File: Modifiers.hs

package info (click to toggle)
haskell-quickcheck 2.1.0.3-1
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 152 kB
  • ctags: 2
  • sloc: haskell: 1,508; makefile: 4
file content (232 lines) | stat: -rw-r--r-- 6,806 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
{-# LANGUAGE MultiParamTypeClasses, GeneralizedNewtypeDeriving #-}
module Test.QuickCheck.Modifiers
  (
  -- ** Type-level modifiers for changing generator behavior
    Blind(..)
  , Fixed(..)
  , OrderedList(..)
  , NonEmptyList(..)
  , Positive(..)
  , NonZero(..)
  , NonNegative(..)
  , Smart(..)
  , Shrink2(..)
  , Shrinking(..)
  , ShrinkState(..)
  )
 where

--------------------------------------------------------------------------
-- imports

import Test.QuickCheck.Gen
import Test.QuickCheck.Arbitrary

import Data.List
  ( sort
  )

--------------------------------------------------------------------------
-- ** arbitrary modifiers

-- These datatypes are mainly here to *pattern match* on in properties.
-- This is a stylistic alternative to using explicit quantification.
-- In other words, they should not be replaced by type synonyms, and their
-- constructors should be exported.

-- Examples:
{-
prop_TakeDropWhile (Blind p) (xs :: [A]) =           -- because functions cannot be shown
  takeWhile p xs ++ dropWhile p xs == xs

prop_TakeDrop (NonNegative n) (xs :: [A]) =          -- (BTW, also works for negative n)
  take n xs ++ drop n xs == xs

prop_Cycle (NonNegative n) (NonEmpty (xs :: [A])) =  -- cycle does not work for empty lists
  take n (cycle xs) == take n (xs ++ cycle xs)

prop_Sort (Ordered (xs :: [OrdA])) =                 -- instead of "forAll orderedList"
  sort xs == xs
-}

--------------------------------------------------------------------------
-- | @Blind x@: as x, but x does not have to be in the 'Show' class.
newtype Blind a = Blind a
 deriving ( Eq, Ord, Num, Integral, Real, Enum )

instance Show (Blind a) where
  show _ = "(*)"

instance Arbitrary a => Arbitrary (Blind a) where
  arbitrary = Blind `fmap` arbitrary

  shrink (Blind x) = [ Blind x' | x' <- shrink x ]

--------------------------------------------------------------------------
-- | @Fixed x@: as x, but will not be shrunk.
newtype Fixed a = Fixed a
 deriving ( Eq, Ord, Num, Integral, Real, Enum, Show, Read )

instance Arbitrary a => Arbitrary (Fixed a) where
  arbitrary = Fixed `fmap` arbitrary
  
  -- no shrink function

--------------------------------------------------------------------------
-- | @Ordered xs@: guarantees that xs is ordered.
newtype OrderedList a = Ordered [a]
 deriving ( Eq, Ord, Show, Read )

instance (Ord a, Arbitrary a) => Arbitrary (OrderedList a) where
  arbitrary = Ordered `fmap` orderedList

  shrink (Ordered xs) =
    [ Ordered xs'
    | xs' <- shrink xs
    , sort xs' == xs'
    ]

--------------------------------------------------------------------------
-- | @NonEmpty xs@: guarantees that xs is non-empty.
newtype NonEmptyList a = NonEmpty [a]
 deriving ( Eq, Ord, Show, Read )

instance Arbitrary a => Arbitrary (NonEmptyList a) where
  arbitrary = NonEmpty `fmap` (arbitrary `suchThat` (not . null))

  shrink (NonEmpty xs) =
    [ NonEmpty xs'
    | xs' <- shrink xs
    , not (null xs')
    ]

--------------------------------------------------------------------------
-- | @Positive x@: guarantees that @x \> 0@.
newtype Positive a = Positive a
 deriving ( Eq, Ord, Num, Integral, Real, Enum, Show, Read )

instance (Num a, Ord a, Arbitrary a) => Arbitrary (Positive a) where
  arbitrary =
    (Positive . abs) `fmap` (arbitrary `suchThat` (/= 0))

  shrink (Positive x) =
    [ Positive x'
    | x' <- shrink x
    , x' > 0
    ]

--------------------------------------------------------------------------
-- | @NonZero x@: guarantees that @x \/= 0@.
newtype NonZero a = NonZero a
 deriving ( Eq, Ord, Num, Integral, Real, Enum, Show, Read )

instance (Num a, Ord a, Arbitrary a) => Arbitrary (NonZero a) where
  arbitrary = fmap NonZero $ arbitrary `suchThat` (/= 0)

  shrink (NonZero x) = [ NonZero x' | x' <- shrink x, x' /= 0 ]

--------------------------------------------------------------------------
-- | @NonNegative x@: guarantees that @x \>= 0@.
newtype NonNegative a = NonNegative a
 deriving ( Eq, Ord, Num, Integral, Real, Enum, Show, Read )

instance (Num a, Ord a, Arbitrary a) => Arbitrary (NonNegative a) where
  arbitrary =
    frequency
      -- why is this distrbution like this?
      [ (5, (NonNegative . abs) `fmap` arbitrary)
      , (1, return 0)
      ]

  shrink (NonNegative x) =
    [ NonNegative x'
    | x' <- shrink x
    , x' >= 0
    ]

--------------------------------------------------------------------------
-- | @Shrink2 x@: allows 2 shrinking steps at the same time when shrinking x
newtype Shrink2 a = Shrink2 a
 deriving ( Eq, Ord, Num, Integral, Real, Enum, Show, Read )

instance Arbitrary a => Arbitrary (Shrink2 a) where
  arbitrary =
    Shrink2 `fmap` arbitrary

  shrink (Shrink2 x) =
    [ Shrink2 y | y <- shrink_x ] ++
    [ Shrink2 z
    | y <- shrink_x
    , z <- shrink y
    ]
   where
    shrink_x = shrink x

--------------------------------------------------------------------------
-- | @Smart _ x@: tries a different order when shrinking.
data Smart a =
  Smart Int a

instance Show a => Show (Smart a) where
  showsPrec n (Smart _ x) = showsPrec n x

instance Arbitrary a => Arbitrary (Smart a) where
  arbitrary =
    do x <- arbitrary
       return (Smart 0 x)

  shrink (Smart i x) = take i' ys `ilv` drop i' ys
   where
    ys = [ Smart i y | (i,y) <- [0..] `zip` shrink x ]
    i' = 0 `max` (i-2)

    []     `ilv` bs     = bs
    as     `ilv` []     = as
    (a:as) `ilv` (b:bs) = a : b : (as `ilv` bs)
    
{-
  shrink (Smart i x) = part0 ++ part2 ++ part1
   where
    ys = [ Smart i y | (i,y) <- [0..] `zip` shrink x ]
    i' = 0 `max` (i-2)
    k  = i `div` 10
    
    part0 = take k ys
    part1 = take (i'-k) (drop k ys)
    part2 = drop i' ys
-}

    -- drop a (drop b xs) == drop (a+b) xs           | a,b >= 0
    -- take a (take b xs) == take (a `min` b) xs
    -- take a xs ++ drop a xs == xs
    
    --    take k ys ++ take (i'-k) (drop k ys) ++ drop i' ys
    -- == take k ys ++ take (i'-k) (drop k ys) ++ drop (i'-k) (drop k ys)
    -- == take k ys ++ take (i'-k) (drop k ys) ++ drop (i'-k) (drop k ys)
    -- == take k ys ++ drop k ys
    -- == ys

--------------------------------------------------------------------------
-- | @Shrinking _ x@: allows for maintaining a state during shrinking.
data Shrinking s a =
  Shrinking s a

class ShrinkState s a where
  shrinkInit  :: a -> s
  shrinkState :: a -> s -> [(a,s)]

instance Show a => Show (Shrinking s a) where
  showsPrec n (Shrinking _ x) = showsPrec n x

instance (Arbitrary a, ShrinkState s a) => Arbitrary (Shrinking s a) where
  arbitrary =
    do x <- arbitrary
       return (Shrinking (shrinkInit x) x)

  shrink (Shrinking s x) =
    [ Shrinking s' x'
    | (x',s') <- shrinkState x s
    ]

--------------------------------------------------------------------------
-- the end.