File: Arbitrary.hs

package info (click to toggle)
haskell-quickcheck 2.1.0.3-1
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 152 kB
  • ctags: 2
  • sloc: haskell: 1,508; makefile: 4
file content (446 lines) | stat: -rw-r--r-- 13,135 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
module Test.QuickCheck.Arbitrary
  ( 
  -- * Arbitrary and CoArbitrary classes.
    Arbitrary(..)
  , CoArbitrary(..)
  
  -- ** Helper functions for implementing arbitrary
  , arbitrarySizedIntegral   -- :: Num a => Gen a
  , arbitrarySizedFractional -- :: Fractional a => Gen a
  , arbitraryBoundedIntegral -- :: (Bounded a, Integral a) => Gen a
  , arbitraryBoundedRandom   -- :: (Bounded a, Random a) => Gen a
  -- ** Helper functions for implementing shrink
  , shrinkNothing            -- :: a -> [a]
  , shrinkList               -- :: (a -> [a]) -> [a] -> [[a]]
  , shrinkIntegral           -- :: Integral a => a -> [a]
  , shrinkRealFrac           -- :: RealFrac a => a -> [a]
  -- ** Helper functions for implementing coarbitrary
  , (><)
  , coarbitraryIntegral      -- :: Integral a => a -> Gen b -> Gen b
  , coarbitraryReal          -- :: Real a => a -> Gen b -> Gen b
  , coarbitraryShow          -- :: Show a => a -> Gen b -> Gen b
  
  -- ** Generators which use arbitrary
  , vector      -- :: Arbitrary a => Int -> Gen [a]
  , orderedList -- :: (Ord a, Arbitrary a) => Gen [a]
  )
 where

--------------------------------------------------------------------------
-- imports

import Test.QuickCheck.Gen

{-
import Data.Generics
  ( (:*:)(..)
  , (:+:)(..)
  , Unit(..)
  )
-}

import Data.Char
  ( chr
  , ord
  , isLower
  , isUpper
  , toLower
  , isDigit
  , isSpace
  )

import Data.Ratio
  ( Ratio
  , (%)
  , numerator
  , denominator
  )

import System.Random
  ( Random
  )

import Data.List
  ( sort
  , nub
  )

import Control.Monad
  ( liftM
  , liftM2
  , liftM3
  , liftM4
  , liftM5
  )

--------------------------------------------------------------------------
-- ** class Arbitrary

-- | Random generation and shrinking of values.
class Arbitrary a where
  -- | A generator for values of the given type.
  arbitrary :: Gen a
  arbitrary = error "no default generator"
  
  -- | Produces a (possibly) empty list of all the possible
  -- immediate shrinks of the given value.
  shrink :: a -> [a]
  shrink _ = []

-- instances

instance (CoArbitrary a, Arbitrary b) => Arbitrary (a -> b) where
  arbitrary = promote (`coarbitrary` arbitrary)

instance Arbitrary () where
  arbitrary = return ()

instance Arbitrary Bool where
  arbitrary = choose (False,True)

instance Arbitrary a => Arbitrary (Maybe a) where
  arbitrary = frequency [(1, return Nothing), (3, liftM Just arbitrary)]
  
  shrink (Just x) = Nothing : [ Just x' | x' <- shrink x ]
  shrink _        = []

instance (Arbitrary a, Arbitrary b) => Arbitrary (Either a b) where
  arbitrary = oneof [liftM Left arbitrary, liftM Right arbitrary]
  
  shrink (Left x)  = [ Left  x' | x' <- shrink x ]
  shrink (Right y) = [ Right y' | y' <- shrink y ]
  
instance Arbitrary a => Arbitrary [a] where
  arbitrary = sized $ \n ->
    do k <- choose (0,n)
       sequence [ arbitrary | _ <- [1..k] ]

  shrink xs = shrinkList shrink xs

shrinkList :: (a -> [a]) -> [a] -> [[a]]
shrinkList shr xs = removeChunks xs ++ shrinkOne xs
 where
  removeChunks xs = rem (length xs) xs
   where
    rem 0 _  = []
    rem 1 _  = [[]]
    rem n xs = xs1
             : xs2
             : ( [ xs1' ++ xs2 | xs1' <- rem n1 xs1, not (null xs1') ]
           `ilv` [ xs1 ++ xs2' | xs2' <- rem n2 xs2, not (null xs2') ]
               )
     where
      n1  = n `div` 2
      xs1 = take n1 xs
      n2  = n - n1
      xs2 = drop n1 xs

      []     `ilv` ys     = ys
      xs     `ilv` []     = xs
      (x:xs) `ilv` (y:ys) = x : y : (xs `ilv` ys)

  shrinkOne []     = []
  shrinkOne (x:xs) = [ x':xs | x'  <- shr x ]
                  ++ [ x:xs' | xs' <- shrinkOne xs ] 

{-
  -- "standard" definition for lists:
  shrink []     = []
  shrink (x:xs) = [ xs ]
               ++ [ x:xs' | xs' <- shrink xs ]
               ++ [ x':xs | x'  <- shrink x ]
-}

instance (Integral a, Arbitrary a) => Arbitrary (Ratio a) where
  arbitrary = arbitrarySizedFractional
  shrink    = shrinkRealFrac

instance (Arbitrary a, Arbitrary b)
      => Arbitrary (a,b)
 where
  arbitrary = liftM2 (,) arbitrary arbitrary
  
  shrink (x,y) = [ (x',y) | x' <- shrink x ]
              ++ [ (x,y') | y' <- shrink y ]
              
instance (Arbitrary a, Arbitrary b, Arbitrary c)
      => Arbitrary (a,b,c)
 where
  arbitrary = liftM3 (,,) arbitrary arbitrary arbitrary
  
  shrink (x,y,z) = [ (x',y,z) | x' <- shrink x ]
                ++ [ (x,y',z) | y' <- shrink y ]
                ++ [ (x,y,z') | z' <- shrink z ]
              
instance (Arbitrary a, Arbitrary b, Arbitrary c, Arbitrary d)
      => Arbitrary (a,b,c,d)
 where
  arbitrary = liftM4 (,,,) arbitrary arbitrary arbitrary arbitrary
  
  shrink (w,x,y,z) = [ (w',x,y,z) | w' <- shrink w ]
                  ++ [ (w,x',y,z) | x' <- shrink x ]
                  ++ [ (w,x,y',z) | y' <- shrink y ]
                  ++ [ (w,x,y,z') | z' <- shrink z ]
              
instance (Arbitrary a, Arbitrary b, Arbitrary c, Arbitrary d, Arbitrary e)
      => Arbitrary (a,b,c,d,e)
 where
  arbitrary = liftM5 (,,,,) arbitrary arbitrary arbitrary arbitrary arbitrary
  
  shrink (v,w,x,y,z) = [ (v',w,x,y,z) | v' <- shrink v ]
                    ++ [ (v,w',x,y,z) | w' <- shrink w ]
                    ++ [ (v,w,x',y,z) | x' <- shrink x ]
                    ++ [ (v,w,x,y',z) | y' <- shrink y ]
                    ++ [ (v,w,x,y,z') | z' <- shrink z ]
              
-- typical instance for primitive (numerical) types

instance Arbitrary Integer where
  arbitrary = arbitrarySizedIntegral
  shrink    = shrinkIntegral

instance Arbitrary Int where
  --arbitrary = arbitrarySizedIntegral
  arbitrary = arbitrarySizedBoundedInt
  shrink    = shrinkIntegral

instance Arbitrary Char where
  arbitrary = chr `fmap` oneof [choose (0,127), choose (0,255)]
  shrink c  = filter (<. c) $ nub
            $ ['a','b','c']
           ++ [ toLower c | isUpper c ]
           ++ ['A','B','C']
           ++ ['1','2','3']
           ++ [' ','\n']
   where
    a <. b  = stamp a < stamp b
    stamp a = ( not (isLower a)
              , not (isUpper a)
              , not (isDigit a)
              , not (a==' ')
              , not (isSpace a)
              , a
              )
    
instance Arbitrary Float where
  arbitrary = arbitrarySizedFractional
  shrink    = shrinkRealFrac

instance Arbitrary Double where
  arbitrary = arbitrarySizedFractional
  shrink    = shrinkRealFrac

-- ** Helper functions for implementing arbitrary

-- | Generates an integral number. The number can be positive or negative
-- and its maximum absolute value depends on the size parameter.
arbitrarySizedIntegral :: Num a => Gen a
arbitrarySizedIntegral =
  sized $ \n ->
    let n' = toInteger n in
      fmap fromInteger (choose (-n', n'))

-- | Generates a fractional number. The number can be positive or negative
-- and its maximum absolute value depends on the size parameter.
arbitrarySizedFractional :: Fractional a => Gen a
arbitrarySizedFractional =
  sized $ \n ->
    let n' = toInteger n in
      do a <- choose ((-n') * precision, n' * precision)
         b <- choose (1, precision)
         return (fromRational (a % b))
 where
  precision = 9999999999999 :: Integer

-- | Generates an integral number. The number is chosen from the entire
-- range of the type.
arbitraryBoundedIntegral :: (Bounded a, Integral a) => Gen a
arbitraryBoundedIntegral =
  do let mn = minBound
         mx = maxBound `asTypeOf` mn
     n <- choose (toInteger mn, toInteger mx)
     return (fromInteger n `asTypeOf` mn)

-- | Generates an element of a bounded type. The element is
-- chosen from the entire range of the type.
arbitraryBoundedRandom :: (Bounded a, Random a) => Gen a
arbitraryBoundedRandom = choose (minBound,maxBound)

-- | Generates an integral number from a bounded domain.
-- Inspired by demands from Phil Wadler.
arbitrarySizedBoundedInt :: Gen Int
arbitrarySizedBoundedInt =
  sized $ \s ->
    do let mn = minBound
           mx = maxBound `asTypeOf` mn
           k  = 2^(s*2 `div` 5)
       n <- choose (toInteger mn `max` (-k), toInteger mx `min` k)
       return (fromInteger n `asTypeOf` mn)

-- ** Helper functions for implementing shrink

-- | Returns no shrinking alternatives. 
shrinkNothing :: a -> [a]
shrinkNothing _ = []

-- | Shrink an integral number.
shrinkIntegral :: Integral a => a -> [a]
shrinkIntegral x = 
  nub $
  [ -x
  | x < 0
  ] ++
  [ x'
  | x' <- takeWhile (<< x) (0:[ x - i | i <- tail (iterate (`quot` 2) x) ])
  ]
 where
  x << y = abs x < abs y

-- | Shrink a fraction.
shrinkRealFrac :: RealFrac a => a -> [a]
shrinkRealFrac x =
  nub $
  [ -x
  | x < 0
  ] ++
  [ x'
  | x' <- [fromInteger (truncate x)]
  , x' << x
  ]
 where
  x << y = abs x < abs y

--------------------------------------------------------------------------
-- ** CoArbitrary

-- | Used for random generation of functions.
class CoArbitrary a where
  -- | Used to generate a function of type @a -> c@. The implementation
  -- should use the first argument to perturb the random generator
  -- given as the second argument. the returned generator 
  -- is then used to generate the function result.
  -- You can often use 'variant' and '><' to implement 
  -- 'coarbitrary'.
  coarbitrary :: a -> Gen c -> Gen c

{-
  -- GHC definition:
  coarbitrary{| Unit |}    Unit      = id
  coarbitrary{| a :*: b |} (x :*: y) = coarbitrary x >< coarbitrary y
  coarbitrary{| a :+: b |} (Inl x)   = variant 0    . coarbitrary x
  coarbitrary{| a :+: b |} (Inr y)   = variant (-1) . coarbitrary y
-}

-- | Combine two generator perturbing functions, for example the 
-- results of calls to 'variant' or 'coarbitrary'.
(><) :: (Gen a -> Gen a) -> (Gen a -> Gen a) -> (Gen a -> Gen a) 
(><) f g gen =
  do n <- arbitrary
     (g . variant (n :: Int) . f) gen 

-- for the sake of non-GHC compilers, I have added definitions
-- for coarbitrary here.

instance (Arbitrary a, CoArbitrary b) => CoArbitrary (a -> b) where
  coarbitrary f gen =
    do xs <- arbitrary
       coarbitrary (map f xs) gen
  
instance CoArbitrary () where
  coarbitrary _ = id

instance CoArbitrary Bool where
  coarbitrary False = variant 0
  coarbitrary True  = variant (-1)

instance CoArbitrary a => CoArbitrary (Maybe a) where
  coarbitrary Nothing  = variant 0
  coarbitrary (Just x) = variant (-1) . coarbitrary x

instance (CoArbitrary a, CoArbitrary b) => CoArbitrary (Either a b) where
  coarbitrary (Left x)  = variant 0    . coarbitrary x
  coarbitrary (Right y) = variant (-1) . coarbitrary y
  
instance CoArbitrary a => CoArbitrary [a] where
  coarbitrary []     = variant 0
  coarbitrary (x:xs) = variant (-1) . coarbitrary (x,xs)

instance (Integral a, CoArbitrary a) => CoArbitrary (Ratio a) where
  coarbitrary r = coarbitrary (numerator r,denominator r)

instance (CoArbitrary a, CoArbitrary b)
      => CoArbitrary (a,b)
 where
  coarbitrary (x,y) = coarbitrary x
                   >< coarbitrary y
              
instance (CoArbitrary a, CoArbitrary b, CoArbitrary c)
      => CoArbitrary (a,b,c)
 where
  coarbitrary (x,y,z) = coarbitrary x
                     >< coarbitrary y
                     >< coarbitrary z
              
instance (CoArbitrary a, CoArbitrary b, CoArbitrary c, CoArbitrary d)
      => CoArbitrary (a,b,c,d)
 where
  coarbitrary (x,y,z,v) = coarbitrary x
                       >< coarbitrary y
                       >< coarbitrary z
                       >< coarbitrary v
              
instance (CoArbitrary a, CoArbitrary b, CoArbitrary c, CoArbitrary d, CoArbitrary e)
      => CoArbitrary (a,b,c,d,e)
 where
  coarbitrary (x,y,z,v,w) = coarbitrary x
                         >< coarbitrary y
                         >< coarbitrary z
                         >< coarbitrary v
                         >< coarbitrary w
              
-- typical instance for primitive (numerical) types

instance CoArbitrary Integer where
  coarbitrary = coarbitraryIntegral

instance CoArbitrary Int where
  coarbitrary = coarbitraryIntegral

instance CoArbitrary Char where
  coarbitrary = coarbitrary . ord

instance CoArbitrary Float where
  coarbitrary = coarbitraryReal

instance CoArbitrary Double where
  coarbitrary = coarbitraryReal

-- ** Helpers for implementing coarbitrary

-- | A 'coarbitrary' implementation for integral numbers.
coarbitraryIntegral :: Integral a => a -> Gen b -> Gen b
coarbitraryIntegral = variant

-- | A 'coarbitrary' implementation for real numbers.
coarbitraryReal :: Real a => a -> Gen b -> Gen b
coarbitraryReal x = coarbitrary (toRational x)

-- | 'coarbitrary' helper for lazy people :-).
coarbitraryShow :: Show a => a -> Gen b -> Gen b
coarbitraryShow x = coarbitrary (show x)

--------------------------------------------------------------------------
-- ** arbitrary generators

-- these are here and not in Gen because of the Arbitrary class constraint

-- | Generates a list of a given length.
vector :: Arbitrary a => Int -> Gen [a]
vector k = vectorOf k arbitrary

-- | Generates an ordered list of a given length.
orderedList :: (Ord a, Arbitrary a) => Gen [a]
orderedList = sort `fmap` arbitrary

--------------------------------------------------------------------------
-- the end.