1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
|
{-# Language FlexibleContexts, StandaloneDeriving #-}
import Prelude hiding (lookup)
import Data.PSQueue.Internal
import Test.QuickCheck
import Test.Tasty
import Test.Tasty.HUnit
import Test.Tasty.QuickCheck
import Data.List (sort)
import Data.Maybe (fromMaybe, isJust)
isBalanced :: LTree Int Int -> Bool
isBalanced Start = True
isBalanced (LLoser s k p l m r) =
(size' l + size' r <= 2 || (size' l <= omega * size' r && size' r <= omega * size' l))
&& isBalanced l && isBalanced r
isBalanced (RLoser s k p l m r) =
(size' l + size' r <= 2 || (size' l <= omega * size' r && size' r <= omega * size' l))
&& isBalanced l && isBalanced r
instance (Ord k, Ord p, Arbitrary k, Arbitrary p) => Arbitrary (PSQ k p)
where
arbitrary =
do ks <- arbitrary
ps <- arbitrary
return . fromList $ zipWith (:->) ks ps
prop_Balanced :: PSQ Int Int -> Bool
prop_Balanced Void = True
prop_Balanced (Winner _ _ t _) = isBalanced t
prop_OrderedKeys :: PSQ Int Int -> Bool
prop_OrderedKeys t = let ks = map key . toAscList $ t in sort ks == ks
prop_AtMost :: (PSQ Int Int,Int) -> Bool
prop_AtMost (t,p) =
let ps = map prio . atMost p $ t
in all (<=p) ps
prop_AtMostRange :: (PSQ Int Int,Int,Int,Int) -> Bool
prop_AtMostRange (t,p,l_,r_) =
let l = min (abs l_) (abs r_)
r = max (abs l_) (abs r_)
(ks,ps) = unzip . map (\b -> (key b,prio b)) . atMostRange p (l,r) $ t
in all (flip inrange (l,r)) ks && all (<=p) ps
prop_MinView :: PSQ Int Int -> Bool
prop_MinView t =
case minView t of
Nothing -> True
Just (b1,t') ->
case minView t' of
Nothing -> True
Just (b2,_) -> prio b1 <= prio b2 && prop_MinView t'
prop_SizeValid :: PSQ Int Int -> Bool
prop_SizeValid p@Void = size p == 0
prop_SizeValid p@(Winner _ _ t _) = size p == 1 + count t && go t
where
go Start = True
go ll@(LLoser s _ _ l _ r) = s == count ll && go l && go r
go rl@(RLoser s _ _ l _ r) = s == count rl && go l && go r
count Start = 0
count (LLoser _ _ _ l _ r) = 1 + count l + count r
count (RLoser _ _ _ l _ r) = 1 + count l + count r
prop_LTreeBSTValid :: PSQ Int Int -> Bool
prop_LTreeBSTValid Void = True
prop_LTreeBSTValid (Winner qk _ l qm) = qk <= qm && go (<= qm) l
where
go _ Start = True
go p (LLoser _ k _ l m r) =
p k && go (\x -> p x && x <= m) l && go (\x -> p x && x > m) r
go p (RLoser _ k _ l m r) =
p k && go (\x -> p x && x <= m) l && go (\x -> p x && x > m) r
prop_LTreeKeysValid :: PSQ Int Int -> Bool
prop_LTreeKeysValid Void = True
prop_LTreeKeysValid p@(Winner _ _ l qm) = hasKey qm && go l
where
hasKey k = isJust (lookup k p)
go Start = True
go (LLoser _ _ _ l m r) = hasKey m && go l && go r
go (RLoser _ _ _ l m r) = hasKey m && go l && go r
prop_LTreeSemiHeap :: PSQ Int Int -> Bool
prop_LTreeSemiHeap Void = True
prop_LTreeSemiHeap (Winner _ mp lt _) = go mp lt
where
go _ Start = True
go d (LLoser _ _ p l _ r) = p >= d && go p l && go d r
go d (RLoser _ _ p l _ r) = p >= d && go d l && go p r
prop_LTreeOriginates :: PSQ Int Int -> Bool
prop_LTreeOriginates Void = True
prop_LTreeOriginates (Winner _ _ lt _) = go lt
where
go Start = True
go (LLoser _ k _ l m r) = k <= m && go l && go r
go (RLoser _ k _ l m r) = k > m && go l && go r
prop_PennantHeap :: PSQ Int Int -> Bool
prop_PennantHeap Void = True
prop_PennantHeap p@(Winner _ mp _ _) = go mp (tourView p)
where
go _ Null = True
go d (Single _ p) = p >= d
go d (Play l r) = fromMaybe False $ do
(_ :-> pl) <- findMin l
(_ :-> pr) <- findMin r
pure $ pl >= d && pr >= d && go pl (tourView l) && go pr (tourView r)
prop_PennantBST :: PSQ Int Int -> Bool
prop_PennantBST Void = True
prop_PennantBST p = go (const True) (tourView p)
where
go _ Null = True
go p (Single k _) = p k
go p (Play l r) = fromMaybe False $ do
(kl :-> _) <- findMin l
(kr :-> _) <- findMin r
pure $ kl < kr && p kl && p kr &&
go (\x -> p x && x <= kr) (tourView l) &&
go (\x -> p x && x >= kl) (tourView r)
assertion_BalanceFromlist :: Assertion
assertion_BalanceFromlist =
assertBool "fromList builds a balanced tree" (prop_Balanced (fromList ls))
where
ls :: [Binding Int Int]
ls = [ 63 :-> 19, 60 :-> 24, -10 :-> -27, 66 :-> 7, 60 :-> -25
, -5 :-> -48, -3 :-> 37, -1 :-> -38, 12 :-> 67, 52 :-> -43
, 40 :-> -29, 50 :-> -38, -30 :-> -65, 4 :-> -64, 53 :-> -5
, -22 :-> -22, -34 :-> -51, 51 :-> 49, -43 :-> 18
]
assertion_BalancePlay :: Assertion
assertion_BalancePlay =
assertBool "play gives a balanced tree" (prop_Balanced (ql `play` qr))
where
ql :: PSQ Int Int
ql = Winner (-30) (-65) (LLoser 3 (-34) (-51) (LLoser 1 (-43) 18 Start (-43) Start) (-34) (RLoser 1 (-22) (-22) Start (-30) Start)) (-22)
qr :: PSQ Int Int
qr = Winner 4 (-64) (RLoser 13 52 (-43) (RLoser 6 40 (-29) (LLoser 4 (-5) (-48) (RLoser 2 (-3) 37 (LLoser 1 (-10) (-27) Start (-10) Start) (-5) Start) (-3) (LLoser 1 (-1) (-38) Start (-1) Start)) 4 (LLoser 1 12 67 Start 12 Start)) 40 (LLoser 6 50 (-38) (RLoser 1 51 49 Start 50 Start) 51 (RLoser 4 66 7 (RLoser 1 53 (-5) Start 52 Start) 53 (LLoser 2 60 24 Start 60 (LLoser 1 63 19 Start 63 Start))))) 66
main = defaultMain $ testGroup "Tests" [properties, regressions]
where
properties = testGroup "PropertyTests"
[ testProperty "Balanced" prop_Balanced
, testProperty "OrderedKeys" prop_OrderedKeys
, testProperty "MinView" prop_MinView
, testProperty "AtMost" prop_AtMost
, testProperty "AtMostRange" prop_AtMostRange
, testProperty "SizeValid" prop_SizeValid
, testProperty "LTreeBSTValid" prop_LTreeBSTValid
, testProperty "LTreeKeysValid" prop_LTreeKeysValid
, testProperty "LTreeSemiHeap" prop_LTreeSemiHeap
, testProperty "LTreeOriginates" prop_LTreeOriginates
, testProperty "PennantHeap" prop_PennantHeap
, testProperty "PennantBST" prop_PennantBST
]
regressions = testGroup "RegressionTests"
[ testCase "BalanceFromlist" assertion_BalanceFromlist
, testCase "BalancePlay" assertion_BalancePlay
]
|