1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
|
{-# LANGUAGE OverloadedStrings, BangPatterns, FlexibleInstances #-}
{-# LANGUAGE CPP #-}
-- |
-- Module : Crypto.PasswordStore
-- Copyright : (c) Peter Scott, 2011
-- License : BSD-style
--
-- Maintainer : pjscott@iastate.edu
-- Stability : experimental
-- Portability : portable
--
-- Securely store hashed, salted passwords. If you need to store and verify
-- passwords, there are many wrong ways to do it, most of them all too
-- common. Some people store users' passwords in plain text. Then, when an
-- attacker manages to get their hands on this file, they have the passwords for
-- every user's account. One step up, but still wrong, is to simply hash all
-- passwords with SHA1 or something. This is vulnerable to rainbow table and
-- dictionary attacks. One step up from that is to hash the password along with
-- a unique salt value. This is vulnerable to dictionary attacks, since guessing
-- a password is very fast. The right thing to do is to use a slow hash
-- function, to add some small but significant delay, that will be negligible
-- for legitimate users but prohibitively expensive for someone trying to guess
-- passwords by brute force. That is what this library does. It iterates a
-- SHA256 hash, with a random salt, a few thousand times. This scheme is known
-- as PBKDF1, and is generally considered secure; there is nothing innovative
-- happening here.
--
-- The API here is very simple. What you store are called /password hashes/.
-- They are strings (technically, ByteStrings) that look like this:
--
-- > "sha256|17|Ge9pg8a/r4JW356Uux2JHg==|Fdv4jchzDlRAs6WFNUarxLngaittknbaHFFc0k8hAy0="
--
-- Each password hash shows the algorithm, the strength (more on that later),
-- the salt, and the hashed-and-salted password. You store these on your server,
-- in a database, for when you need to verify a password. You make a password
-- hash with the 'makePassword' function. Here's an example:
--
-- > >>> makePassword "hunter2" 17
-- > "sha256|12|lMzlNz0XK9eiPIYPY96QCQ==|1ZJ/R3qLEF0oCBVNtvNKLwZLpXPM7bLEy/Nc6QBxWro="
--
-- This will hash the password @\"hunter2\"@, with strength 17, which is a good
-- default value. The strength here determines how long the hashing will
-- take. When doing the hashing, we iterate the SHA256 hash function
-- @2^strength@ times, so increasing the strength by 1 makes the hashing take
-- twice as long. When computers get faster, you can bump up the strength a
-- little bit to compensate. You can strengthen existing password hashes with
-- the 'strengthenPassword' function. Note that 'makePassword' needs to generate
-- random numbers, so its return type is 'IO' 'ByteString'. If you want to avoid
-- the 'IO' monad, you can generate your own salt and pass it to
-- 'makePasswordSalt'.
--
-- Your strength value should not be less than 16, and 17 is a good default
-- value at the time of this writing, in 2014. OWASP suggests adding 1 to the
-- strength every two years.
--
-- Once you've got your password hashes, the second big thing you need to do
-- with them is verify passwords against them. When a user gives you a password,
-- you compare it with a password hash using the 'verifyPassword' function:
--
-- > >>> verifyPassword "wrong guess" passwordHash
-- > False
-- > >>> verifyPassword "hunter2" passwordHash
-- > True
--
-- These two functions are really all you need. If you want to make existing
-- password hashes stronger, you can use 'strengthenPassword'. Just pass it an
-- existing password hash and a new strength value, and it will return a new
-- password hash with that strength value, which will match the same password as
-- the old password hash.
--
-- Note that, as of version 2.4, you can also use PBKDF2, and specify the exact
-- iteration count. This does not have a significant effect on security, but can
-- be handy for compatibility with other code.
module Crypto.PasswordStore (
-- * Algorithms
pbkdf1, -- :: ByteString -> Salt -> Int -> ByteString
pbkdf2, -- :: ByteString -> Salt -> Int -> ByteString
-- * Registering and verifying passwords
makePassword, -- :: ByteString -> Int -> IO ByteString
makePasswordWith, -- :: (ByteString -> Salt -> Int -> ByteString) ->
-- ByteString -> Int -> IO ByteString
makePasswordSalt, -- :: ByteString -> ByteString -> Int -> ByteString
makePasswordSaltWith, -- :: (ByteString -> Salt -> Int -> ByteString) ->
-- ByteString -> Salt -> Int -> ByteString
verifyPassword, -- :: ByteString -> ByteString -> Bool
verifyPasswordWith, -- :: (ByteString -> Salt -> Int -> ByteString) ->
-- (Int -> Int) -> ByteString -> ByteString -> Bool
-- * Updating password hash strength
strengthenPassword, -- :: ByteString -> Int -> ByteString
passwordStrength, -- :: ByteString -> Int
-- * Utilities
Salt,
isPasswordFormatValid, -- :: ByteString -> Bool
genSaltIO, -- :: IO Salt
genSaltRandom, -- :: (RandomGen b) => b -> (Salt, b)
makeSalt, -- :: ByteString -> Salt
exportSalt, -- :: Salt -> ByteString
importSalt -- :: ByteString -> Salt
) where
import qualified Crypto.Hash as CH
import qualified Crypto.Hash.SHA256 as H
import qualified Data.ByteString.Char8 as B
import qualified Data.ByteString as BS
import qualified Data.ByteString.Lazy as BL
import qualified Data.Binary as Binary
import Control.Monad
import Control.Monad.ST
import Data.Byteable (Byteable, toBytes, constEqBytes)
import Data.STRef
import Data.Bits
import Data.ByteString.Char8 (ByteString)
import Data.ByteString.Base64 (encode, decodeLenient)
import System.IO
import System.Random
import Data.Maybe
import qualified Control.Exception
import Data.Char
import Data.List
import Data.Function
import qualified Data.Foldable as FL
---------------------
-- Cryptographic base
---------------------
-- | PBKDF1 key-derivation function. Takes a password, a 'Salt', and a number of
-- iterations. The number of iterations should be at least 1000, and probably
-- more. 5000 is a reasonable number, computing almost instantaneously. This
-- will give a 32-byte 'ByteString' as output. Both the salt and this 32-byte
-- key should be stored in the password file. When a user wishes to authenticate
-- a password, just pass it and the salt to this function, and see if the output
-- matches.
pbkdf1 :: ByteString -> Salt -> Int -> ByteString
pbkdf1 password (SaltBS salt) iter = hashRounds first_hash (iter + 1)
where first_hash = H.finalize $ H.init `H.update` password `H.update` salt
-- | Hash a 'ByteString' for a given number of rounds. The number of rounds is 0
-- or more. If the number of rounds specified is 0, the ByteString will be
-- returned unmodified.
hashRounds :: ByteString -> Int -> ByteString
hashRounds (!bs) 0 = bs
hashRounds bs rounds = hashRounds (H.hash bs) (rounds - 1)
-- | Computes the hmacSHA256 of the given message, with the given 'Salt'.
hmacSHA256 :: ByteString
-- ^ The secret (the salt)
-> ByteString
-- ^ The clear-text message
-> ByteString
-- ^ The encoded message
hmacSHA256 secret msg =
toBytes (CH.hmacGetDigest (CH.hmac secret msg) :: CH.Digest CH.SHA256)
-- | PBKDF2 key-derivation function.
-- For details see @http://tools.ietf.org/html/rfc2898@.
-- @32@ is the most common digest size for @SHA256@, and is
-- what the algorithm internally uses.
-- @HMAC+SHA256@ is used as @PRF@, because @HMAC+SHA1@ is considered too weak.
pbkdf2 :: ByteString -> Salt -> Int -> ByteString
pbkdf2 password (SaltBS salt) c =
let hLen = 32
dkLen = hLen in go hLen dkLen
where
go hLen dkLen | dkLen > (2^32 - 1) * hLen = error "Derived key too long."
| otherwise =
let !l = ceiling ((fromIntegral dkLen / fromIntegral hLen) :: Double)
!r = dkLen - (l - 1) * hLen
chunks = [f i | i <- [1 .. l]]
in (B.concat . init $ chunks) `B.append` B.take r (last chunks)
-- The @f@ function, as defined in the spec.
-- It calls 'u' under the hood.
f :: Int -> ByteString
f i = let !u1 = hmacSHA256 password (salt `B.append` int i)
-- Using the ST Monad, for maximum performance.
in runST $ do
u <- newSTRef u1
accum <- newSTRef u1
forM_ [2 .. c] $ \_ -> do
modifySTRef' u (hmacSHA256 password)
currentU <- readSTRef u
modifySTRef' accum (`xor'` currentU)
readSTRef accum
-- int(i), as defined in the spec.
int :: Int -> ByteString
int i = let str = BL.unpack . Binary.encode $ i
in BS.pack $ drop (length str - 4) str
-- | A convenience function to XOR two 'ByteString' together.
xor' :: ByteString -> ByteString -> ByteString
xor' !b1 !b2 = BS.pack $ BS.zipWith xor b1 b2
-- | Generate a 'Salt' from 128 bits of data from @\/dev\/urandom@, with the
-- system RNG as a fallback. This is the function used to generate salts by
-- 'makePassword'.
genSaltIO :: IO Salt
genSaltIO =
Control.Exception.catch genSaltDevURandom def
where
def :: IOError -> IO Salt
def _ = genSaltSysRandom
-- | Generate a 'Salt' from @\/dev\/urandom@.
genSaltDevURandom :: IO Salt
genSaltDevURandom = withFile "/dev/urandom" ReadMode $ \h -> do
rawSalt <- B.hGet h 16
return $ makeSalt rawSalt
-- | Generate a 'Salt' from 'System.Random'.
genSaltSysRandom :: IO Salt
genSaltSysRandom = randomChars >>= return . makeSalt . B.pack
where randomChars = sequence $ replicate 16 $ randomRIO ('\NUL', '\255')
-----------------------
-- Password hash format
-----------------------
-- Format: "sha256|strength|salt|hash", where strength is an unsigned int, salt
-- is a base64-encoded 16-byte random number, and hash is a base64-encoded hash
-- value.
-- | Try to parse a password hash.
readPwHash :: ByteString -> Maybe (Int, Salt, ByteString)
readPwHash pw | length broken /= 4
|| algorithm /= "sha256"
|| B.length hash /= 44 = Nothing
| otherwise = case B.readInt strBS of
Just (strength, _) -> Just (strength, SaltBS salt, hash)
Nothing -> Nothing
where broken = B.split '|' pw
[algorithm, strBS, salt, hash] = broken
-- | Encode a password hash, from a @(strength, salt, hash)@ tuple, where
-- strength is an 'Int', and both @salt@ and @hash@ are base64-encoded
-- 'ByteString's.
writePwHash :: (Int, Salt, ByteString) -> ByteString
writePwHash (strength, SaltBS salt, hash) =
B.intercalate "|" ["sha256", B.pack (show strength), salt, hash]
-----------------
-- High level API
-----------------
-- | Hash a password with a given strength (17 is a good default). The output of
-- this function can be written directly to a password file or
-- database. Generates a salt using high-quality randomness from
-- @\/dev\/urandom@ or (if that is not available, for example on Windows)
-- 'System.Random', which is included in the hashed output.
makePassword :: ByteString -> Int -> IO ByteString
makePassword = makePasswordWith pbkdf1
-- | A generic version of 'makePassword', which allow the user
-- to choose the algorithm to use.
--
-- >>> makePasswordWith pbkdf1 "password" 17
--
makePasswordWith :: (ByteString -> Salt -> Int -> ByteString)
-- ^ The algorithm to use (e.g. pbkdf1)
-> ByteString
-- ^ The password to encrypt
-> Int
-- ^ log2 of the number of iterations
-> IO ByteString
makePasswordWith algorithm password strength = do
salt <- genSaltIO
return $ makePasswordSaltWith algorithm (2^) password salt strength
-- | A generic version of 'makePasswordSalt', meant to give the user
-- the maximum control over the generation parameters.
-- Note that, unlike 'makePasswordWith', this function takes the @raw@
-- number of iterations. This means the user will need to specify a
-- sensible value, typically @10000@ or @20000@.
makePasswordSaltWith :: (ByteString -> Salt -> Int -> ByteString)
-- ^ A function modeling an algorithm (e.g. 'pbkdf1')
-> (Int -> Int)
-- ^ A function to modify the strength
-> ByteString
-- ^ A password, given as clear text
-> Salt
-- ^ A hash 'Salt'
-> Int
-- ^ The password strength (e.g. @10000, 20000, etc.@)
-> ByteString
makePasswordSaltWith algorithm strengthModifier pwd salt strength = writePwHash (strength, salt, hash)
where hash = encode $ algorithm pwd salt (strengthModifier strength)
-- | Hash a password with a given strength (17 is a good default), using a given
-- salt. The output of this function can be written directly to a password file
-- or database. Example:
--
-- > >>> makePasswordSalt "hunter2" (makeSalt "72cd18b5ebfe6e96") 17
-- > "sha256|17|NzJjZDE4YjVlYmZlNmU5Ng==|i5VbJNJ3I6SPnxdK5pL0dHw4FoqnHYpSUXp70coXjOI="
makePasswordSalt :: ByteString -> Salt -> Int -> ByteString
makePasswordSalt = makePasswordSaltWith pbkdf1 (2^)
instance Byteable [Char] where
toBytes = B.pack
-- | 'verifyPasswordWith' @algorithm userInput pwHash@ verifies
-- the password @userInput@ given by the user against the stored password
-- hash @pwHash@, with the hashing algorithm @algorithm@. Returns 'True' if the
-- given password is correct, and 'False' if it is not.
-- This function allows the programmer to specify the algorithm to use,
-- e.g. 'pbkdf1' or 'pbkdf2'.
-- Note: If you want to verify a password previously generated with
-- 'makePasswordSaltWith', but without modifying the number of iterations,
-- you can do:
--
-- > >>> verifyPasswordWith pbkdf2 id "hunter2" "sha256..."
-- > True
--
verifyPasswordWith :: (ByteString -> Salt -> Int -> ByteString)
-- ^ A function modeling an algorithm (e.g. pbkdf1)
-> (Int -> Int)
-- ^ A function to modify the strength
-> ByteString
-- ^ User password
-> ByteString
-- ^ The generated hash (e.g. sha256|14...)
-> Bool
verifyPasswordWith algorithm strengthModifier userInput pwHash =
case readPwHash pwHash of
Nothing -> False
Just (strength, salt, goodHash) ->
encode (algorithm userInput salt (strengthModifier strength)) `constEqBytes` goodHash
-- | Like 'verifyPasswordWith', but uses 'pbkdf1' as algorithm.
verifyPassword :: ByteString -> ByteString -> Bool
verifyPassword = verifyPasswordWith pbkdf1 (2^)
-- | Try to strengthen a password hash, by hashing it some more
-- times. @'strengthenPassword' pwHash new_strength@ will return a new password
-- hash with strength at least @new_strength@. If the password hash already has
-- strength greater than or equal to @new_strength@, then it is returned
-- unmodified. If the password hash is invalid and does not parse, it will be
-- returned without comment.
--
-- This function can be used to periodically update your password database when
-- computers get faster, in order to keep up with Moore's law. This isn't hugely
-- important, but it's a good idea.
strengthenPassword :: ByteString -> Int -> ByteString
strengthenPassword pwHash newstr =
case readPwHash pwHash of
Nothing -> pwHash
Just (oldstr, salt, hashB64) ->
if oldstr < newstr then
writePwHash (newstr, salt, newHash)
else
pwHash
where newHash = encode $ hashRounds hash extraRounds
extraRounds = (2^newstr) - (2^oldstr)
hash = decodeLenient hashB64
-- | Return the strength of a password hash.
passwordStrength :: ByteString -> Int
passwordStrength pwHash = case readPwHash pwHash of
Nothing -> 0
Just (strength, _, _) -> strength
------------
-- Utilities
------------
-- | A salt is a unique random value which is stored as part of the password
-- hash. You can generate a salt with 'genSaltIO' or 'genSaltRandom', or if you
-- really know what you're doing, you can create them from your own ByteString
-- values with 'makeSalt'.
newtype Salt = SaltBS ByteString
deriving (Show, Eq, Ord)
-- | Create a 'Salt' from a 'ByteString'. The input must be at least 8
-- characters, and can contain arbitrary bytes. Most users will not need to use
-- this function.
makeSalt :: ByteString -> Salt
makeSalt = SaltBS . encode . check_length
where check_length salt | B.length salt < 8 =
error "Salt too short. Minimum length is 8 characters."
| otherwise = salt
-- | Convert a 'Salt' into a 'ByteString'. The resulting 'ByteString' will be
-- base64-encoded. Most users will not need to use this function.
exportSalt :: Salt -> ByteString
exportSalt (SaltBS bs) = bs
-- | Convert a raw 'ByteString' into a 'Salt'.
-- Use this function with caution, since using a weak salt will result in a
-- weak password.
importSalt :: ByteString -> Salt
importSalt = SaltBS
-- | Is the format of a password hash valid? Attempts to parse a given password
-- hash. Returns 'True' if it parses correctly, and 'False' otherwise.
isPasswordFormatValid :: ByteString -> Bool
isPasswordFormatValid = isJust . readPwHash
-- | Generate a 'Salt' with 128 bits of data taken from a given random number
-- generator. Returns the salt and the updated random number generator. This is
-- meant to be used with 'makePasswordSalt' by people who would prefer to either
-- use their own random number generator or avoid the 'IO' monad.
genSaltRandom :: (RandomGen b) => b -> (Salt, b)
genSaltRandom gen = (salt, newgen)
where rands _ 0 = []
rands g n = (a, g') : rands g' (n-1 :: Int)
where (a, g') = randomR ('\NUL', '\255') g
salt = makeSalt $ B.pack $ map fst (rands gen 16)
newgen = snd $ last (rands gen 16)
#if !MIN_VERSION_base(4, 6, 0)
-- | Strict version of 'modifySTRef'
modifySTRef' :: STRef s a -> (a -> a) -> ST s ()
modifySTRef' ref f = do
x <- readSTRef ref
let x' = f x
x' `seq` writeSTRef ref x'
#endif
#if MIN_VERSION_bytestring(0, 10, 0)
toStrict :: BL.ByteString -> BS.ByteString
toStrict = BL.toStrict
fromStrict :: BS.ByteString -> BL.ByteString
fromStrict = BL.fromStrict
#else
toStrict :: BL.ByteString -> BS.ByteString
toStrict = BS.concat . BL.toChunks
fromStrict :: BS.ByteString -> BL.ByteString
fromStrict = BL.fromChunks . return
#endif
|