1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
|
{-# LANGUAGE ScopedTypeVariables, TemplateHaskell, GADTs #-}
module Main where
--------------------------------------------------------------------------
-- imports
import Test.QuickCheck
import Test.QuickCheck.Poly
import Data.List
( sort
, nub
, (\\)
)
import Data.Maybe
( fromJust
)
import Control.Monad
( liftM
, liftM2
)
--------------------------------------------------------------------------
-- skew heaps
data Heap a
= Node a (Heap a) (Heap a)
| Nil
deriving ( Eq, Ord, Show )
empty :: Heap a
empty = Nil
isEmpty :: Heap a -> Bool
isEmpty Nil = True
isEmpty _ = False
unit :: a -> Heap a
unit x = Node x empty empty
size :: Heap a -> Int
size Nil = 0
size (Node _ h1 h2) = 1 + size h1 + size h2
insert :: Ord a => a -> Heap a -> Heap a
insert x h = unit x `merge` h
removeMin :: Ord a => Heap a -> Maybe (a, Heap a)
removeMin Nil = Nothing
removeMin (Node x h1 h2) = Just (x, h1 `merge` h2)
merge :: Ord a => Heap a -> Heap a -> Heap a
h1 `merge` Nil = h1
Nil `merge` h2 = h2
h1@(Node x h11 h12) `merge` h2@(Node y h21 h22)
| x <= y = Node x (h12 `merge` h2) h11
| otherwise = Node y (h22 `merge` h1) h21
fromList :: Ord a => [a] -> Heap a
fromList xs = merging [ unit x | x <- xs ] []
where
merging [] [] = empty
merging [p] [] = p
merging (p:q:ps) qs = merging ps ((p`merge`q):qs)
merging ps qs = merging (ps ++ reverse qs) []
toList :: Heap a -> [a]
toList h = toList' [h]
where
toList' [] = []
toList' (Nil : hs) = toList' hs
toList' (Node x h1 h2 : hs) = x : toList' (h1:h2:hs)
toSortedList :: Ord a => Heap a -> [a]
toSortedList Nil = []
toSortedList (Node x h1 h2) = x : toSortedList (h1 `merge` h2)
--------------------------------------------------------------------------
-- heap programs
data HeapP a
= Empty
| Unit a
| Insert a (HeapP a)
| SafeRemoveMin (HeapP a)
| Merge (HeapP a) (HeapP a)
| FromList [a]
deriving (Show)
safeRemoveMin :: Ord a => Heap a -> Heap a
safeRemoveMin h = case removeMin h of
Nothing -> empty -- arbitrary choice
Just (_,h) -> h
heap :: Ord a => HeapP a -> Heap a
heap Empty = empty
heap (Unit x) = unit x
heap (Insert x p) = insert x (heap p)
heap (SafeRemoveMin p) = safeRemoveMin (heap p)
heap (Merge p q) = heap p `merge` heap q
heap (FromList xs) = fromList xs
instance (Ord a, Arbitrary a) => Arbitrary (HeapP a) where
arbitrary = sized arbHeapP
where
arbHeapP s =
frequency
[ (1, do return Empty)
, (1, do x <- arbitrary
return (Unit x))
, (s, do x <- arbitrary
p <- arbHeapP s1
return (Insert x p))
, (s, do p <- arbHeapP s1
return (SafeRemoveMin p))
, (s, do p <- arbHeapP s2
q <- arbHeapP s2
return (Merge p q))
, (1, do xs <- arbitrary
return (FromList xs))
]
where
s1 = s-1
s2 = s`div`2
shrink Empty = []
shrink (Unit x) = [ Unit x' | x' <- shrink x ]
shrink (FromList xs) = [ Unit x | x <- xs ]
++ [ FromList xs' | xs' <- shrink xs ]
shrink p =
[ FromList (toList (heap p)) ] ++
case p of
Insert x p -> [ p ]
++ [ Insert x p' | p' <- shrink p ]
++ [ Insert x' p | x' <- shrink x ]
SafeRemoveMin p -> [ p ]
++ [ SafeRemoveMin p' | p' <- shrink p ]
Merge p q -> [ p, q ]
++ [ Merge p' q | p' <- shrink p ]
++ [ Merge p q' | q' <- shrink q ]
data HeapPP a = HeapPP (HeapP a) (Heap a)
deriving (Show)
instance (Ord a, Arbitrary a) => Arbitrary (HeapPP a) where
arbitrary =
do p <- arbitrary
return (HeapPP p (heap p))
shrink (HeapPP p _) =
[ HeapPP p' (heap p') | p' <- shrink p ]
--------------------------------------------------------------------------
-- properties
data Context a where
Context :: Eq b => (Heap a -> b) -> Context a
instance (Ord a, Arbitrary a) => Arbitrary (Context a) where
arbitrary =
do f <- sized arbContext
let vec h = (size h, toSortedList h, isEmpty h)
return (Context (vec . f))
where
arbContext s =
frequency
[ (1, do return id)
, (s, do x <- arbitrary
f <- arbContext (s-1)
return (insert x . f))
, (s, do f <- arbContext (s-1)
return (safeRemoveMin . f))
, (s, do HeapPP _ h <- arbitrary
f <- arbContext (s`div`2)
elements [ (h `merge`) . f, (`merge` h) . f ])
]
instance Show (Context a) where
show _ = "*"
(=~) :: Heap Char -> Heap Char -> Property
--h1 =~ h2 = sort (toList h1) == sort (toList h2)
--h1 =~ h2 = property (nub (sort (toList h1)) == nub (sort (toList h2))) -- bug!
h1 =~ h2 = property (\(Context c) -> c h1 == c h2)
{-
The normal form is:
insert x1 (insert x2 (... empty)...)
where x1 <= x2 <= ...
-}
-- heap creating operations
prop_Unit x =
unit x =~ insert x empty
prop_RemoveMin_Empty =
removeMin (empty :: Heap OrdA) == Nothing
prop_RemoveMin_Insert1 x =
removeMin (insert x empty :: Heap OrdA) == Just (x, empty)
prop_RemoveMin_Insert2 x y (HeapPP _ h) =
removeMin (insert x (insert y h)) ==~
(insert (max x y) `maph` removeMin (insert (min x y) h))
where
f `maph` Just (x,h) = Just (x, f h)
f `maph` Nothing = Nothing
Nothing ==~ Nothing = property True
Just (x,h1) ==~ Just (y,h2) = x==y .&&. h1 =~ h2
prop_InsertSwap x y (HeapPP _ h) =
insert x (insert y h) =~ insert y (insert x h)
prop_MergeInsertLeft x (HeapPP _ h1) (HeapPP _ h2) =
(insert x h1 `merge` h2) =~ insert x (h1 `merge` h2)
prop_MergeInsertRight x (HeapPP _ h1) (HeapPP _ h2) =
(h1 `merge` insert x h2) =~ insert x (h1 `merge` h2)
-- heap observing operations
prop_Size_Empty =
size empty == 0
prop_Size_Insert x (HeapPP _ (h :: Heap OrdA)) =
size (insert x h) == 1 + size h
prop_ToList_Empty =
toList empty == ([] :: [OrdA])
prop_ToList_Insert x (HeapPP _ (h :: Heap OrdA)) =
sort (toList (insert x h)) == sort (x : toList h)
prop_ToSortedList (HeapPP _ (h :: Heap OrdA)) =
toSortedList h == sort (toList h)
--------------------------------------------------------------------------
-- main
return []
main = $(quickCheckAll)
--------------------------------------------------------------------------
-- the end.
|