1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
|
{-# LANGUAGE CPP, TypeFamilies, Rank2Types, FlexibleContexts, FlexibleInstances, GADTs, StandaloneDeriving, UndecidableInstances #-}
-- explicit dictionary higher-kind instances are defined in
-- - base-4.9
-- - transformers >= 0.5
-- - transformes-compat >= 0.5 when transformers aren't 0.4
#define EXPLICIT_DICT_FUNCTOR_CLASSES (MIN_VERSION_base(4,9,0) || MIN_VERSION_transformers(0,5,0) || (MIN_VERSION_transformers_compat(0,5,0) && !MIN_VERSION_transformers(0,4,0)))
#define HAS_GENERIC (__GLASGOW_HASKELL__ >= 702)
#define HAS_GENERIC1 (__GLASGOW_HASKELL__ >= 706)
-- Polymorphic typeable
#define HAS_POLY_TYPEABLE MIN_VERSION_base(4,7,0)
#ifdef __GLASGOW_HASKELL__
{-# LANGUAGE DeriveDataTypeable #-}
#if __GLASGOW_HASKELL__ >= 800
{-# LANGUAGE ConstrainedClassMethods #-}
#endif
#if HAS_GENERIC
{-# LANGUAGE DeriveGeneric #-}
#endif
#endif
-----------------------------------------------------------------------------
-- |
-- Copyright : (C) 2008-2015 Edward Kmett
-- License : BSD-style (see the file LICENSE)
--
-- Maintainer : Edward Kmett <ekmett@gmail.com>
-- Stability : experimental
-- Portability : non-portable
--
----------------------------------------------------------------------------
module Data.Functor.Foldable
(
-- * Base functors for fixed points
Base
, ListF(..)
-- * Fixed points
, Fix(..), unfix
, Mu(..)
, Nu(..)
-- * Folding
, Recursive(..)
-- ** Combinators
, gapo
, gcata
, zygo
, gzygo
, histo
, ghisto
, futu
, chrono
, gchrono
-- ** Distributive laws
, distCata
, distPara
, distParaT
, distZygo
, distZygoT
, distHisto
, distGHisto
, distFutu
, distGFutu
-- * Unfolding
, Corecursive(..)
-- ** Combinators
, gana
-- ** Distributive laws
, distAna
, distApo
, distGApo
, distGApoT
-- * Refolding
, hylo
, ghylo
-- ** Changing representation
, refix
-- * Common names
, fold, gfold
, unfold, gunfold
, refold, grefold
-- * Mendler-style
, mcata
, mhisto
-- * Elgot (co)algebras
, elgot
, coelgot
-- * Zygohistomorphic prepromorphisms
, zygoHistoPrepro
) where
import Control.Applicative
import Control.Comonad
import Control.Comonad.Trans.Class
import Control.Comonad.Trans.Env
import qualified Control.Comonad.Cofree as Cofree
import Control.Comonad.Cofree (Cofree(..))
import Control.Monad (liftM, join)
import Control.Monad.Free (Free(..))
import Control.Monad.Trans.Except (ExceptT(..), runExceptT)
import Data.Functor.Identity
import Control.Arrow
import Data.Function (on)
import Data.Functor.Classes
import Text.Read
import Text.Show
#ifdef __GLASGOW_HASKELL__
import Data.Data hiding (gunfold)
#if HAS_POLY_TYPEABLE
#else
import qualified Data.Data as Data
#endif
#if HAS_GENERIC
import GHC.Generics (Generic)
#endif
#if HAS_GENERIC1
import GHC.Generics (Generic1)
#endif
#endif
import Data.Monoid (Monoid (..))
import Prelude
import qualified Data.Foldable as F
import qualified Data.Traversable as T
import qualified Data.Bifunctor as Bi
import qualified Data.Bifoldable as Bi
import qualified Data.Bitraversable as Bi
type family Base t :: * -> *
class Functor (Base t) => Recursive t where
project :: t -> Base t t
cata :: (Base t a -> a) -- ^ a (Base t)-algebra
-> t -- ^ fixed point
-> a -- ^ result
cata f = c where c = f . fmap c . project
para :: (Base t (t, a) -> a) -> t -> a
para t = p where p x = t . fmap ((,) <*> p) $ project x
gpara :: (Corecursive t, Comonad w) => (forall b. Base t (w b) -> w (Base t b)) -> (Base t (EnvT t w a) -> a) -> t -> a
gpara t = gzygo embed t
-- | Fokkinga's prepromorphism
prepro
:: Corecursive t
=> (forall b. Base t b -> Base t b)
-> (Base t a -> a)
-> t
-> a
prepro e f = c where c = f . fmap (c . cata (embed . e)) . project
--- | A generalized prepromorphism
gprepro
:: (Corecursive t, Comonad w)
=> (forall b. Base t (w b) -> w (Base t b))
-> (forall c. Base t c -> Base t c)
-> (Base t (w a) -> a)
-> t
-> a
gprepro k e f = extract . c where c = fmap f . k . fmap (duplicate . c . cata (embed . e)) . project
distPara :: Corecursive t => Base t (t, a) -> (t, Base t a)
distPara = distZygo embed
distParaT :: (Corecursive t, Comonad w) => (forall b. Base t (w b) -> w (Base t b)) -> Base t (EnvT t w a) -> EnvT t w (Base t a)
distParaT t = distZygoT embed t
class Functor (Base t) => Corecursive t where
embed :: Base t t -> t
ana
:: (a -> Base t a) -- ^ a (Base t)-coalgebra
-> a -- ^ seed
-> t -- ^ resulting fixed point
ana g = a where a = embed . fmap a . g
apo :: (a -> Base t (Either t a)) -> a -> t
apo g = a where a = embed . (fmap (either id a)) . g
-- | Fokkinga's postpromorphism
postpro
:: Recursive t
=> (forall b. Base t b -> Base t b) -- natural transformation
-> (a -> Base t a) -- a (Base t)-coalgebra
-> a -- seed
-> t
postpro e g = a where a = embed . fmap (ana (e . project) . a) . g
-- | A generalized postpromorphism
gpostpro
:: (Recursive t, Monad m)
=> (forall b. m (Base t b) -> Base t (m b)) -- distributive law
-> (forall c. Base t c -> Base t c) -- natural transformation
-> (a -> Base t (m a)) -- a (Base t)-m-coalgebra
-> a -- seed
-> t
gpostpro k e g = a . return where a = embed . fmap (ana (e . project) . a . join) . k . liftM g
hylo :: Functor f => (f b -> b) -> (a -> f a) -> a -> b
hylo f g = h where h = f . fmap h . g
fold :: Recursive t => (Base t a -> a) -> t -> a
fold = cata
unfold :: Corecursive t => (a -> Base t a) -> a -> t
unfold = ana
refold :: Functor f => (f b -> b) -> (a -> f a) -> a -> b
refold = hylo
-- | Base functor of @[]@.
data ListF a b = Nil | Cons a b
deriving (Eq,Ord,Show,Read,Typeable
#if HAS_GENERIC
, Generic
#endif
#if HAS_GENERIC1
, Generic1
#endif
)
#if EXPLICIT_DICT_FUNCTOR_CLASSES
instance Eq2 ListF where
liftEq2 _ _ Nil Nil = True
liftEq2 f g (Cons a b) (Cons a' b') = f a a' && g b b'
liftEq2 _ _ _ _ = False
instance Eq a => Eq1 (ListF a) where
liftEq = liftEq2 (==)
instance Ord2 ListF where
liftCompare2 _ _ Nil Nil = EQ
liftCompare2 _ _ Nil _ = LT
liftCompare2 _ _ _ Nil = GT
liftCompare2 f g (Cons a b) (Cons a' b') = f a a' `mappend` g b b'
instance Ord a => Ord1 (ListF a) where
liftCompare = liftCompare2 compare
instance Show a => Show1 (ListF a) where
liftShowsPrec = liftShowsPrec2 showsPrec showList
instance Show2 ListF where
liftShowsPrec2 _ _ _ _ _ Nil = showString "Nil"
liftShowsPrec2 sa _ sb _ d (Cons a b) = showParen (d > 10)
$ showString "Cons "
. sa 11 a
. showString " "
. sb 11 b
instance Read2 ListF where
liftReadsPrec2 ra _ rb _ d = readParen (d > 10) $ \s -> nil s ++ cons s
where
nil s0 = do
("Nil", s1) <- lex s0
return (Nil, s1)
cons s0 = do
("Cons", s1) <- lex s0
(a, s2) <- ra 11 s1
(b, s3) <- rb 11 s2
return (Cons a b, s3)
instance Read a => Read1 (ListF a) where
liftReadsPrec = liftReadsPrec2 readsPrec readList
#else
instance Eq a => Eq1 (ListF a) where eq1 = (==)
instance Ord a => Ord1 (ListF a) where compare1 = compare
instance Show a => Show1 (ListF a) where showsPrec1 = showsPrec
instance Read a => Read1 (ListF a) where readsPrec1 = readsPrec
#endif
-- These instances cannot be auto-derived on with GHC <= 7.6
instance Functor (ListF a) where
fmap _ Nil = Nil
fmap f (Cons a b) = Cons a (f b)
instance F.Foldable (ListF a) where
foldMap _ Nil = Data.Monoid.mempty
foldMap f (Cons _ b) = f b
instance T.Traversable (ListF a) where
traverse _ Nil = pure Nil
traverse f (Cons a b) = Cons a <$> f b
instance Bi.Bifunctor ListF where
bimap _ _ Nil = Nil
bimap f g (Cons a b) = Cons (f a) (g b)
instance Bi.Bifoldable ListF where
bifoldMap _ _ Nil = mempty
bifoldMap f g (Cons a b) = mappend (f a) (g b)
instance Bi.Bitraversable ListF where
bitraverse _ _ Nil = pure Nil
bitraverse f g (Cons a b) = Cons <$> f a <*> g b
type instance Base [a] = ListF a
instance Recursive [a] where
project (x:xs) = Cons x xs
project [] = Nil
para f (x:xs) = f (Cons x (xs, para f xs))
para f [] = f Nil
instance Corecursive [a] where
embed (Cons x xs) = x:xs
embed Nil = []
apo f a = case f a of
Cons x (Left xs) -> x : xs
Cons x (Right b) -> x : apo f b
Nil -> []
-- | Example boring stub for non-recursive data types
type instance Base (Maybe a) = Const (Maybe a)
instance Recursive (Maybe a) where project = Const
instance Corecursive (Maybe a) where embed = getConst
-- | Example boring stub for non-recursive data types
type instance Base (Either a b) = Const (Either a b)
instance Recursive (Either a b) where project = Const
instance Corecursive (Either a b) where embed = getConst
-- | A generalized catamorphism
gfold, gcata
:: (Recursive t, Comonad w)
=> (forall b. Base t (w b) -> w (Base t b)) -- ^ a distributive law
-> (Base t (w a) -> a) -- ^ a (Base t)-w-algebra
-> t -- ^ fixed point
-> a
gcata k g = g . extract . c where
c = k . fmap (duplicate . fmap g . c) . project
gfold k g t = gcata k g t
distCata :: Functor f => f (Identity a) -> Identity (f a)
distCata = Identity . fmap runIdentity
-- | A generalized anamorphism
gunfold, gana
:: (Corecursive t, Monad m)
=> (forall b. m (Base t b) -> Base t (m b)) -- ^ a distributive law
-> (a -> Base t (m a)) -- ^ a (Base t)-m-coalgebra
-> a -- ^ seed
-> t
gana k f = a . return . f where
a = embed . fmap (a . liftM f . join) . k
gunfold k f t = gana k f t
distAna :: Functor f => Identity (f a) -> f (Identity a)
distAna = fmap Identity . runIdentity
-- | A generalized hylomorphism
grefold, ghylo
:: (Comonad w, Functor f, Monad m)
=> (forall c. f (w c) -> w (f c))
-> (forall d. m (f d) -> f (m d))
-> (f (w b) -> b)
-> (a -> f (m a))
-> a
-> b
ghylo w m f g = extract . h . return where
h = fmap f . w . fmap (duplicate . h . join) . m . liftM g
grefold w m f g a = ghylo w m f g a
futu :: Corecursive t => (a -> Base t (Free (Base t) a)) -> a -> t
futu = gana distFutu
distFutu :: Functor f => Free f (f a) -> f (Free f a)
distFutu = distGFutu id
distGFutu :: (Functor f, Functor h) => (forall b. h (f b) -> f (h b)) -> Free h (f a) -> f (Free h a)
distGFutu _ (Pure fa) = Pure <$> fa
distGFutu k (Free as) = Free <$> k (distGFutu k <$> as)
-------------------------------------------------------------------------------
-- Fix
-------------------------------------------------------------------------------
newtype Fix f = Fix (f (Fix f))
unfix :: Fix f -> f (Fix f)
unfix (Fix f) = f
instance Eq1 f => Eq (Fix f) where
Fix a == Fix b = eq1 a b
instance Ord1 f => Ord (Fix f) where
compare (Fix a) (Fix b) = compare1 a b
instance Show1 f => Show (Fix f) where
showsPrec d (Fix a) =
showParen (d >= 11)
$ showString "Fix "
. showsPrec1 11 a
instance Read1 f => Read (Fix f) where
readPrec = parens $ prec 10 $ do
Ident "Fix" <- lexP
Fix <$> step (readS_to_Prec readsPrec1)
#ifdef __GLASGOW_HASKELL__
#if HAS_POLY_TYPEABLE
deriving instance Typeable Fix
deriving instance (Typeable f, Data (f (Fix f))) => Data (Fix f)
#else
instance Typeable1 f => Typeable (Fix f) where
typeOf t = mkTyConApp fixTyCon [typeOf1 (undefined `asArgsTypeOf` t)]
where asArgsTypeOf :: f a -> Fix f -> f a
asArgsTypeOf = const
fixTyCon :: TyCon
#if MIN_VERSION_base(4,4,0)
fixTyCon = mkTyCon3 "recursion-schemes" "Data.Functor.Foldable" "Fix"
#else
fixTyCon = mkTyCon "Data.Functor.Foldable.Fix"
#endif
{-# NOINLINE fixTyCon #-}
instance (Typeable1 f, Data (f (Fix f))) => Data (Fix f) where
gfoldl f z (Fix a) = z Fix `f` a
toConstr _ = fixConstr
gunfold k z c = case constrIndex c of
1 -> k (z (Fix))
_ -> error "gunfold"
dataTypeOf _ = fixDataType
fixConstr :: Constr
fixConstr = mkConstr fixDataType "Fix" [] Prefix
fixDataType :: DataType
fixDataType = mkDataType "Data.Functor.Foldable.Fix" [fixConstr]
#endif
#endif
type instance Base (Fix f) = f
instance Functor f => Recursive (Fix f) where
project (Fix a) = a
instance Functor f => Corecursive (Fix f) where
embed = Fix
refix :: (Recursive s, Corecursive t, Base s ~ Base t) => s -> t
refix = cata embed
toFix :: Recursive t => t -> Fix (Base t)
toFix = refix
fromFix :: Corecursive t => Fix (Base t) -> t
fromFix = refix
-------------------------------------------------------------------------------
-- Lambek
-------------------------------------------------------------------------------
-- | Lambek's lemma provides a default definition for 'project' in terms of 'cata' and 'embed'
lambek :: (Recursive t, Corecursive t) => (t -> Base t t)
lambek = cata (fmap embed)
-- | The dual of Lambek's lemma, provides a default definition for 'embed' in terms of 'ana' and 'project'
colambek :: (Recursive t, Corecursive t) => (Base t t -> t)
colambek = ana (fmap project)
newtype Mu f = Mu (forall a. (f a -> a) -> a)
type instance Base (Mu f) = f
instance Functor f => Recursive (Mu f) where
project = lambek
cata f (Mu g) = g f
instance Functor f => Corecursive (Mu f) where
embed m = Mu (\f -> f (fmap (fold f) m))
instance (Functor f, Eq1 f) => Eq (Mu f) where
(==) = (==) `on` toFix
instance (Functor f, Ord1 f) => Ord (Mu f) where
compare = compare `on` toFix
instance (Functor f, Show1 f) => Show (Mu f) where
showsPrec d f = showParen (d > 10) $
showString "fromFix " . showsPrec 11 (toFix f)
#ifdef __GLASGOW_HASKELL__
instance (Functor f, Read1 f) => Read (Mu f) where
readPrec = parens $ prec 10 $ do
Ident "fromFix" <- lexP
fromFix <$> step readPrec
#endif
data Nu f where Nu :: (a -> f a) -> a -> Nu f
type instance Base (Nu f) = f
instance Functor f => Corecursive (Nu f) where
embed = colambek
ana = Nu
instance Functor f => Recursive (Nu f) where
project (Nu f a) = Nu f <$> f a
instance (Functor f, Eq1 f) => Eq (Nu f) where
(==) = (==) `on` toFix
instance (Functor f, Ord1 f) => Ord (Nu f) where
compare = compare `on` toFix
instance (Functor f, Show1 f) => Show (Nu f) where
showsPrec d f = showParen (d > 10) $
showString "fromFix " . showsPrec 11 (toFix f)
#ifdef __GLASGOW_HASKELL__
instance (Functor f, Read1 f) => Read (Nu f) where
readPrec = parens $ prec 10 $ do
Ident "fromFix" <- lexP
fromFix <$> step readPrec
#endif
zygo :: Recursive t => (Base t b -> b) -> (Base t (b, a) -> a) -> t -> a
zygo f = gfold (distZygo f)
distZygo
:: Functor f
=> (f b -> b) -- An f-algebra
-> (f (b, a) -> (b, f a)) -- ^ A distributive for semi-mutual recursion
distZygo g m = (g (fmap fst m), fmap snd m)
gzygo
:: (Recursive t, Comonad w)
=> (Base t b -> b)
-> (forall c. Base t (w c) -> w (Base t c))
-> (Base t (EnvT b w a) -> a)
-> t
-> a
gzygo f w = gfold (distZygoT f w)
distZygoT
:: (Functor f, Comonad w)
=> (f b -> b) -- An f-w-algebra to use for semi-mutual recursion
-> (forall c. f (w c) -> w (f c)) -- A base Distributive law
-> f (EnvT b w a) -> EnvT b w (f a) -- A new distributive law that adds semi-mutual recursion
distZygoT g k fe = EnvT (g (getEnv <$> fe)) (k (lower <$> fe))
where getEnv (EnvT e _) = e
gapo :: Corecursive t => (b -> Base t b) -> (a -> Base t (Either b a)) -> a -> t
gapo g = gunfold (distGApo g)
distApo :: Recursive t => Either t (Base t a) -> Base t (Either t a)
distApo = distGApo project
distGApo :: Functor f => (b -> f b) -> Either b (f a) -> f (Either b a)
distGApo f = either (fmap Left . f) (fmap Right)
distGApoT
:: (Functor f, Functor m)
=> (b -> f b)
-> (forall c. m (f c) -> f (m c))
-> ExceptT b m (f a)
-> f (ExceptT b m a)
distGApoT g k = fmap ExceptT . k . fmap (distGApo g) . runExceptT
-- | Course-of-value iteration
histo :: Recursive t => (Base t (Cofree (Base t) a) -> a) -> t -> a
histo = gcata distHisto
ghisto :: (Recursive t, Functor h) => (forall b. Base t (h b) -> h (Base t b)) -> (Base t (Cofree h a) -> a) -> t -> a
ghisto g = gcata (distGHisto g)
distHisto :: Functor f => f (Cofree f a) -> Cofree f (f a)
distHisto = distGHisto id
distGHisto :: (Functor f, Functor h) => (forall b. f (h b) -> h (f b)) -> f (Cofree h a) -> Cofree h (f a)
distGHisto k = Cofree.unfold (\as -> (extract <$> as, k (Cofree.unwrap <$> as)))
chrono :: Functor f => (f (Cofree f b) -> b) -> (a -> f (Free f a)) -> (a -> b)
chrono = ghylo distHisto distFutu
gchrono :: (Functor f, Functor w, Functor m) =>
(forall c. f (w c) -> w (f c)) ->
(forall c. m (f c) -> f (m c)) ->
(f (Cofree w b) -> b) -> (a -> f (Free m a)) ->
(a -> b)
gchrono w m = ghylo (distGHisto w) (distGFutu m)
-- | Mendler-style iteration
mcata :: (forall y. (y -> c) -> f y -> c) -> Fix f -> c
mcata psi = psi (mcata psi) . unfix
-- | Mendler-style course-of-value iteration
mhisto :: (forall y. (y -> c) -> (y -> f y) -> f y -> c) -> Fix f -> c
mhisto psi = psi (mhisto psi) unfix . unfix
-- | Elgot algebras
elgot :: Functor f => (f a -> a) -> (b -> Either a (f b)) -> b -> a
elgot phi psi = h where h = (id ||| phi . fmap h) . psi
-- | Elgot coalgebras: <http://comonad.com/reader/2008/elgot-coalgebras/>
coelgot :: Functor f => ((a, f b) -> b) -> (a -> f a) -> a -> b
coelgot phi psi = h where h = phi . (id &&& fmap h . psi)
-- | Zygohistomorphic prepromorphisms:
--
-- A corrected and modernized version of <http://www.haskell.org/haskellwiki/Zygohistomorphic_prepromorphisms>
zygoHistoPrepro
:: (Corecursive t, Recursive t)
=> (Base t b -> b)
-> (forall c. Base t c -> Base t c)
-> (Base t (EnvT b (Cofree (Base t)) a) -> a)
-> t
-> a
zygoHistoPrepro f g t = gprepro (distZygoT f distHisto) g t
-------------------------------------------------------------------------------
-- Not exposed anywhere
-------------------------------------------------------------------------------
-- | Read a list (using square brackets and commas), given a function
-- for reading elements.
_readListWith :: ReadS a -> ReadS [a]
_readListWith rp =
readParen False (\r -> [pr | ("[",s) <- lex r, pr <- readl s])
where
readl s = [([],t) | ("]",t) <- lex s] ++
[(x:xs,u) | (x,t) <- rp s, (xs,u) <- readl' t]
readl' s = [([],t) | ("]",t) <- lex s] ++
[(x:xs,v) | (",",t) <- lex s, (x,u) <- rp t, (xs,v) <- readl' u]
|