1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
|
module Test.QuickCheck.Arbitrary
(
-- * Arbitrary and CoArbitrary classes.
Arbitrary(..)
, CoArbitrary(..)
-- ** Helper functions for implementing arbitrary
, arbitrarySizedIntegral -- :: Num a => Gen a
, arbitrarySizedFractional -- :: Fractional a => Gen a
, arbitraryBoundedIntegral -- :: (Bounded a, Integral a) => Gen a
, arbitraryBoundedRandom -- :: (Bounded a, Random a) => Gen a
-- ** Helper functions for implementing shrink
, shrinkNothing -- :: a -> [a]
, shrinkList -- :: (a -> [a]) -> [a] -> [[a]]
, shrinkIntegral -- :: Integral a => a -> [a]
, shrinkRealFrac -- :: RealFrac a => a -> [a]
-- ** Helper functions for implementing coarbitrary
, (><)
, coarbitraryIntegral -- :: Integral a => a -> Gen b -> Gen b
, coarbitraryReal -- :: Real a => a -> Gen b -> Gen b
, coarbitraryShow -- :: Show a => a -> Gen b -> Gen b
-- ** Generators which use arbitrary
, vector -- :: Arbitrary a => Int -> Gen [a]
, orderedList -- :: (Ord a, Arbitrary a) => Gen [a]
)
where
--------------------------------------------------------------------------
-- imports
import Test.QuickCheck.Gen
{-
import Data.Generics
( (:*:)(..)
, (:+:)(..)
, Unit(..)
)
-}
import Data.Char
( chr
, ord
, isLower
, isUpper
, toLower
, isDigit
, isSpace
)
import Data.Ratio
( Ratio
, (%)
, numerator
, denominator
)
import System.Random
( Random
)
import Data.List
( sort
, nub
)
import Control.Monad
( liftM
, liftM2
, liftM3
, liftM4
, liftM5
)
--------------------------------------------------------------------------
-- ** class Arbitrary
-- | Random generation and shrinking of values.
class Arbitrary a where
-- | A generator for values of the given type.
arbitrary :: Gen a
arbitrary = error "no default generator"
-- | Produces a (possibly) empty list of all the possible
-- immediate shrinks of the given value.
shrink :: a -> [a]
shrink _ = []
-- instances
instance (CoArbitrary a, Arbitrary b) => Arbitrary (a -> b) where
arbitrary = promote (`coarbitrary` arbitrary)
instance Arbitrary () where
arbitrary = return ()
instance Arbitrary Bool where
arbitrary = choose (False,True)
instance Arbitrary a => Arbitrary (Maybe a) where
arbitrary = frequency [(1, return Nothing), (3, liftM Just arbitrary)]
shrink (Just x) = Nothing : [ Just x' | x' <- shrink x ]
shrink _ = []
instance (Arbitrary a, Arbitrary b) => Arbitrary (Either a b) where
arbitrary = oneof [liftM Left arbitrary, liftM Right arbitrary]
shrink (Left x) = [ Left x' | x' <- shrink x ]
shrink (Right y) = [ Right y' | y' <- shrink y ]
instance Arbitrary a => Arbitrary [a] where
arbitrary = sized $ \n ->
do k <- choose (0,n)
sequence [ arbitrary | _ <- [1..k] ]
shrink xs = shrinkList shrink xs
shrinkList :: (a -> [a]) -> [a] -> [[a]]
shrinkList shr xs = removeChunks xs ++ shrinkOne xs
where
removeChunks xs = rem (length xs) xs
where
rem 0 _ = []
rem 1 _ = [[]]
rem n xs = xs1
: xs2
: ( [ xs1' ++ xs2 | xs1' <- rem n1 xs1, not (null xs1') ]
`ilv` [ xs1 ++ xs2' | xs2' <- rem n2 xs2, not (null xs2') ]
)
where
n1 = n `div` 2
xs1 = take n1 xs
n2 = n - n1
xs2 = drop n1 xs
[] `ilv` ys = ys
xs `ilv` [] = xs
(x:xs) `ilv` (y:ys) = x : y : (xs `ilv` ys)
shrinkOne [] = []
shrinkOne (x:xs) = [ x':xs | x' <- shr x ]
++ [ x:xs' | xs' <- shrinkOne xs ]
{-
-- "standard" definition for lists:
shrink [] = []
shrink (x:xs) = [ xs ]
++ [ x:xs' | xs' <- shrink xs ]
++ [ x':xs | x' <- shrink x ]
-}
instance (Integral a, Arbitrary a) => Arbitrary (Ratio a) where
arbitrary = arbitrarySizedFractional
shrink = shrinkRealFrac
instance (Arbitrary a, Arbitrary b)
=> Arbitrary (a,b)
where
arbitrary = liftM2 (,) arbitrary arbitrary
shrink (x,y) = [ (x',y) | x' <- shrink x ]
++ [ (x,y') | y' <- shrink y ]
instance (Arbitrary a, Arbitrary b, Arbitrary c)
=> Arbitrary (a,b,c)
where
arbitrary = liftM3 (,,) arbitrary arbitrary arbitrary
shrink (x,y,z) = [ (x',y,z) | x' <- shrink x ]
++ [ (x,y',z) | y' <- shrink y ]
++ [ (x,y,z') | z' <- shrink z ]
instance (Arbitrary a, Arbitrary b, Arbitrary c, Arbitrary d)
=> Arbitrary (a,b,c,d)
where
arbitrary = liftM4 (,,,) arbitrary arbitrary arbitrary arbitrary
shrink (w,x,y,z) = [ (w',x,y,z) | w' <- shrink w ]
++ [ (w,x',y,z) | x' <- shrink x ]
++ [ (w,x,y',z) | y' <- shrink y ]
++ [ (w,x,y,z') | z' <- shrink z ]
instance (Arbitrary a, Arbitrary b, Arbitrary c, Arbitrary d, Arbitrary e)
=> Arbitrary (a,b,c,d,e)
where
arbitrary = liftM5 (,,,,) arbitrary arbitrary arbitrary arbitrary arbitrary
shrink (v,w,x,y,z) = [ (v',w,x,y,z) | v' <- shrink v ]
++ [ (v,w',x,y,z) | w' <- shrink w ]
++ [ (v,w,x',y,z) | x' <- shrink x ]
++ [ (v,w,x,y',z) | y' <- shrink y ]
++ [ (v,w,x,y,z') | z' <- shrink z ]
-- typical instance for primitive (numerical) types
instance Arbitrary Integer where
arbitrary = arbitrarySizedIntegral
shrink = shrinkIntegral
instance Arbitrary Int where
--arbitrary = arbitrarySizedIntegral
arbitrary = arbitrarySizedBoundedInt
shrink = shrinkIntegral
instance Arbitrary Char where
arbitrary = chr `fmap` oneof [choose (0,127), choose (0,255)]
shrink c = filter (<. c) $ nub
$ ['a','b','c']
++ [ toLower c | isUpper c ]
++ ['A','B','C']
++ ['1','2','3']
++ [' ','\n']
where
a <. b = stamp a < stamp b
stamp a = ( not (isLower a)
, not (isUpper a)
, not (isDigit a)
, not (a==' ')
, not (isSpace a)
, a
)
instance Arbitrary Float where
arbitrary = arbitrarySizedFractional
shrink = shrinkRealFrac
instance Arbitrary Double where
arbitrary = arbitrarySizedFractional
shrink = shrinkRealFrac
-- ** Helper functions for implementing arbitrary
-- | Generates an integral number. The number can be positive or negative
-- and its maximum absolute value depends on the size parameter.
arbitrarySizedIntegral :: Num a => Gen a
arbitrarySizedIntegral =
sized $ \n ->
let n' = toInteger n in
fmap fromInteger (choose (-n', n'))
-- | Generates a fractional number. The number can be positive or negative
-- and its maximum absolute value depends on the size parameter.
arbitrarySizedFractional :: Fractional a => Gen a
arbitrarySizedFractional =
sized $ \n ->
let n' = toInteger n in
do a <- choose ((-n') * precision, n' * precision)
b <- choose (1, precision)
return (fromRational (a % b))
where
precision = 9999999999999 :: Integer
-- | Generates an integral number. The number is chosen from the entire
-- range of the type.
arbitraryBoundedIntegral :: (Bounded a, Integral a) => Gen a
arbitraryBoundedIntegral =
do let mn = minBound
mx = maxBound `asTypeOf` mn
n <- choose (toInteger mn, toInteger mx)
return (fromInteger n `asTypeOf` mn)
-- | Generates an element of a bounded type. The element is
-- chosen from the entire range of the type.
arbitraryBoundedRandom :: (Bounded a, Random a) => Gen a
arbitraryBoundedRandom = choose (minBound,maxBound)
-- | Generates an integral number from a bounded domain.
-- Inspired by demands from Phil Wadler.
arbitrarySizedBoundedInt :: Gen Int
arbitrarySizedBoundedInt =
sized $ \s ->
do let mn = minBound
mx = maxBound `asTypeOf` mn
k = 2^(s*2 `div` 5)
n <- choose (toInteger mn `max` (-k), toInteger mx `min` k)
return (fromInteger n `asTypeOf` mn)
-- ** Helper functions for implementing shrink
-- | Returns no shrinking alternatives.
shrinkNothing :: a -> [a]
shrinkNothing _ = []
-- | Shrink an integral number.
shrinkIntegral :: Integral a => a -> [a]
shrinkIntegral x =
nub $
[ -x
| x < 0
] ++
[ x'
| x' <- takeWhile (<< x) (0:[ x - i | i <- tail (iterate (`quot` 2) x) ])
]
where
x << y = abs x < abs y
-- | Shrink a fraction.
shrinkRealFrac :: RealFrac a => a -> [a]
shrinkRealFrac x =
nub $
[ -x
| x < 0
] ++
[ x'
| x' <- [fromInteger (truncate x)]
, x' << x
]
where
x << y = abs x < abs y
--------------------------------------------------------------------------
-- ** CoArbitrary
-- | Used for random generation of functions.
class CoArbitrary a where
-- | Used to generate a function of type @a -> c@. The implementation
-- should use the first argument to perturb the random generator
-- given as the second argument. the returned generator
-- is then used to generate the function result.
-- You can often use 'variant' and '><' to implement
-- 'coarbitrary'.
coarbitrary :: a -> Gen c -> Gen c
{-
-- GHC definition:
coarbitrary{| Unit |} Unit = id
coarbitrary{| a :*: b |} (x :*: y) = coarbitrary x >< coarbitrary y
coarbitrary{| a :+: b |} (Inl x) = variant 0 . coarbitrary x
coarbitrary{| a :+: b |} (Inr y) = variant (-1) . coarbitrary y
-}
-- | Combine two generator perturbing functions, for example the
-- results of calls to 'variant' or 'coarbitrary'.
(><) :: (Gen a -> Gen a) -> (Gen a -> Gen a) -> (Gen a -> Gen a)
(><) f g gen =
do n <- arbitrary
(g . variant (n :: Int) . f) gen
-- for the sake of non-GHC compilers, I have added definitions
-- for coarbitrary here.
instance (Arbitrary a, CoArbitrary b) => CoArbitrary (a -> b) where
coarbitrary f gen =
do xs <- arbitrary
coarbitrary (map f xs) gen
instance CoArbitrary () where
coarbitrary _ = id
instance CoArbitrary Bool where
coarbitrary False = variant 0
coarbitrary True = variant (-1)
instance CoArbitrary a => CoArbitrary (Maybe a) where
coarbitrary Nothing = variant 0
coarbitrary (Just x) = variant (-1) . coarbitrary x
instance (CoArbitrary a, CoArbitrary b) => CoArbitrary (Either a b) where
coarbitrary (Left x) = variant 0 . coarbitrary x
coarbitrary (Right y) = variant (-1) . coarbitrary y
instance CoArbitrary a => CoArbitrary [a] where
coarbitrary [] = variant 0
coarbitrary (x:xs) = variant (-1) . coarbitrary (x,xs)
instance (Integral a, CoArbitrary a) => CoArbitrary (Ratio a) where
coarbitrary r = coarbitrary (numerator r,denominator r)
instance (CoArbitrary a, CoArbitrary b)
=> CoArbitrary (a,b)
where
coarbitrary (x,y) = coarbitrary x
>< coarbitrary y
instance (CoArbitrary a, CoArbitrary b, CoArbitrary c)
=> CoArbitrary (a,b,c)
where
coarbitrary (x,y,z) = coarbitrary x
>< coarbitrary y
>< coarbitrary z
instance (CoArbitrary a, CoArbitrary b, CoArbitrary c, CoArbitrary d)
=> CoArbitrary (a,b,c,d)
where
coarbitrary (x,y,z,v) = coarbitrary x
>< coarbitrary y
>< coarbitrary z
>< coarbitrary v
instance (CoArbitrary a, CoArbitrary b, CoArbitrary c, CoArbitrary d, CoArbitrary e)
=> CoArbitrary (a,b,c,d,e)
where
coarbitrary (x,y,z,v,w) = coarbitrary x
>< coarbitrary y
>< coarbitrary z
>< coarbitrary v
>< coarbitrary w
-- typical instance for primitive (numerical) types
instance CoArbitrary Integer where
coarbitrary = coarbitraryIntegral
instance CoArbitrary Int where
coarbitrary = coarbitraryIntegral
instance CoArbitrary Char where
coarbitrary = coarbitrary . ord
instance CoArbitrary Float where
coarbitrary = coarbitraryReal
instance CoArbitrary Double where
coarbitrary = coarbitraryReal
-- ** Helpers for implementing coarbitrary
-- | A 'coarbitrary' implementation for integral numbers.
coarbitraryIntegral :: Integral a => a -> Gen b -> Gen b
coarbitraryIntegral = variant
-- | A 'coarbitrary' implementation for real numbers.
coarbitraryReal :: Real a => a -> Gen b -> Gen b
coarbitraryReal x = coarbitrary (toRational x)
-- | 'coarbitrary' helper for lazy people :-).
coarbitraryShow :: Show a => a -> Gen b -> Gen b
coarbitraryShow x = coarbitrary (show x)
--------------------------------------------------------------------------
-- ** arbitrary generators
-- these are here and not in Gen because of the Arbitrary class constraint
-- | Generates a list of a given length.
vector :: Arbitrary a => Int -> Gen [a]
vector k = vectorOf k arbitrary
-- | Generates an ordered list of a given length.
orderedList :: (Ord a, Arbitrary a) => Gen [a]
orderedList = sort `fmap` arbitrary
--------------------------------------------------------------------------
-- the end.
|