ks,ps) = unzip . map (\b -> (key b,prio b)) . atMostRange p (l,r) $ t 
  in  all (flip inrange (l,r)) ks && all (<=p) ps

prop_MinView :: PSQ Int Int -> Bool
prop_MinView t = 
  case minView t of 
    Nothing -> True
    Just (b1,t') ->
      case minView t' of
        Nothing -> True
        Just (b2,_) -> prio b1 <= prio b2 && prop_MinView t'

tests =
  do
  putStrLn "Balanced"
  quickCheck prop_Balanced
  putStrLn "OrderedKeys"
  quickCheck prop_OrderedKeys
  putStrLn "MinView"
  quickCheck prop_MinView
  putStrLn "AtMost"
  quickCheck prop_AtMost
  putStrLn "AtMostRange"
  quickCheck prop_AtMostRange
-}