1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
|
{-# LANGUAGE CPP #-}
#if __GLASGOW_HASKELL__ >= 902
{-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-}
#endif
-- | This is the code for the main engine. This captures the posix
-- subexpressions. There is also a non-capturing engine, and a
-- testing engine.
--
-- It is polymorphic over the internal Uncons type class, and
-- specialized to produce the needed variants.
module Text.Regex.TDFA.NewDFA.Engine_FA(execMatch) where
import Data.Array.Base(unsafeRead,unsafeWrite,STUArray(..))
import GHC.Arr(STArray(..))
import GHC.ST(ST(..))
import GHC.Exts(MutableByteArray#,RealWorld,Int#,sizeofMutableByteArray#,unsafeCoerce#,State#)
import Prelude hiding ((!!))
import Control.Monad(when,unless,forM,forM_,liftM2,foldM)
import Data.Array.MArray(MArray(..))
import Data.Array.Unsafe(unsafeFreeze)
import Data.Array.IArray(Array,bounds,assocs,Ix(range))
import qualified Data.IntMap.CharMap2 as CMap(findWithDefault)
import Data.IntMap(IntMap)
import qualified Data.IntMap as IMap(null,toList,lookup,insert)
import Data.Maybe(catMaybes)
import Data.Monoid as Mon(Monoid(..))
import Data.IntSet(IntSet)
import qualified Data.IntSet as ISet(toAscList,null)
import Data.Array.IArray((!))
import Data.List(sortBy,groupBy)
import Data.STRef(STRef,newSTRef,readSTRef,writeSTRef)
import qualified Control.Monad.ST.Strict as S(ST,runST)
import Data.Sequence(Seq,ViewL(..),viewl)
import qualified Data.Sequence as Seq(null)
import qualified Data.ByteString.Char8 as SBS(ByteString)
import qualified Data.ByteString.Lazy.Char8 as LBS(ByteString)
import Foreign.Ptr(Ptr)
import Text.Regex.Base(MatchArray,MatchOffset,MatchLength)
import Text.Regex.TDFA.Common hiding (indent)
import Text.Regex.TDFA.NewDFA.Uncons(Uncons(uncons))
import Text.Regex.TDFA.NewDFA.MakeTest(test_singleline,test_multiline)
--import Debug.Trace
-- trace :: String -> a -> a
-- trace _ a = a
err :: String -> a
err s = common_error "Text.Regex.TDFA.NewDFA.Engine_FA" s
{-# INLINE (!!) #-}
(!!) :: (MArray a e (S.ST s),Ix i) => a i e -> Int -> S.ST s e
(!!) = unsafeRead
{-# INLINE set #-}
set :: (MArray a e (S.ST s),Ix i) => a i e -> Int -> e -> S.ST s ()
set = unsafeWrite
noSource :: ((Index, Instructions),STUArray s Tag Position,OrbitLog)
noSource = ((-1,err "noSource"),err "noSource",err "noSource")
{-# SPECIALIZE execMatch :: Regex -> Position -> Char -> ([] Char) -> [MatchArray] #-}
{-# SPECIALIZE execMatch :: Regex -> Position -> Char -> (Seq Char) -> [MatchArray] #-}
{-# SPECIALIZE execMatch :: Regex -> Position -> Char -> SBS.ByteString -> [MatchArray] #-}
{-# SPECIALIZE execMatch :: Regex -> Position -> Char -> LBS.ByteString -> [MatchArray] #-}
execMatch :: forall text. Uncons text => Regex -> Position -> Char -> text -> [MatchArray]
execMatch (Regex { regex_dfa = DFA {d_id=didIn,d_dt=dtIn}
, regex_init = startState
, regex_b_index = b_index
, regex_b_tags = b_tags_all
, regex_tags = aTags
, regex_groups = aGroups
, regex_compOptions = CompOption { multiline = newline } } )
offsetIn prevIn inputIn = S.runST goNext where
b_tags :: (Tag,Tag)
!b_tags = b_tags_all
orbitTags :: [Tag]
!orbitTags = map fst . filter ((Orbit==).snd) . assocs $ aTags
test :: WhichTest -> Index -> Char -> text -> Bool
!test = mkTest newline
comp :: C s
comp = {-# SCC "matchHere.comp" #-} ditzyComp'3 aTags
goNext :: forall s. ST s [MatchArray]
goNext = {-# SCC "goNext" #-} do
(SScratch s1In s2In (winQ,blank,which)) <- newScratch b_index b_tags
spawnAt b_tags blank startState s1In offsetIn
let next s1 s2 did dt offset prev input = {-# SCC "goNext.next" #-}
case dt of
Testing' {dt_test=wt,dt_a=a,dt_b=b} ->
if test wt offset prev input
then next s1 s2 did a offset prev input
else next s1 s2 did b offset prev input
Simple' {dt_win=w,dt_trans=t,dt_other=o} -> do
unless (IMap.null w) $
processWinner s1 w offset
case uncons input of
Nothing -> finalizeWinner
Just (c,input') ->
case CMap.findWithDefault o c t of
Transition {trans_single=DFA {d_id=did',d_dt=dt'},trans_how=dtrans}
| ISet.null did' -> finalizeWinner
| otherwise -> findTrans s1 s2 did did' dt' dtrans offset c input'
-- compressOrbits gets all the current Tag-0 start information from
-- the NFA states; then it loops through all the Orbit tags with
-- compressOrbit.
--
-- compressOrbit on such a Tag loops through all the NFS states'
-- m_orbit record, discarding ones that are Nothing and discarding
-- ones that are too new to care about (after the cutoff value).
--
-- compressOrbit then groups the Orbits records by the Tag-0 start
-- position and the basePos position. Entries in different groups
-- will never be comparable in the future so they can be processed
-- separately. Groups could probably be even more finely
-- distinguished, as a further optimization, but the justification will
-- be tricky.
--
-- Current Tag-0 values are at most offset and all newly spawned
-- groups will have Tag-0 of at least (succ offset) so the current
-- groups are closed to those spawned in the future. The basePos may
-- be as large as offset and may be overwritten later with values of
-- offset or larger (and this will also involve deleting the Orbits
-- record). Thus there could be a future collision between a current
-- group with basePos==offset and an updated record that acquires
-- basePos==offset. By excluding groups with basePos before the
-- current offset the collision between existing and future records
-- is avoided.
--
-- An entry in a group can only collide with that group's
-- descendants. compressOrbit sends each group to the compressGroup
-- command.
--
-- compressGroup on a single record checks whether it's Seq can be
-- cleared and if so it will clear it (and set ordinal to Nothing but
-- this this not particularly important).
--
-- compressGroup on many records sorts and groups the members and zips
-- the groups with their new ordinal value. The comparison is based
-- on the old ordinal value, then the inOrbit value, and then the (Seq
-- Position) data.
--
-- The old ordinals of the group will all be Nothing or all be Just,
-- but this condition is neither checked nor violations detected.
-- This comparison is justified because once records get different
-- ordinals assigned they will never change places.
--
-- The inOrbit Bool is only different if one of them has set the stop
-- position to at most (succ offset). They will obly be compared if
-- the other one leaves, an its stop position will be at least offset.
-- The previous sentence is justified by inspection of the "assemble"
-- function in the TDFA module: there is no (PostUpdate
-- LeaveOrbitTask) so the largest possible value for the stop Tag is
-- (pred offset). Thus the record with inOrbit==False would beat (be
-- GT than) the record with inOrbit==True.
--
-- The Seq comparison is safe because the largest existing Position
-- value is (pred offset) and the smallest future Position value is
-- offset. The previous sentence is justified by inspection of the
-- "assemble" function in the TDFA module: there is no (PostUpdate
-- EnterOrbitTags) so the largest possible value in the Seq is (pred
-- offset).
--
-- The updated Orbits get the new ordinal value and an empty (Seq
-- Position).
compressOrbits :: MScratch s -> IntSet -> Position -> ST s ()
compressOrbits s1 did offset = do
let getStart state = do start <- maybe (err "compressOrbit,1") (!! 0) =<< m_pos s1 !! state
return (state,start)
cutoff = offset - 50 -- Require: cutoff <= offset, MAGIC TUNABLE CONSTANT 50
ss <- mapM getStart (ISet.toAscList did)
let compressOrbit tag = do
mos <- forM ss ( \ p@(state,_start) -> do
mo <- fmap (IMap.lookup tag) (m_orbit s1 !! state)
case mo of
Just orbits | basePos orbits < cutoff -> return (Just (p,orbits))
| otherwise -> return Nothing
_ -> return Nothing )
let compressGroup [((state,_),orbit)] | Seq.null (getOrbits orbit) = return ()
| otherwise =
set (m_orbit s1) state
. (IMap.insert tag $! (orbit { ordinal = Nothing, getOrbits = mempty}))
=<< m_orbit s1 !! state
compressGroup gs = do
let sortPos (_,b1) (_,b2) = compare (ordinal b1) (ordinal b2) `mappend`
compare (inOrbit b2) (inOrbit b1) `mappend`
comparePos (viewl (getOrbits b1)) (viewl (getOrbits b2))
groupPos (_,b1) (_,b2) = ordinal b1 == ordinal b2 && getOrbits b1 == getOrbits b2
gs' = zip [(1::Int)..] (groupBy groupPos . sortBy sortPos $ gs)
forM_ gs' $ \ (!n,eqs) -> do
forM_ eqs $ \ ((state,_),orbit) ->
set (m_orbit s1) state
. (IMap.insert tag $! (orbit { ordinal = Just n, getOrbits = mempty }))
=<< m_orbit s1 !! state
let sorter ((_,a1),b1) ((_,a2),b2) = compare a1 a2 `mappend` compare (basePos b1) (basePos b2)
grouper ((_,a1),b1) ((_,a2),b2) = a1==a2 && basePos b1 == basePos b2
orbitGroups = groupBy grouper . sortBy sorter . catMaybes $ mos
mapM_ compressGroup orbitGroups
mapM_ compressOrbit orbitTags
-- findTrans has to (part 1) decide, for each destination, "which" of
-- zero or more source NFA states will be the chosen source. Then it
-- has to (part 2) perform the transition or spawn. It keeps track of
-- the starting index while doing so, and compares the earliest start
-- with the stored winners. (part 3) If some winners are ready to be
-- released then the future continuation of the search is placed in
-- "storeNext". If no winners are ready to be released then the
-- computation continues immediately.
findTrans
:: MScratch s
-> MScratch s
-> IntSet
-> SetIndex
-> DT
-> DTrans
-> Index
-> Char
-> text
-> ST s [MatchArray]
findTrans s1 s2 did did' dt' dtrans offset prev' input' = {-# SCC "goNext.findTrans" #-} do
-- findTrans part 0
-- MAGIC TUNABLE CONSTANT 100 (and 100-1). TODO: (offset .&. 127 == 127) instead?
when (not (null orbitTags) && (offset `rem` 100 == 99)) (compressOrbits s1 did offset)
-- findTrans part 1
let findTransTo (destIndex,sources) | IMap.null sources =
set which destIndex noSource
| otherwise = do
let prep (sourceIndex,(_dopa,instructions)) = {-# SCC "goNext.findTrans.prep" #-} do
pos <- maybe (err $ "findTrans,1 : "++show (sourceIndex,destIndex,did')) return
=<< m_pos s1 !! sourceIndex
orbit <- m_orbit s1 !! sourceIndex
let orbit' = maybe orbit (\ f -> f offset orbit) (newOrbits instructions)
return ((sourceIndex,instructions),pos,orbit')
challenge x1@((_si1,ins1),_p1,_o1) x2@((_si2,ins2),_p2,_o2) = {-# SCC "goNext.findTrans.challenge" #-} do
check <- comp offset x1 (newPos ins1) x2 (newPos ins2)
if check==LT then return x2 else return x1
first_rest <- mapM prep (IMap.toList sources)
let first:rest = first_rest
set which destIndex =<< foldM challenge first rest
let dl = IMap.toList dtrans
mapM_ findTransTo dl
-- findTrans part 2
let performTransTo (destIndex,_sources) = {-# SCC "goNext.findTrans.performTransTo" #-} do
x@((sourceIndex,_instructions),_pos,_orbit') <- which !! destIndex
unless (sourceIndex == (-1)) $
(updateCopy x offset s2 destIndex)
mapM_ performTransTo dl
-- findTrans part 3
let offset' = succ offset in seq offset' $ next s2 s1 did' dt' offset' prev' input'
-- The "newWinnerThenProceed" can find both a new non-empty winner and
-- a new empty winner. A new non-empty winner can cause some of the
-- NFA states that comprise the DFA state to be eliminated, and if the
-- startState is eliminated then it must then be respawned. And
-- imperative flag setting and resetting style is used.
--
-- A non-empty winner from the startState might obscure a potential
-- empty winner (form the startState at the current offset). This
-- winEmpty possibility is also checked for. (unit test pattern ".*")
-- (further test "(.+|.+.)*" on "aa\n")
{-# INLINE processWinner #-}
processWinner :: MScratch s -> IntMap Instructions -> Position -> ST s ()
processWinner s1 w offset = {-# SCC "goNext.newWinnerThenProceed" #-} do
let prep x@(sourceIndex,instructions) = {-# SCC "goNext.newWinnerThenProceed.prep" #-} do
pos <- maybe (err "newWinnerThenProceed,1") return =<< m_pos s1 !! sourceIndex
startPos <- pos !! 0
orbit <- m_orbit s1 !! sourceIndex
let orbit' = maybe orbit (\ f -> f offset orbit) (newOrbits instructions)
return (startPos,(x,pos,orbit'))
challenge x1@((_si1,ins1),_p1,_o1) x2@((_si2,ins2),_p2,_o2) = {-# SCC "goNext.newWinnerThenProceed.challenge" #-} do
check <- comp offset x1 (newPos ins1) x2 (newPos ins2)
if check==LT then return x2 else return x1
prep'd <- mapM prep (IMap.toList w)
case map snd prep'd of
[] -> return ()
(first:rest) -> newWinner offset =<< foldM challenge first rest
newWinner :: Position -> ((a, Instructions), STUArray s Tag Position, c) -> ST s ()
newWinner preTag ((_sourceIndex,winInstructions),oldPos,_newOrbit) = {-# SCC "goNext.newWinner" #-} do
newerPos <- newA_ b_tags
copySTU oldPos newerPos
doActions preTag newerPos (newPos winInstructions)
putMQ (WScratch newerPos) winQ
finalizeWinner :: ST s [MatchArray]
finalizeWinner = do
mWinner <- readSTRef (mq_mWin winQ)
case mWinner of
Nothing -> return []
Just winner -> resetMQ winQ >> mapM (tagsToGroupsST aGroups) [winner]
-- goNext then ends with the next statement
next s1In s2In didIn dtIn offsetIn prevIn inputIn
{-# INLINE doActions #-}
doActions :: Position -> STUArray s Tag Position -> [(Tag, Action)] -> ST s ()
doActions preTag pos ins = mapM_ doAction ins where
postTag = succ preTag
doAction (tag,SetPre) = set pos tag preTag
doAction (tag,SetPost) = set pos tag postTag
doAction (tag,SetVal v) = set pos tag v
----
{-# INLINE mkTest #-}
mkTest :: Uncons text => Bool -> WhichTest -> Index -> Char -> text -> Bool
mkTest isMultiline = if isMultiline then test_multiline else test_singleline
----
{- MUTABLE WINNER QUEUE -}
newtype MQ s = MQ { mq_mWin :: STRef s (Maybe (WScratch s)) }
newMQ :: S.ST s (MQ s)
newMQ = do
mWin <- newSTRef Nothing
return (MQ mWin)
resetMQ :: MQ s -> S.ST s ()
resetMQ (MQ {mq_mWin=mWin}) = do
writeSTRef mWin Nothing
putMQ :: WScratch s -> MQ s -> S.ST s ()
putMQ ws (MQ {mq_mWin=mWin}) = do
writeSTRef mWin (Just ws)
{- MUTABLE SCRATCH DATA STRUCTURES -}
data SScratch s = SScratch { _s_1 :: !(MScratch s)
, _s_2 :: !(MScratch s)
, _s_rest :: !( MQ s
, BlankScratch s
, STArray s Index ((Index,Instructions),STUArray s Tag Position,OrbitLog)
)
}
data MScratch s = MScratch { m_pos :: !(STArray s Index (Maybe (STUArray s Tag Position)))
, m_orbit :: !(STArray s Index OrbitLog)
}
newtype BlankScratch s = BlankScratch { _blank_pos :: (STUArray s Tag Position)
}
newtype WScratch s = WScratch { w_pos :: (STUArray s Tag Position)
}
{- DEBUGGING HELPERS -}
{-
indent :: String -> String
indent xs = ' ':' ':xs
showMS :: MScratch s -> Index -> ST s String
showMS s i = do
ma <- m_pos s !! i
mc <- m_orbit s !! i
a <- case ma of
Nothing -> return "No pos"
Just pos -> fmap show (getAssocs pos)
let c = show mc
return $ unlines [ "MScratch, index = "++show i
, indent a
, indent c]
showWS :: WScratch s -> ST s String
showWS (WScratch pos) = do
a <- getAssocs pos
return $ unlines [ "WScratch"
, indent (show a)]
-}
{- CREATING INITIAL MUTABLE SCRATCH DATA STRUCTURES -}
{-# INLINE newA #-}
newA :: (MArray (STUArray s) e (ST s)) => (Tag,Tag) -> e -> S.ST s (STUArray s Tag e)
newA b_tags initial = newArray b_tags initial
{-# INLINE newA_ #-}
newA_ :: (MArray (STUArray s) e (ST s)) => (Tag,Tag) -> S.ST s (STUArray s Tag e)
newA_ b_tags = newArray_ b_tags
newScratch :: (Index,Index) -> (Tag,Tag) -> S.ST s (SScratch s)
newScratch b_index b_tags = do
s1 <- newMScratch b_index
s2 <- newMScratch b_index
winQ <- newMQ
blank <- fmap BlankScratch (newA b_tags (-1))
which <- (newArray b_index ((-1,err "newScratch which 1"),err "newScratch which 2",err "newScratch which 3"))
return (SScratch s1 s2 (winQ,blank,which))
newMScratch :: (Index,Index) -> S.ST s (MScratch s)
newMScratch b_index = do
pos's <- newArray b_index Nothing
orbit's <- newArray b_index Mon.mempty
return (MScratch pos's orbit's)
{- COMPOSE A FUNCTION CLOSURE TO COMPARE TAG VALUES -}
newtype F s = F ([F s] -> C s)
type C s = Position
-> ((Int, Instructions), STUArray s Tag Position, IntMap Orbits)
-> [(Int, Action)]
-> ((Int, Instructions), STUArray s Tag Position, IntMap Orbits)
-> [(Int, Action)]
-> ST s Ordering
{-# INLINE orderOf #-}
orderOf :: Action -> Action -> Ordering
orderOf post1 post2 =
case (post1,post2) of
(SetPre,SetPre) -> EQ
(SetPost,SetPost) -> EQ
(SetPre,SetPost) -> LT
(SetPost,SetPre) -> GT
(SetVal v1,SetVal v2) -> compare v1 v2
_ -> err $ "bestTrans.compareWith.choose sees incomparable "++show (post1,post2)
ditzyComp'3 :: forall s. Array Tag OP -> C s
ditzyComp'3 aTagOP = comp0 where
(F comp1:compsRest) = allcomps 1
comp0 :: C s
comp0 preTag x1@(_state1,pos1,_orbit1') np1 x2@(_state2,pos2,_orbit2') np2 = do
c <- liftM2 compare (pos2!!0) (pos1!!0) -- reversed since Minimize
case c of
EQ -> comp1 compsRest preTag x1 np1 x2 np2
answer -> return answer
allcomps :: Tag -> [F s]
allcomps tag | tag > top = [F (\ _ _ _ _ _ _ -> return EQ)]
| otherwise =
case aTagOP ! tag of
Orbit -> F (challenge_Orb tag) : allcomps (succ tag)
Maximize -> F (challenge_Max tag) : allcomps (succ tag)
Ignore -> F (challenge_Ignore tag) : allcomps (succ tag)
Minimize -> err "allcomps Minimize"
where top = snd (bounds aTagOP)
challenge_Ignore
:: Int
-> [F s1]
-> Position
-> ((Int, Instructions), STUArray s1 Tag Position, IntMap Orbits)
-> [(Int, Action)]
-> ((Int, Instructions), STUArray s1 Tag Position, IntMap Orbits)
-> [(Int, Action)]
-> ST s1 Ordering
challenge_Ignore !tag (F next:comps) preTag x1 np1 x2 np2 =
case np1 of
((t1,_):rest1) | t1==tag ->
case np2 of
((t2,_):rest2) | t2==tag -> next comps preTag x1 rest1 x2 rest2
_ -> next comps preTag x1 rest1 x2 np2
_ -> do
case np2 of
((t2,_):rest2) | t2==tag -> next comps preTag x1 np1 x2 rest2
_ -> next comps preTag x1 np1 x2 np2
challenge_Ignore _ [] _ _ _ _ _ = err "impossible 2347867"
challenge_Max
:: Int
-> [F s1]
-> Position
-> ((Int, Instructions), STUArray s1 Tag Position, IntMap Orbits)
-> [(Int, Action)]
-> ((Int, Instructions), STUArray s1 Tag Position, IntMap Orbits)
-> [(Int, Action)]
-> ST s1 Ordering
challenge_Max !tag (F next:comps) preTag x1@(_state1,pos1,_orbit1') np1 x2@(_state2,pos2,_orbit2') np2 =
case np1 of
((t1,b1):rest1) | t1==tag ->
case np2 of
((t2,b2):rest2) | t2==tag ->
if b1==b2 then next comps preTag x1 rest1 x2 rest2
else return (orderOf b1 b2)
_ -> do
p2 <- pos2 !! tag
let p1 = case b1 of SetPre -> preTag
SetPost -> succ preTag
SetVal v -> v
if p1==p2 then next comps preTag x1 rest1 x2 np2
else return (compare p1 p2)
_ -> do
p1 <- pos1 !! tag
case np2 of
((t2,b2):rest2) | t2==tag -> do
let p2 = case b2 of SetPre -> preTag
SetPost -> succ preTag
SetVal v -> v
if p1==p2 then next comps preTag x1 np1 x2 rest2
else return (compare p1 p2)
_ -> do
p2 <- pos2 !! tag
if p1==p2 then next comps preTag x1 np1 x2 np2
else return (compare p1 p2)
challenge_Max _ [] _ _ _ _ _ = err "impossible 9384324"
challenge_Orb
:: Int
-> [F s1]
-> Position
-> ((Int, Instructions), STUArray s1 Tag Position, IntMap Orbits)
-> [(Int, Action)]
-> ((Int, Instructions), STUArray s1 Tag Position, IntMap Orbits)
-> [(Int, Action)]
-> ST s1 Ordering
challenge_Orb !tag (F next:comps) preTag x1@(_state1,_pos1,orbit1') np1 x2@(_state2,_pos2,orbit2') np2 =
let s1 = IMap.lookup tag orbit1'
s2 = IMap.lookup tag orbit2'
in case (s1,s2) of
(Nothing,Nothing) -> next comps preTag x1 np1 x2 np2
(Just o1,Just o2) | inOrbit o1 == inOrbit o2 ->
case compare (ordinal o1) (ordinal o2) `mappend`
comparePos (viewl (getOrbits o1)) (viewl (getOrbits o2)) of
EQ -> next comps preTag x1 np1 x2 np2
answer -> return answer
_ -> err $ unlines [ "challenge_Orb is too stupid to handle mismatched orbit data :"
, show(tag,preTag,np1,np2)
, show s1
, show s2
]
challenge_Orb _ [] _ _ _ _ _ = err "impossible 0298347"
comparePos :: (ViewL Position) -> (ViewL Position) -> Ordering
comparePos EmptyL EmptyL = EQ
comparePos EmptyL _ = GT
comparePos _ EmptyL = LT
comparePos (p1 :< ps1) (p2 :< ps2) =
compare p1 p2 `mappend` comparePos (viewl ps1) (viewl ps2)
{- CONVERT WINNERS TO MATCHARRAY -}
tagsToGroupsST :: forall s. Array GroupIndex [GroupInfo] -> WScratch s -> S.ST s MatchArray
tagsToGroupsST aGroups (WScratch {w_pos=pos})= do
let b_max = snd (bounds (aGroups))
ma <- newArray (0,b_max) (-1,0) :: ST s (STArray s Int (MatchOffset,MatchLength))
startPos0 <- pos !! 0
stopPos0 <- pos !! 1
set ma 0 (startPos0,stopPos0-startPos0)
let act _this_index [] = return ()
act this_index ((GroupInfo _ parent start stop flagtag):gs) = do
flagVal <- pos !! flagtag
if (-1) == flagVal then act this_index gs
else do
startPos <- pos !! start
stopPos <- pos !! stop
(startParent,lengthParent) <- ma !! parent
let ok = (0 <= startParent &&
0 <= lengthParent &&
startParent <= startPos &&
stopPos <= startPos + lengthParent)
if not ok then act this_index gs
else set ma this_index (startPos,stopPos-startPos)
forM_ (range (1,b_max)) $ (\i -> act i (aGroups!i))
unsafeFreeze ma
{- MUTABLE TAGGED TRANSITION (returning Tag-0 value) -}
{-# INLINE spawnAt #-}
-- Reset the entry at "Index", or allocate such an entry.
-- set tag 0 to the "Position"
spawnAt :: (Tag,Tag) -> BlankScratch s -> Index -> MScratch s -> Position -> S.ST s ()
spawnAt b_tags (BlankScratch blankPos) i s1 thisPos = do
oldPos <- m_pos s1 !! i
pos <- case oldPos of
Nothing -> do
pos' <- newA_ b_tags
set (m_pos s1) i (Just pos')
return pos'
Just pos -> return pos
copySTU blankPos pos
set (m_orbit s1) i $! mempty
set pos 0 thisPos
{-# INLINE updateCopy #-}
updateCopy :: ((Index, Instructions), STUArray s Tag Position, OrbitLog)
-> Index
-> MScratch s
-> Int
-> ST s ()
updateCopy ((_i1,instructions),oldPos,newOrbit) preTag s2 i2 = do
b_tags <- getBounds oldPos
newerPos <- maybe (do
a <- newA_ b_tags
set (m_pos s2) i2 (Just a)
return a) return =<< m_pos s2 !! i2
copySTU oldPos newerPos
doActions preTag newerPos (newPos instructions)
set (m_orbit s2) i2 $! newOrbit
{- USING memcpy TO COPY STUARRAY DATA -}
-- #ifdef __GLASGOW_HASKELL__
foreign import ccall unsafe "memcpy"
memcpyIO :: MutableByteArray# RealWorld -> MutableByteArray# RealWorld -> Int# -> IO (Ptr a)
memcpyST :: MutableByteArray# s -> MutableByteArray# s -> Int# -> State# s -> (# State# s, Ptr a #)
memcpyST = unsafeCoerce# memcpyIO
{-
Prelude Data.Array.Base> :i STUArray
data STUArray s i e
= STUArray !i !i !Int (GHC.Prim.MutableByteArray# s)
-- Defined in Data.Array.Base
-}
-- This has been updated for ghc 6.8.3 and still works with ghc 6.10.1
{-# INLINE copySTU #-}
copySTU :: (Show i,Ix i,MArray (STUArray s) e (S.ST s)) => STUArray s i e -> STUArray s i e -> S.ST s () -- (STUArray s i e)
copySTU _source@(STUArray _ _ _ msource) _destination@(STUArray _ _ _ mdest) =
-- do b1 <- getBounds s1
-- b2 <- getBounds s2
-- when (b1/=b2) (error ("\n\nWTF copySTU: "++show (b1,b2)))
ST $ \s1# ->
case sizeofMutableByteArray# msource of { n# ->
case memcpyST mdest msource n# s1# of { (# s2#, _ #) ->
(# s2#, () #) }}
{-
-- #else /* !__GLASGOW_HASKELL__ */
copySTU :: (MArray (STUArray s) e (S.ST s))=> STUArray s Tag e -> STUArray s Tag e -> S.ST s (STUArray s i e)
copySTU source destination = do
b@(start,stop) <- getBounds source
b' <- getBounds destination
-- traceCopy ("> copySTArray "++show b) $ do
when (b/=b') (fail $ "Text.Regex.TDFA.RunMutState copySTUArray bounds mismatch"++show (b,b'))
forM_ (range b) $ \index ->
set destination index =<< source !! index
return destination
-- #endif /* !__GLASGOW_HASKELL__ */
-}
|