1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
|
{-# LANGUAGE ScopedTypeVariables, TemplateHaskell #-}
module Main where
--------------------------------------------------------------------------
-- imports
import Test.QuickCheck
import Control.Monad
( liftM
, liftM2
)
import Data.Char
( toUpper
)
import Data.Set (Set)
import qualified Data.Set as Set
--------------------------------------------------------------------------
-- types for lambda expressions
-- variables
newtype Var = MkVar String
deriving ( Eq, Ord )
instance Show Var where
show (MkVar s) = s
varList :: [Var]
varList = [ MkVar s
| let vs = [ c:v | v <- "" : vs, c <- ['a'..'z'] ]
, s <- vs
]
instance Arbitrary Var where
arbitrary = growingElements [ MkVar [c] | c <- ['a'..'z'] ]
-- constants
newtype Con = MkCon String
deriving ( Eq, Ord )
instance Show Con where
show (MkCon s) = s
instance Arbitrary Con where
arbitrary = growingElements [ MkCon [c] | c <- ['A'..'Z'] ]
-- expressions
data Exp
= Lam Var Exp
| App Exp Exp
| Var Var
| Con Con
deriving ( Eq, Ord )
instance Show Exp where
showsPrec n (Lam x t) = showParen (n>0) (showString "\\" . shows x . showString "." . shows t)
showsPrec n (App s t) = showParen (n>1) (showsPrec 1 s . showString " " . showsPrec 2 t)
showsPrec _ (Var x) = shows x
showsPrec _ (Con c) = shows c
instance Arbitrary Exp where
arbitrary = sized arbExp
where
arbExp n =
frequency $
[ (2, liftM Var arbitrary)
, (1, liftM Con arbitrary)
] ++
concat
[ [ (5, liftM2 Lam arbitrary arbExp1)
, (5, liftM2 App arbExp2 arbExp2)
]
| n > 0
]
where
arbExp1 = arbExp (n-1)
arbExp2 = arbExp (n `div` 2)
shrink (Lam x a) = [ a ]
++ [ Lam x a' | a' <- shrink a ]
shrink (App a b) = [ a, b ]
++ [ ab
| Lam x a' <- [a]
, let ab = subst x b a'
, length (show ab) < length (show (App a b))
]
++ [ App a' b | a' <- shrink a ]
++ [ App a b' | b' <- shrink b ]
shrink (Var x) = [Con (MkCon (map toUpper (show x)))]
shrink _ = []
--------------------------------------------------------------------------
-- functions for lambda expressions
free :: Exp -> Set Var
free (Lam x a) = Set.delete x (free a)
free (App a b) = free a `Set.union` free b
free (Var x) = Set.singleton x
free (Con _) = Set.empty
subst :: Var -> Exp -> Exp -> Exp
subst x c (Var y) | x == y = c
subst x b (Lam y a) | x /= y = Lam y (subst x b a)
subst x c (App a b) = App (subst x c a) (subst x c b)
subst x c a = a
fresh :: Var -> Set Var -> Var
fresh x ys = head (filter (`Set.notMember` ys) (x:varList))
rename :: Var -> Var -> Exp -> Exp
rename x y a | x == y = a
| otherwise = subst x (Var y) a
-- different bugs:
--subst x b (Lam y a) | x /= y = Lam y (subst x b a) -- bug 1
--subst x b (Lam y a) | x /= y = Lam y' (subst x b (rename y y' a)) where y':_ = (y:varList) \\ free b -- bug 2
--subst x b (Lam y a) | x /= y = Lam y' (subst x b (rename y y' a)) where y' = (y:varList) \\ (x:free b) -- bug 3
--subst x b (Lam y a) | x /= y = Lam y' (subst x b (rename y y' a)) where y' = fresh y (x:free b) -- bug 4
--subst x c (Lam y a) | x /= y = Lam y' (subst x c (rename y y' a)) where y' = fresh y (x `insert` delete y (free a) `union` free c)
--------------------------------------------------------------------------
-- properties for substitutions
showResult :: (Show a, Testable prop) => a -> (a -> prop) -> Property
showResult x f =
whenFail (putStrLn ("Result: " ++ show x)) $
f x
prop_SubstFreeNoVarCapture a x b =
showResult (subst x b a) $ \subst_x_b_a ->
x `Set.member` free_a ==>
free subst_x_b_a == (Set.delete x free_a `Set.union` free b)
where
free_a = free a
prop_SubstNotFreeSame a x b =
showResult (subst x b a) $ \subst_x_b_a ->
x `Set.notMember` free a ==>
subst_x_b_a == a
prop_SubstNotFreeSameVars a x b =
showResult (subst x b a) $ \subst_x_b_a ->
x `Set.notMember` free a ==>
free subst_x_b_a == free a
main1 =
do quickCheck prop_SubstFreeNoVarCapture
quickCheck prop_SubstNotFreeSame
quickCheck prop_SubstNotFreeSameVars
--expectFailure $
--------------------------------------------------------------------------
-- eval
eval :: Exp -> Exp
eval (Var x) = error "eval: free variable"
eval (App a b) =
case eval a of
Lam x a' -> eval (subst x b a')
a' -> App a' (eval b)
eval a = a
--------------------------------------------------------------------------
-- closed lambda expressions
newtype ClosedExp = Closed Exp deriving ( Show )
instance Arbitrary ClosedExp where
arbitrary = Closed `fmap` sized (arbExp [])
where
arbExp xs n =
frequency $
[ (8, liftM Var (elements xs))
| not (null xs)
] ++
[ (2, liftM Con arbitrary)
] ++
[ (20, do x <- arbitrary
t <- arbExp (x:xs) n'
return (Lam x t))
| n > 0 || null xs
] ++
[ (20, liftM2 App (arbExp xs n2) (arbExp xs n2))
| n > 0
]
where
n' = n-1
n2 = n `div` 2
shrink (Closed a) =
[ Closed a' | a' <- shrink a, Set.null (free a') ]
--------------------------------------------------------------------------
-- properties for closed lambda expressions
isValue :: Exp -> Bool
isValue (Var _) = False
isValue (App (Lam _ _) _) = False
isValue (App a b) = isValue a && isValue b
isValue _ = True
prop_ClosedExpIsClosed (Closed a) =
Set.null (free a)
prop_EvalProducesValue (Closed a) =
within 1000 $
isValue (eval a)
main2 =
do quickCheck prop_ClosedExpIsClosed
quickCheck prop_EvalProducesValue
-- expectFailure $
--------------------------------------------------------------------------
-- main
main =
do main1
main2
--------------------------------------------------------------------------
-- the end.
{-
instance Arbitrary Exp where
arbitrary = sized (arbExp [])
where
arbitrary = repair [] `fmap` sized arbExp
where
arbExp n =
frequency $
[ (1, liftM Var arbitrary)
] ++ concat
[ [ (3, liftM2 Lam arbitrary (arbExp n'))
, (4, liftM2 App (arbExp n2) (arbExp n2))
]
| n > 0
]
where
n' = n-1
n2 = n `div` 2
repair xs (Var x)
| x `elem` xs = Var x
| null xs = Lam x (Var x)
| otherwise = Var (xs !! (ord (last (show x)) `mod` length xs))
repair xs (App a b) = App (repair xs a) (repair xs b)
repair xs (Lam x a) = Lam x (repair (x:xs) a)
-- lots of clever shrinking added
shrinkRec (Lam x a) = [ a | x `notElem` free a ]
shrinkRec (App a b) = [ a, b ]
++ [ red
| Lam x a' <- [a]
, let red = subst x b a'
, length (show red) < length (show (App a b))
]
shrinkRec (Var x) = [Con (MkCon (map toUpper (show x)))]
shrinkRec _ = []
-- types
data Type
= Base Con
| Type :-> Type
deriving ( Eq, Show )
instance Arbitrary Type where
arbitrary = sized arbType
where
arbType n =
frequency $
[ (1, liftM Base arbitrary)
] ++
[ (4, liftM2 (:->) arbType2 arbType2)
| n > 0
]
where
arbType2 = arbType (n `div` 2)
newtype WellTypedExp = WellTyped Exp
deriving ( Eq, Show )
arbExpWithType n env t =
frequency $
[ (2, liftM Var (elements xs))
| let xs = [ x | (x,t') <- env, t == t' ]
, not (null xs)
] ++
[ (1, return (Con b))
| Base b <- [t]
] ++
[ (if n > 0 then 5 else 1
, do x <- arbitrary
b <- arbExpWithType n1 ((x,ta):[ xt | xt <- env, fst xt /= x ]) tb
return (Lam x b))
| ta :-> tb <- [t]
] ++
[ (5, do tb <- arbitrary
a <- arbExpWithType n2 env (tb :-> t)
b <- arbExpWithType n2 env tb
return (App a b))
| n > 0
]
where
n1 = n-1
n2 = n `div` 2
instance Arbitrary WellTypedExp where
arbitrary =
do t <- arbitrary
e <- sized (\n -> arbExpWithType n [] t)
return (WellTyped e)
shrink _ = []
newtype OpenExp = Open Exp
deriving ( Eq, Show )
instance Arbitrary OpenExp where
arbitrary = Open `fmap` sized arbExp
where
arbExp n =
frequency $
[ (2, liftM Var arbitrary)
, (1, liftM Con arbitrary)
] ++
concat
[ [ (5, liftM2 Lam arbitrary arbExp1)
, (5, liftM2 App arbExp2 arbExp2)
]
| n > 0
]
where
arbExp1 = arbExp (n-1)
arbExp2 = arbExp (n `div` 2)
shrink (Open a) = map Open (shrink a)
prop_EvalProducesValueWT (WellTyped a) =
isValue (eval a)
-}
x = MkVar "x"
y = MkVar "y"
|