File: Test.hs

package info (click to toggle)
haskell-psqueue 1.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 104 kB
  • sloc: haskell: 680; makefile: 2
file content (172 lines) | stat: -rw-r--r-- 6,263 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
{-# Language FlexibleContexts, StandaloneDeriving #-}

import Prelude hiding (lookup)

import Data.PSQueue.Internal

import Test.QuickCheck
import Test.Tasty
import Test.Tasty.HUnit
import Test.Tasty.QuickCheck
import Data.List (sort)
import Data.Maybe (fromMaybe, isJust)

isBalanced :: LTree Int Int -> Bool
isBalanced Start = True
isBalanced (LLoser s k p l m r) =
  (size' l + size' r <= 2 || (size' l <= omega * size' r && size' r <= omega * size' l))
  && isBalanced l && isBalanced r
isBalanced (RLoser s k p l m r) =
  (size' l + size' r <= 2 || (size' l <= omega * size' r && size' r <= omega * size' l))
  && isBalanced l && isBalanced r

instance (Ord k, Ord p, Arbitrary k, Arbitrary p) => Arbitrary (PSQ k p)
  where
    arbitrary =
      do ks <- arbitrary
         ps <- arbitrary
         return . fromList $ zipWith (:->) ks ps

prop_Balanced :: PSQ Int Int -> Bool
prop_Balanced Void = True
prop_Balanced (Winner _ _ t _) = isBalanced t

prop_OrderedKeys :: PSQ Int Int -> Bool
prop_OrderedKeys t = let ks = map key . toAscList $ t in sort ks == ks

prop_AtMost :: (PSQ Int Int,Int) -> Bool
prop_AtMost (t,p) =
  let ps = map prio . atMost p $ t
  in all (<=p) ps

prop_AtMostRange :: (PSQ Int Int,Int,Int,Int) -> Bool
prop_AtMostRange (t,p,l_,r_) =
  let l = min (abs l_) (abs r_)
      r = max (abs l_) (abs r_)
      (ks,ps) = unzip . map (\b -> (key b,prio b)) . atMostRange p (l,r) $ t
  in  all (flip inrange (l,r)) ks && all (<=p) ps

prop_MinView :: PSQ Int Int -> Bool
prop_MinView t =
  case minView t of
    Nothing -> True
    Just (b1,t') ->
      case minView t' of
        Nothing -> True
        Just (b2,_) -> prio b1 <= prio b2 && prop_MinView t'

prop_SizeValid :: PSQ Int Int -> Bool
prop_SizeValid p@Void = size p == 0
prop_SizeValid p@(Winner _ _ t _) = size p == 1 + count t && go t
  where
    go Start = True
    go ll@(LLoser s _ _ l _ r) = s == count ll && go l && go r
    go rl@(RLoser s _ _ l _ r) = s == count rl && go l && go r

    count Start = 0
    count (LLoser _ _ _ l _ r) = 1 + count l + count r
    count (RLoser _ _ _ l _ r) = 1 + count l + count r

prop_LTreeBSTValid :: PSQ Int Int -> Bool
prop_LTreeBSTValid Void = True
prop_LTreeBSTValid (Winner qk _ l qm) = qk <= qm && go (<= qm) l
  where
    go _ Start = True
    go p (LLoser _ k _ l m r) =
        p k && go (\x -> p x && x <= m) l && go (\x -> p x && x > m) r
    go p (RLoser _ k _ l m r) =
        p k && go (\x -> p x && x <= m) l && go (\x -> p x && x > m) r

prop_LTreeKeysValid :: PSQ Int Int -> Bool
prop_LTreeKeysValid Void = True
prop_LTreeKeysValid p@(Winner _ _ l qm) = hasKey qm && go l
  where
    hasKey k = isJust (lookup k p)

    go Start = True
    go (LLoser _ _ _ l m r) = hasKey m && go l && go r
    go (RLoser _ _ _ l m r) = hasKey m && go l && go r

prop_LTreeSemiHeap :: PSQ Int Int -> Bool
prop_LTreeSemiHeap Void = True
prop_LTreeSemiHeap (Winner _ mp lt _) = go mp lt
  where
    go _ Start = True
    go d (LLoser _ _ p l _ r) = p >= d && go p l && go d r
    go d (RLoser _ _ p l _ r) = p >= d && go d l && go p r

prop_LTreeOriginates :: PSQ Int Int -> Bool
prop_LTreeOriginates Void = True
prop_LTreeOriginates (Winner _ _ lt _) = go lt
  where
    go Start = True
    go (LLoser _ k _ l m r) = k <= m && go l && go r
    go (RLoser _ k _ l m r) = k > m  && go l && go r

prop_PennantHeap :: PSQ Int Int -> Bool
prop_PennantHeap Void = True
prop_PennantHeap p@(Winner _ mp _ _) = go mp (tourView p)
  where
    go _ Null = True
    go d (Single _ p) = p >= d
    go d (Play l r) = fromMaybe False $ do
        (_ :-> pl) <- findMin l
        (_ :-> pr) <- findMin r
        pure $ pl >= d && pr >= d && go pl (tourView l) && go pr (tourView r)

prop_PennantBST :: PSQ Int Int -> Bool
prop_PennantBST Void = True
prop_PennantBST p = go (const True) (tourView p)
  where
    go _ Null = True
    go p (Single k _) = p k
    go p (Play l r) = fromMaybe False $ do
        (kl :-> _) <- findMin l
        (kr :-> _) <- findMin r
        pure $ kl < kr && p kl && p kr &&
            go (\x -> p x && x <= kr) (tourView l) &&
            go (\x -> p x && x >= kl) (tourView r)


assertion_BalanceFromlist :: Assertion
assertion_BalanceFromlist =
    assertBool "fromList builds a balanced tree" (prop_Balanced (fromList ls))
  where
    ls :: [Binding Int Int]
    ls = [ 63 :-> 19, 60 :-> 24, -10 :-> -27, 66 :-> 7, 60 :-> -25
         , -5 :-> -48, -3 :-> 37, -1 :-> -38, 12 :-> 67, 52 :-> -43
         , 40 :-> -29, 50 :-> -38, -30 :-> -65, 4 :-> -64, 53 :-> -5
         , -22 :-> -22, -34 :-> -51, 51 :-> 49, -43 :-> 18
         ]

assertion_BalancePlay :: Assertion
assertion_BalancePlay =
    assertBool "play gives a balanced tree" (prop_Balanced (ql `play` qr))
  where
    ql :: PSQ Int Int
    ql = Winner (-30) (-65) (LLoser 3 (-34) (-51) (LLoser 1 (-43) 18 Start (-43) Start) (-34) (RLoser 1 (-22) (-22) Start (-30) Start)) (-22)

    qr :: PSQ Int Int
    qr = Winner 4 (-64) (RLoser 13 52 (-43) (RLoser 6 40 (-29) (LLoser 4 (-5) (-48) (RLoser 2 (-3) 37 (LLoser 1 (-10) (-27) Start (-10) Start) (-5) Start) (-3) (LLoser 1 (-1) (-38) Start (-1) Start)) 4 (LLoser 1 12 67 Start 12 Start)) 40 (LLoser 6 50 (-38) (RLoser 1 51 49 Start 50 Start) 51 (RLoser 4 66 7 (RLoser 1 53 (-5) Start 52 Start) 53 (LLoser 2 60 24 Start 60 (LLoser 1 63 19 Start 63 Start))))) 66


main = defaultMain $ testGroup "Tests" [properties, regressions]
  where
    properties = testGroup "PropertyTests"
        [ testProperty "Balanced" prop_Balanced
        , testProperty "OrderedKeys" prop_OrderedKeys
        , testProperty "MinView" prop_MinView
        , testProperty "AtMost" prop_AtMost
        , testProperty "AtMostRange" prop_AtMostRange
        , testProperty "SizeValid" prop_SizeValid
        , testProperty "LTreeBSTValid" prop_LTreeBSTValid
        , testProperty "LTreeKeysValid" prop_LTreeKeysValid
        , testProperty "LTreeSemiHeap" prop_LTreeSemiHeap
        , testProperty "LTreeOriginates" prop_LTreeOriginates
        , testProperty "PennantHeap" prop_PennantHeap
        , testProperty "PennantBST" prop_PennantBST
        ]
    regressions = testGroup "RegressionTests"
        [ testCase "BalanceFromlist" assertion_BalanceFromlist
        , testCase "BalancePlay" assertion_BalancePlay
        ]