1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
|
-- XXX design uncertainty: should preResets be inserted into nullView?
-- if not, why not? ADDED
-- XXX design uncertainty: what does act -> actNullable ->
-- actNullableTagless not use nullQ and same for inStar, etc?
-- TODO : try rewriting whole qToNFA in terms of "act"
-- (That will require re-organizing the continuation data a bit)
-- | "Text.Regex.TDFA.TNFA" converts the CorePattern Q\/P data (and its
-- Pattern leafs) to a QNFA tagged non-deterministic finite automata.
--
-- This holds every possible way to follow one state by another, while
-- in the DFA these will be reduced by picking a single best
-- transition for each (source,destination) pair. The transitions are
-- heavily and often redundantly annotated with tasks to perform, and
-- this redundancy is reduced when picking the best transition. So
-- far, keeping all this information has helped fix bugs in both the
-- design and implementation.
--
-- The QNFA for a Pattern with a starTraned Q\/P form with N one
-- character accepting leaves has at most N+1 nodes. These nodes
-- represent the future choices after accepting a leaf. The processing
-- of Or nodes often reduces this number by sharing at the end of the
-- different paths. Turning off capturing while compiling the pattern
-- may (future extension) reduce this further for some patterns by
-- processing Star with optimizations. This compact design also means
-- that tags are assigned not just to be updated before taking a
-- transition (PreUpdate) but also after the transition (PostUpdate).
--
-- Uses recursive do notation.
module Text.Regex.TDFA.TNFA
( patternToNFA
, QNFA(..), QT(..), QTrans, TagUpdate(..)
) where
{- By Chris Kuklewicz, 2007. BSD License, see the LICENSE file. -}
import Control.Monad(when)
import Control.Monad.State(State,runState,execState,get,put,modify)
import Data.Array.IArray(Array,array)
import Data.Char(toLower,toUpper,isAlpha,ord)
import Data.List(foldl')
import Data.IntMap (IntMap)
import qualified Data.IntMap as IMap(toAscList,null,unionWith,singleton,fromList,fromDistinctAscList)
import Data.IntMap.CharMap2(CharMap(..))
import qualified Data.IntMap.CharMap2 as Map(null,singleton,map)
import qualified Data.IntMap.EnumMap2 as EMap(null,keysSet,assocs)
import Data.IntSet.EnumSet2(EnumSet)
import qualified Data.IntSet.EnumSet2 as Set(singleton,toList,insert)
import Data.Maybe(catMaybes,isNothing)
import Data.Monoid as Mon(Monoid(..))
import qualified Data.Set as S (insert, toAscList)
import Text.Regex.TDFA.Common(QT(..),QNFA(..),QTrans,TagTask(..),TagUpdate(..),DoPa(..)
,CompOption(..)
,Tag,TagTasks,TagList,Index,WinTags,GroupIndex,GroupInfo(..)
,common_error,noWin,snd3,mapSnd)
import Text.Regex.TDFA.CorePattern(Q(..),P(..),OP(..),WhichTest,cleanNullView,NullView
,SetTestInfo(..),Wanted(..),TestInfo
,mustAccept,cannotAccept,patternToQ)
import Text.Regex.TDFA.Pattern (Pattern(..), decodePatternSet)
ecart :: String -> a -> a
ecart _ = id
err :: String -> a
err t = common_error "Text.Regex.TDFA.TNFA" t
debug :: (Show a) => a -> s -> s
debug _ s = s
qtwin,qtlose :: QT
-- qtwin is the continuation after matching the whole pattern. It has
-- no further transitions and sets tag #1 to the current position.
qtwin = Simple {qt_win=[(1,PreUpdate TagTask)],qt_trans=mempty,qt_other=mempty}
-- qtlose is the continuation to nothing, used when ^ or $ tests fail.
qtlose = Simple {qt_win=mempty,qt_trans=mempty,qt_other=mempty}
patternToNFA :: CompOption
-> (Pattern,(GroupIndex, DoPa))
-> ((Index,Array Index QNFA)
,Array Tag OP
,Array GroupIndex [GroupInfo])
patternToNFA compOpt pattern =
let (q,tags,groups) = patternToQ compOpt pattern
msg = unlines [ show q ]
in debug msg (qToNFA compOpt q,tags,groups)
-- == -- == -- == -- == -- == -- == -- == -- == -- == -- == -- == -- == -- == -- == -- == -- == -- == -- ==
-- Query function on Q
nullable :: Q -> Bool
nullable = not . null . nullQ
notNullable :: Q -> Bool
notNullable = null . nullQ
-- This asks if the preferred (i.e. first) NullView has no tests.
maybeOnlyEmpty :: Q -> Maybe WinTags
maybeOnlyEmpty (Q {nullQ = ((SetTestInfo sti,tags):_)}) = if EMap.null sti then Just tags else Nothing
maybeOnlyEmpty _ = Nothing
usesQNFA :: Q -> Bool
usesQNFA (Q {wants=WantsBoth}) = True
usesQNFA (Q {wants=WantsQNFA}) = True
usesQNFA _ = False
-- == -- == -- == -- == -- == -- == -- == -- == -- == -- == -- == -- == -- == -- == -- == -- == -- == -- ==
-- Functions related to QT
-- dumb smart constructor used by qToQNFA
-- Possible: Go through the qt and keep only the best tagged transition(s) to each state to make simple NFA?
mkQNFA :: Index -> QT -> QNFA
mkQNFA i qt = debug ("\n>QNFA id="++show i) $
QNFA i (debug ("\ngetting QT for "++show i) qt)
-- This uses the Eq QT instance above
-- ZZZ
mkTesting :: QT -> QT
mkTesting t@(Testing {qt_a=a,qt_b=b}) = if a==b then a else t -- Move to nfsToDFA XXX
mkTesting t = t
nullQT :: QT -> Bool
nullQT (Simple {qt_win=w,qt_trans=t,qt_other=o}) = noWin w && Map.null t && IMap.null o
nullQT _ = False
-- This reconstructs the set of tests checked in processing QT, adding
-- them to the passed set.
listTestInfo :: QT -> EnumSet WhichTest -> EnumSet WhichTest
listTestInfo qt s = execState (helper qt) s
where helper (Simple {}) = return ()
helper (Testing {qt_test = wt, qt_a = a, qt_b = b}) = do
modify (Set.insert wt)
helper a
helper b
-- This is used to view "win" only through NullView, and is used in
-- processing Or.
applyNullViews :: NullView -> QT -> QT
applyNullViews [] win = win
applyNullViews nvs win = foldl' (dominate win) qtlose (reverse $ cleanNullView nvs) where
-- This is used to prefer to view "win" through NullView. Losing is
-- replaced by the plain win. This is employed by Star patterns to
-- express that the first iteration is allowed to match null, but
-- skipping the NullView occurs if the match fails.
preferNullViews :: NullView -> QT -> QT
preferNullViews [] win = win
preferNullViews nvs win = foldl' (dominate win) win (reverse $ cleanNullView nvs) where
{-
dominate is common to applyNullViews and preferNullViews above.
Even I no longer understand it without study.
Oversimplified: The last argument has a new set of tests "sti" that
must be satisfied to then apply the new "tags" and reach the "win" QT.
Failing any of this set of tests leads to the "lose" QT.
Closer: The "win" may already have some other set of tests leading to
various branches, this set is cached in winTests. And the "lose" may
already have some other set of tests leading to various branches. The
combination of "win" and "lose" and "sti" must check the union of
these tests, which is "allTests".
Detail: The merging is done by useTest, where the tests in sti divert
losing to a branch of "lose" and winning to a branch of "win". Tests
not in sti are unchanged (but the losing DoPa index might be added).
-}
dominate :: QT -> QT -> (SetTestInfo,WinTags) -> QT
dominate win lose x@(SetTestInfo sti,tags) = debug ("dominate "++show x) $
let -- The winning states are reached through the SetTag
win' = prependTags' tags win
-- get the SetTestInfo
winTests = listTestInfo win $ mempty
allTests = (listTestInfo lose $ winTests) `mappend` (EMap.keysSet sti)
-- The first and second arguments of useTest are sorted
-- At all times the second argument of useTest is a subset of the first
useTest _ [] w _ = w -- no more dominating tests to fail to choose lose, so just choose win
useTest (aTest:tests) allD@((dTest,dopas):ds) w l =
let (wA,wB,wD) = branches w
(lA,lB,lD) = branches l
branches qt@(Testing {}) | aTest==qt_test qt = (qt_a qt,qt_b qt,qt_dopas qt)
branches qt = (qt,qt,mempty)
in if aTest == dTest
then Testing {qt_test = aTest
,qt_dopas = (dopas `mappend` wD) `mappend` lD
,qt_a = useTest tests ds wA lA
,qt_b = lB}
else Testing {qt_test = aTest
,qt_dopas = wD `mappend` lD
,qt_a = useTest tests allD wA lA
,qt_b = useTest tests allD wB lB}
useTest [] _ _ _ = err "This case in dominate.useText cannot happen: second argument would have to have been null and that is checked before this case"
in useTest (Set.toList allTests) (EMap.assocs sti) win' lose
-- 'applyTest' is only used by addTest
-- 2009: maybe need to keep track of whether a change is actually made
-- (beyond DoPa tracking) to the QT.
applyTest :: TestInfo -> QT -> QT
applyTest (wt,dopa) qt | nullQT qt = qt
| otherwise = applyTest' qt where
applyTest' :: QT -> QT
applyTest' q@(Simple {}) =
mkTesting $ Testing {qt_test = wt
,qt_dopas = Set.singleton dopa
,qt_a = q
,qt_b = qtlose}
applyTest' q@(Testing {qt_test=wt'}) =
case compare wt wt' of
LT -> Testing {qt_test = wt
,qt_dopas = Set.singleton dopa
,qt_a = q
,qt_b = qtlose}
EQ -> q {qt_dopas = Set.insert dopa (qt_dopas q)
,qt_b = qtlose}
GT -> q {qt_a = applyTest' (qt_a q)
,qt_b = applyTest' (qt_b q)}
-- Three ways to merge a pair of QT's varying how winning transitions
-- are handled.
--
-- mergeQT_2nd is used by the NonEmpty case and always discards the
-- first argument's win and uses the second argument's win.
--
-- mergeAltQT is used by the Or cases and is biased to the first
-- argument's winning transition, if present.
--
-- mergeQT is used by Star and mergeE and combines the winning
-- transitions (concatenating the instructions).
mergeQT_2nd,mergeAltQT,mergeQT :: QT -> QT -> QT
mergeQT_2nd q1 q2 | nullQT q1 = q2
| otherwise = mergeQTWith (\_ w2 -> w2) q1 q2
mergeAltQT q1 q2 | nullQT q1 = q2 -- prefer winning with w1 then with w2
| otherwise = mergeQTWith (\w1 w2 -> if noWin w1 then w2 else w1) q1 q2
mergeQT q1 q2 | nullQT q1 = q2 -- union wins
| nullQT q2 = q1 -- union wins
| otherwise = mergeQTWith mappend q1 q2 -- no preference, win with combined SetTag XXX is the wrong thing! "(.?)*"
-- This takes a function which implements a policy on merging
-- winning transitions and then merges all the transitions. It opens
-- the CharMap newtype for more efficient operation, then rewraps it.
mergeQTWith :: (WinTags -> WinTags -> WinTags) -> QT -> QT -> QT
mergeQTWith mergeWins = merge where
merge :: QT -> QT -> QT
merge (Simple w1 t1 o1) (Simple w2 t2 o2) =
let w' = mergeWins w1 w2
t' = fuseQTrans t1 o1 t2 o2
o' = mergeQTrans o1 o2
in Simple w' t' o'
merge t1@(Testing _ _ a1 b1) s2@(Simple {}) = mkTesting $
t1 {qt_a=(merge a1 s2), qt_b=(merge b1 s2)}
merge s1@(Simple {}) t2@(Testing _ _ a2 b2) = mkTesting $
t2 {qt_a=(merge s1 a2), qt_b=(merge s1 b2)}
merge t1@(Testing wt1 ds1 a1 b1) t2@(Testing wt2 ds2 a2 b2) = mkTesting $
case compare wt1 wt2 of
LT -> t1 {qt_a=(merge a1 t2), qt_b=(merge b1 t2)}
EQ -> Testing {qt_test = wt1 -- same as wt2
,qt_dopas = mappend ds1 ds2
,qt_a = merge a1 a2
,qt_b = merge b1 b2}
GT -> t2 {qt_a=(merge t1 a2), qt_b=(merge t1 b2)}
fuseQTrans :: (CharMap QTrans) -> QTrans
-> (CharMap QTrans) -> QTrans
-> CharMap QTrans
fuseQTrans (CharMap t1) o1 (CharMap t2) o2 = CharMap (IMap.fromDistinctAscList (fuse l1 l2)) where
l1 = IMap.toAscList t1
l2 = IMap.toAscList t2
fuse [] y = mapSnd (mergeQTrans o1) y
fuse x [] = mapSnd (mergeQTrans o2) x
fuse x@((xc,xa):xs) y@((yc,ya):ys) =
case compare xc yc of
LT -> (xc,mergeQTrans xa o2) : fuse xs y
EQ -> (xc,mergeQTrans xa ya) : fuse xs ys
GT -> (yc,mergeQTrans o1 ya) : fuse x ys
mergeQTrans :: QTrans -> QTrans -> QTrans
mergeQTrans = IMap.unionWith mappend
-- Note: There are no append* operations. There are only these
-- prepend* operations because things are only prepended to the future
-- continuation. And the ordering is significant.
-- This is only used in inStar/nullable
prependPreTag :: Maybe Tag -> QT -> QT
prependPreTag Nothing qt = qt
prependPreTag (Just tag) qt = prependTags' [(tag,PreUpdate TagTask)] qt
prependGroupResets :: [Tag] -> QT -> QT
prependGroupResets [] qt = qt
prependGroupResets tags qt = prependTags' [(tag,PreUpdate ResetGroupStopTask)|tag<-tags] qt
prependTags' :: TagList -> QT -> QT
prependTags' [] qt = qt
prependTags' tcs' qt@(Testing {}) = qt { qt_a = prependTags' tcs' (qt_a qt)
, qt_b = prependTags' tcs' (qt_b qt) }
prependTags' tcs' (Simple {qt_win=w,qt_trans=t,qt_other=o}) =
Simple { qt_win = if noWin w then w else tcs' `mappend` w
, qt_trans = Map.map prependQTrans t
, qt_other = prependQTrans o }
where prependQTrans = fmap (map (\(d,tcs) -> (d,tcs' `mappend` tcs)))
-- == -- == -- == -- == -- == -- == -- == -- == -- == -- == -- == -- == -- == -- == -- == -- == -- == -- ==
-- define type S which is a State monad, this allows the creation of the uniq QNFA ids and storing the QNFA
-- in an ascending order difference list for later placement in an array.
-- Type of State monad used inside qToNFA
type S = State (Index -- Next available QNFA index
,[(Index,QNFA)]->[(Index,QNFA)]) -- DList of previous QNFAs
-- Type of continuation of the NFA, not much more complicated
type E = (TagTasks -- Things to do before the Either QNFA QT
-- with OneChar these become PostUpdate otherwise they become PreUpdate
,Either QNFA QT) -- The future, packaged in the best way
-- See documentation below before the 'act' function. This is for use inside a Star pattern.
type ActCont = ( E -- The eLoop is the dangerous recursive reference to continuation
-- future that loops while accepting zero more characters
, Maybe E -- This holds the safe non-zero-character accepting continuation
, Maybe (TagTasks,QNFA)) -- optimized merger of the above, used only inside act, to avoid orphan QNFA id values
-- newQNFA is the only operation that actually uses the monad get and put operations
newQNFA :: String -> QT -> S QNFA
newQNFA s qt = do
(thisI,oldQs) <- get
let futureI = succ thisI in seq futureI $ debug (">newQNFA< "++s++" : "++show thisI) $ do
let qnfa = mkQNFA thisI qt -- (strictQT qt) -- making strictQNFA kills test (1,11) ZZZ
put $! (futureI, oldQs . ((thisI,qnfa):))
return qnfa
-- == -- == -- == -- == -- == -- == -- == -- == -- == -- == -- == -- == -- == -- == -- == -- == -- == -- ==
-- E related functions
fromQNFA :: QNFA -> E
fromQNFA qnfa = (mempty,Left qnfa)
fromQT :: QT -> E
fromQT qt = (mempty,Right qt)
-- Promises the output will match (_,Left _), used by Or cases when any branch wants a QNFA continuation
asQNFA :: String -> E -> S E
asQNFA _ x@(_,Left _) = return x
asQNFA s (tags,Right qt) = do qnfa <- newQNFA s qt -- YYY Policy choice: leave the tags
return (tags, Left qnfa)
-- Convert continuation E into a QNFA, only done at "top level" by qToNFA to get unique start state
getQNFA :: String -> E -> S QNFA
getQNFA _ ([],Left qnfa) = return qnfa
getQNFA s (tags,Left qnfa) = newQNFA s (prependTags' (promoteTasks PreUpdate tags) (q_qt qnfa))
getQNFA s (tags,Right qt) = newQNFA s (prependTags' (promoteTasks PreUpdate tags) qt)
-- Extract the QT from the E
getQT :: E -> QT
getQT (tags,cont) = prependTags' (promoteTasks PreUpdate tags) (either q_qt id cont)
-- 2009: This looks realllly dodgy, since it can convert a QNFA/Testing to a QT/Testing
-- without actually achieving anything except adding a DoPa to the Testing. A diagnostic
-- series of runs might be needed to decide if this ever creates orphan id numbers.
-- Then applyTest might need to keep track of whether it actually changes anything.
addTest :: TestInfo -> E -> E
addTest ti (tags,cont) = (tags, Right . applyTest ti . either q_qt id $ cont)
-- This is used only with PreUpdate and PostUpdate as the first argument.
promoteTasks :: (TagTask->TagUpdate) -> TagTasks -> TagList
promoteTasks promote tags = map (\(tag,task) -> (tag,promote task)) tags
-- only used in addWinTags
demoteTags :: TagList -> TagTasks
demoteTags = map helper
where helper (tag,PreUpdate tt) = (tag,tt)
helper (tag,PostUpdate tt) = (tag,tt)
-- This is polymorphic so addWinTags can be cute below
{-# INLINE addWinTags #-}
addWinTags :: WinTags -> (TagTasks,a) -> (TagTasks,a)
addWinTags wtags (tags,cont) = (demoteTags wtags `mappend` tags
,cont)
{-# INLINE addTag' #-}
-- This is polymorphic so addTagAC can be cute below
addTag' :: Tag -> (TagTasks,a) -> (TagTasks,a)
addTag' tag (tags,cont) = ((tag,TagTask):tags
,cont)
-- a Maybe version of addTag' above, specializing 'a' to Either QNFA QT
addTag :: Maybe Tag -> E -> E
addTag Nothing e = e
addTag (Just tag) e = addTag' tag e
{-# INLINE addGroupResets #-}
-- This is polymorphic so addGroupResetsAC can be cute below
addGroupResets :: (Show a) => [Tag] -> (TagTasks,a) -> (TagTasks,a)
addGroupResets [] x = x
addGroupResets tags (tags',cont) = (foldr (:) tags' . map (\tag -> (tag,ResetGroupStopTask)) $ tags
,cont)
addGroupSets :: (Show a) => [Tag] -> (TagTasks,a) -> (TagTasks,a)
addGroupSets [] x = x
addGroupSets tags (tags',cont) = (foldr (:) tags' . map (\tag -> (tag,SetGroupStopTask)) $ tags
,cont)
-- Consume an ActCont. Uses the mergeQT form to combine non-accepting
-- and accepting view of the continuation.
getE :: ActCont -> E
getE (_,_,Just (tags,qnfa)) = (tags, Left qnfa) -- consume optimized mQNFA value returned by Star
getE (eLoop,Just accepting,_) = fromQT (mergeQT (getQT eLoop) (getQT accepting))
getE (eLoop,Nothing,_) = eLoop
-- 2009: See comment for addTest. Here is a case where the third component might be a (Just qnfa) and it
-- is being lost even though the added test might be redundant.
addTestAC :: TestInfo -> ActCont -> ActCont
addTestAC ti (e,mE,_) = (addTest ti e
,fmap (addTest ti) mE
,Nothing)
-- These are AC versions of the add functions on E
addTagAC :: Maybe Tag -> ActCont -> ActCont
addTagAC Nothing ac = ac
addTagAC (Just tag) (e,mE,mQNFA) = (addTag' tag e
,fmap (addTag' tag) mE
,fmap (addTag' tag) mQNFA)
addGroupResetsAC :: [Tag] -> ActCont -> ActCont
addGroupResetsAC [] ac = ac
addGroupResetsAC tags (e,mE,mQNFA) = (addGroupResets tags e
,fmap (addGroupResets tags) mE
,fmap (addGroupResets tags) mQNFA)
addGroupSetsAC :: [Tag] -> ActCont -> ActCont
addGroupSetsAC [] ac = ac
addGroupSetsAC tags (e,mE,mQNFA) = (addGroupSets tags e
,fmap (addGroupSets tags) mE
,fmap (addGroupSets tags) mQNFA)
addWinTagsAC :: WinTags -> ActCont -> ActCont
addWinTagsAC wtags (e,mE,mQNFA) = (addWinTags wtags e
,fmap (addWinTags wtags) mE
,fmap (addWinTags wtags) mQNFA)
-- == -- == -- == -- == -- == -- == -- == -- == -- == -- == -- == -- == -- == -- == -- == -- == -- == -- ==
-- Initial preTag of 0th tag is implied. No other general pre-tags would be expected.
-- The qtwin contains the preTag of the 1st tag and is only set when a match is completed.
-- The fst Index is the index of the unique starting QNFA state.
-- The snd (Array Index QNFA) is all the QNFA states.
--
-- In the cases below, Empty is handled much like a Test with no TestInfo.
qToNFA :: CompOption -> Q -> (Index,Array Index QNFA)
qToNFA compOpt qTop = (q_id startingQNFA
,array (0,pred lastIndex) (table [])) where
-- Result startingQNFA is the top level's index
-- State pair: fst 0 is the next state number (not yet used) going in, and lastIndex coming out (succ of last used)
-- snd id is the difference list of states going in, and the finished list coming out
(startingQNFA,(lastIndex,table)) =
runState (getTrans qTop (fromQT $ qtwin) >>= getQNFA "top level") startState
startState = (0,id)
getTrans,getTransTagless :: Q -> E -> S E
getTrans qIn@(Q {preReset=resets,postSet=sets,preTag=pre,postTag=post,unQ=pIn}) e = debug (">< getTrans "++show qIn++" <>") $
case pIn of
-- The case below is the ultimate consumer of every single OneChar in the input and the only caller of
-- newTrans/acceptTrans which is the sole source of QT/Simple nodes.
OneChar pat -> newTrans "getTrans/OneChar" resets pre pat . addTag post . addGroupSets sets $ e
Empty -> return . addGroupResets resets . addTag pre . addTag post . addGroupSets sets $ e
Test ti -> return . addGroupResets resets . addTag pre . addTest ti . addTag post . addGroupSets sets $ e
_ -> return . addGroupResets resets . addTag pre =<< getTransTagless qIn (addTag post . addGroupSets sets $ e)
getTransTagless qIn e = debug (">< getTransTagless "++show qIn++" <>") $
case unQ qIn of
Seq q1 q2 -> getTrans q1 =<< getTrans q2 e
Or [] -> return e
Or [q] -> getTrans q e
Or qs -> do
eqts <- if usesQNFA qIn
then do
eQNFA <- asQNFA "getTransTagless/Or/usesQNFA" e
sequence [ getTrans q eQNFA | q <- qs ]
else sequence [ getTrans q e | q <- qs ]
let qts = map getQT eqts
return (fromQT (foldr1 mergeAltQT qts))
Star mOrbit resetTheseOrbits mayFirstBeNull q ->
-- mOrbit of Just implies varies q and childGroups q
let (e',clear) = -- debug ("\n>"++show e++"\n"++show q++"\n<") $
if notNullable q then (e,True) -- subpattern cannot be null
else if null resetTheseOrbits && isNothing mOrbit
then case maybeOnlyEmpty q of
Just [] -> (e,True) -- True because null of subpattern is same as skipping subpattern
Just tagList -> (addWinTags tagList e,False) -- null of subpattern NOT same as skipping
_ -> (fromQT . preferNullViews (nullQ q) . getQT $ e,False) -- is NOT same as skipping
else (fromQT . resetOrbitsQT resetTheseOrbits . enterOrbitQT mOrbit -- resetOrbitsQT and enterOrbitQT commute
. preferNullViews (nullQ q) . getQT . leaveOrbit mOrbit $ e,False) -- perform resets when accepting 0 characters
in if cannotAccept q then return e' else mdo
mqt <- inStar q this
(this,ans) <- case mqt of
Nothing -> err ("Weird pattern in getTransTagless/Star: " ++ show (qTop,qIn))
Just qt -> do
let qt' = resetOrbitsQT resetTheseOrbits . enterOrbitQT mOrbit $ qt -- resetOrbitsQT and enterOrbitQT commute
thisQT = mergeQT qt' . getQT . leaveOrbit mOrbit $ e -- capture of subpattern or leave via next pattern (avoid null of subpattern on way out)
ansE = fromQT . mergeQT qt' . getQT $ e' -- capture of subpattern or leave via null of subpattern
thisE <- if usesQNFA q
then return . fromQNFA =<< newQNFA "getTransTagless/Star" thisQT
else return . fromQT $ thisQT
return (thisE,ansE)
return (if mayFirstBeNull then (if clear then this -- optimization to possibly preserve QNFA
else ans)
else this)
{- NonEmpty is like actNullable (Or [Empty,q]) without the extra tag to prefer the first Empty branch -}
NonEmpty q -> ecart ("\n> getTransTagless/NonEmpty"++show qIn) $ do
-- Assertion to check than Pattern.starTrans did its job right:
when (cannotAccept q) (err $ "getTransTagless/NonEmpty : provided with a *cannotAccept* pattern: "++show (qTop,qIn))
when (mustAccept q) (err $ "getTransTagless/NonEmpty : provided with a *mustAccept* pattern: "++show (qTop,qIn))
let e' = case maybeOnlyEmpty qIn of
Just [] -> e
Just _wtags -> e -- addWinTags wtags e XXX was duplicating tags
Nothing -> err $ "getTransTagless/NonEmpty is supposed to have an emptyNull nullView : "++show qIn
mqt <- inStar q e
return $ case mqt of
Nothing -> err ("Weird pattern in getTransTagless/NonEmpty: " ++ show (qTop,qIn))
Just qt -> fromQT . mergeQT_2nd qt . getQT $ e' -- ...and then this sets qt_win to exactly that of e'
_ -> err ("This case in Text.Regex.TNFA.TNFA.getTransTagless cannot happen" ++ show (qTop,qIn))
inStar,inStarNullableTagless :: Q -> E -> S (Maybe QT)
inStar qIn@(Q {preReset=resets,postSet=sets,preTag=pre,postTag=post}) eLoop | notNullable qIn =
debug (">< inStar/1 "++show qIn++" <>") $
return . Just . getQT =<< getTrans qIn eLoop
| otherwise =
debug (">< inStar/2 "++show qIn++" <>") $
return . fmap (prependGroupResets resets . prependPreTag pre) =<< inStarNullableTagless qIn (addTag post . addGroupSets sets $ eLoop)
inStarNullableTagless qIn eLoop = debug (">< inStarNullableTagless "++show qIn++" <>") $ do
case unQ qIn of
Empty -> return Nothing -- with Or this discards () branch in "(^|foo|())*"
Or [] -> return Nothing
Or [q] -> inStar q eLoop
Or qs -> do
mqts <- if usesQNFA qIn
then do eQNFA <- asQNFA "inStarNullableTagless/Or/usesQNFA" eLoop
sequence [ inStar q eQNFA | q <- qs ]
else sequence [inStar q eLoop | q <- qs ]
let qts = catMaybes mqts
mqt = if null qts then Nothing else Just (foldr1 mergeAltQT qts)
return mqt
-- Calls to act are inlined by hand to actNullable. This returns only cases where q1 or q2 or both
-- accepted characters. The zero-character case is handled by the tag wrapping by inStar.
-- 2009: Does this look dodgy and repetitios of tags? Seq by policy has no preTag or postTag.
-- though it can have prependGroupResets, but those are not repeated in children so it is okay.
Seq q1 q2 -> do (_,meAcceptingOut,_) <- actNullable q1 =<< actNullable q2 (eLoop,Nothing,Nothing)
return (fmap getQT meAcceptingOut)
-- Calls to act are inlined by hand and are we losing the tags?
Star {} -> do (_,meAcceptingOut,_) <- actNullableTagless qIn (eLoop,Nothing,Nothing)
return (fmap getQT meAcceptingOut)
NonEmpty {} -> ecart ("\n> inStarNullableTagless/NonEmpty"++show qIn) $
do (_,meAcceptingOut,_) <- actNullableTagless qIn (eLoop,Nothing,Nothing)
return (fmap getQT meAcceptingOut)
Test {} -> return Nothing -- with Or this discards ^ branch in "(^|foo|())*"
OneChar {} -> err ("OneChar cannot have nullable True")
{- act* functions
These have a very complicated state that they receive and return as
"the continuation".
(E, Maybe E,Maybe (SetTag,QNFA))
The first E is the source of the danger that must be avoided. It
starts out a reference to the QNFA/QT state that will be created by
the most recent parent Star node. Thus it is a recursive reference
from the MonadFix machinery. In particular, this value cannot be
returned to the parent Star to be included in itself or we get a "let
x = y; y=x" style infinite loop.
As act* progresses the first E is actually modified to be the parent
QNFA/QT as "seen" when all the elements to the right have accepted 0
characters. Thus it acquires tags and tests+tags (the NullView data
is used for this purpose).
The second item in the 3-tuple is a Maybe E. This will be used as the
source of the QT for this contents of the Star QNFA/QT. It will be
merged with the Star's own continuation data. It starts out Nothing
and stays that way as long as there are no accepting transitions in
the Star's pattern. This is value (via getQT) returned by inStar.
The third item is a special optimization I added to remove a source
of orphaned QNFAs. A Star within Act will often have to create a
QNFA node. This cannot go into the second Maybe E item as Just
(SetTag,Left QNFA) because this QNFA can have pulled values from the
recursive parent Star's QNFA/QT in the first E value. Thus pulling
with getQT from the QNFA and using that as the Maybe E would likely
cause an infinite loop. This extra QNFA is stored in the thd3
location for use by getE. To improve it further it can accumulate
Tag information after being formed.
When a non nullable Q is handled by act it checks to see if the
third value is there, in which case it uses that QNFA as the total
continuation (subsumed in getE). Otherwise it merges the first E
with any (Just E) in the second value to form the continuation.
-}
act :: Q -> ActCont -> S (Maybe E)
act qIn c | nullable qIn = fmap snd3 $ actNullable qIn c
| otherwise = debug (">< act "++show qIn++" <>") $ do
mqt <- return . Just =<< getTrans qIn ( getE $ c )
return mqt -- or "return (fromQT qtlose,mqt,Nothing)"
actNullable,actNullableTagless :: Q -> ActCont -> S ActCont
actNullable qIn@(Q {preReset=resets,postSet=sets,preTag=pre,postTag=post,unQ=pIn}) ac =
debug (">< actNullable "++show qIn++" <>") $ do
case pIn of
Empty -> return . addGroupResetsAC resets . addTagAC pre . addTagAC post . addGroupSetsAC sets $ ac
Test ti -> return . addGroupResetsAC resets . addTagAC pre . addTestAC ti . addTagAC post . addGroupSetsAC sets $ ac
OneChar {} -> err ("OneChar cannot have nullable True ")
_ -> return . addGroupResetsAC resets . addTagAC pre =<< actNullableTagless qIn ( addTagAC post . addGroupSetsAC sets $ ac )
actNullableTagless qIn ac@(eLoop,mAccepting,mQNFA) = debug (">< actNullableTagless "++show (qIn)++" <>") $ do
case unQ qIn of
Seq q1 q2 -> actNullable q1 =<< actNullable q2 ac -- We know q1 and q2 are nullable
Or [] -> return ac
Or [q] -> actNullableTagless q ac
Or qs -> do
cqts <- do
if all nullable qs
then sequence [fmap snd3 $ actNullable q ac | q <- qs]
else do
e' <- asQNFA "qToNFA/actNullableTagless/Or" . getE $ ac
let act' :: Q -> S (Maybe E)
act' q = return . Just =<< getTrans q e'
sequence [ if nullable q then fmap snd3 $ actNullable q ac else act' q | q <- qs ]
let qts = map getQT (catMaybes cqts)
eLoop' = case maybeOnlyEmpty qIn of
Just wtags -> addWinTags wtags eLoop -- nullable without tests; avoid getQT
Nothing -> fromQT $ applyNullViews (nullQ qIn) (getQT eLoop) -- suspect this of duplicating some tags with nullQ qIn
mAccepting' = if null qts
then fmap (fromQT . applyNullViews (nullQ qIn) . getQT) mAccepting -- suspect this of duplicating some tags with nullQ qIn
else Just (fromQT $ foldr1 mergeAltQT qts)
mQNFA' = if null qts
then case maybeOnlyEmpty qIn of
Just wtags -> fmap (addWinTags wtags) mQNFA
Nothing -> Nothing
else Nothing
return (eLoop',mAccepting',mQNFA')
Star mOrbit resetTheseOrbits mayFirstBeNull q -> do
let (ac0@(_,mAccepting0,_),clear) =
if notNullable q
then (ac,True)
else if null resetTheseOrbits && isNothing mOrbit
then case maybeOnlyEmpty q of
Just [] -> (ac,True)
Just wtags -> (addWinTagsAC wtags ac,False)
_ -> let nQ = fromQT . preferNullViews (nullQ q) . getQT
in ((nQ eLoop,fmap nQ mAccepting,Nothing),False)
else let nQ = fromQT . resetOrbitsQT resetTheseOrbits . enterOrbitQT mOrbit
. preferNullViews (nullQ q) . getQT . leaveOrbit mOrbit
in ((nQ eLoop,fmap nQ mAccepting,Nothing),False)
if cannotAccept q then return ac0 else mdo
mChildAccepting <- act q (this,Nothing,Nothing)
(thisAC@(this,_,_),ansAC) <-
case mChildAccepting of
Nothing -> err $ "Weird pattern in getTransTagless/Star: " ++ show (qTop,qIn)
Just childAccepting -> do
let childQT = resetOrbitsQT resetTheseOrbits . enterOrbitQT mOrbit . getQT $ childAccepting
thisQT = mergeQT childQT . getQT . leaveOrbit mOrbit . getE $ ac
thisAccepting =
case mAccepting of
Just futureAccepting -> Just . fromQT . mergeQT childQT . getQT $ futureAccepting
Nothing -> Just . fromQT $ childQT
thisAll <- if usesQNFA q
then do thisQNFA <- newQNFA "actNullableTagless/Star" thisQT
return (fromQNFA thisQNFA, thisAccepting, Just (mempty,thisQNFA))
else return (fromQT thisQT, thisAccepting, Nothing)
let skipQT = mergeQT childQT . getQT . getE $ ac0 -- for first iteration the continuation uses NullView
skipAccepting =
case mAccepting0 of
Just futureAccepting0 -> Just . fromQT . mergeQT childQT . getQT $ futureAccepting0
Nothing -> Just . fromQT $ childQT
ansAll = (fromQT skipQT, skipAccepting, Nothing)
return (thisAll,ansAll)
return (if mayFirstBeNull then (if clear then thisAC else ansAC)
else thisAC)
NonEmpty q -> ecart ("\n> actNullableTagless/NonEmpty"++show qIn) $ do
-- We *know* that q is nullable from Pattern and CorePattern checks, but assert here anyway
when (mustAccept q) (err $ "actNullableTagless/NonEmpty : provided with a *mustAccept* pattern: "++show (qTop,qIn))
when (cannotAccept q) (err $ "actNullableTagless/NonEmpty : provided with a *cannotAccept* pattern: "++show (qTop,qIn))
{- This is like actNullable (Or [Empty,q]) without the extra tag to prefer the first Empty branch -}
let (clearE,_,_) = case maybeOnlyEmpty qIn of
Just [] -> ac
Just _wtags -> ac -- addWinTagsAC wtags ac XXX was duplicating tags
Nothing -> err $ "actNullableTagless/NonEmpty is supposed to have an emptyNull nullView : "++show (qTop,qIn)
(_,mChildAccepting,_) <- actNullable q ac
case mChildAccepting of
Nothing -> err $ "Weird pattern in actNullableTagless/NonEmpty: " ++ show (qTop,qIn)
-- cannotAccept q checked for and excluded the above condition (and starTrans!)
Just childAccepting -> do
let childQT = getQT childAccepting
thisAccepting = case mAccepting of
Nothing -> Just . fromQT $ childQT
Just futureAcceptingE -> Just . fromQT . mergeQT childQT . getQT $ futureAcceptingE
-- I _think_ there is no need for mergeQT_2nd in the above.
return (clearE,thisAccepting,Nothing)
_ -> err $ "This case in Text.Regex.TNFA.TNFA.actNullableTagless cannot happen: "++show (qTop,qIn)
-- This is applied directly to any qt immediately before passing to mergeQT
resetOrbitsQT :: [Tag] -> QT -> QT
resetOrbitsQT | lastStarGreedy compOpt = const id
| otherwise = (\tags -> prependTags' [(tag,PreUpdate ResetOrbitTask)|tag<-tags])
enterOrbitQT :: Maybe Tag -> QT -> QT
enterOrbitQT | lastStarGreedy compOpt = const id
| otherwise = maybe id (\tag->prependTags' [(tag,PreUpdate EnterOrbitTask)])
leaveOrbit :: Maybe Tag -> E -> E
leaveOrbit | lastStarGreedy compOpt = const id
| otherwise = maybe id (\tag->(\(tags,cont)->((tag,LeaveOrbitTask):tags,cont)))
-- 'newTrans' is the only place where PostUpdate is used and is only called from getTrans/OneChar
-- and is the only caller of 'acceptTrans' to make QT/Simple nodes.
newTrans :: String -- debugging string for when a newQNFA is allocated
-> [Tag] -- which tags get ResetGroupStopTask in this transition (PreUpdate)
-> Maybe Tag -- maybe one TagTask to update before incrementing the offset (PreUpdate)
-> Pattern -- the one character accepting Pattern of this transition
-> E -- the continuation state, reified to a QNFA, of after this Pattern
-- The fst part of the E is consumed here as a TagTask (PostUpdate)
-> S E -- the continuation state, as a QT, of before this Pattern
newTrans s resets mPre pat (tags,cont) = do
i <- case cont of
Left qnfa -> return (q_id qnfa) -- strictQNFA ZZZ no help
Right qt -> do qnfa <- newQNFA s qt -- strictQT ZZZ no help
return (q_id qnfa)
let post = promoteTasks PostUpdate tags
pre = promoteTasks PreUpdate ([(tag,ResetGroupStopTask) | tag<-resets] ++ maybe [] (\tag -> [(tag,TagTask)]) mPre)
return . fromQT $ acceptTrans pre pat post i -- fromQT $ strictQT no help
-- 'acceptTrans' is the sole creator of QT/Simple and is only called by getTrans/OneChar/newTrans
acceptTrans :: TagList -> Pattern -> TagList -> Index -> QT
acceptTrans pre pIn post i =
let target = IMap.singleton i [(getDoPa pIn,pre++post)]
in case pIn of
PChar _ char ->
let trans = toMap target [char]
in Simple { qt_win = mempty, qt_trans = trans, qt_other = mempty }
PEscape _ char ->
let trans = toMap target [char]
in Simple { qt_win = mempty, qt_trans = trans, qt_other = mempty }
PDot _ -> Simple { qt_win = mempty, qt_trans = dotTrans, qt_other = target }
PAny _ ps ->
let trans = toMap target . S.toAscList . decodePatternSet $ ps
in Simple { qt_win = mempty, qt_trans = trans, qt_other = mempty }
PAnyNot _ ps ->
let trans = toMap mempty . S.toAscList . addNewline . decodePatternSet $ ps
in Simple { qt_win = mempty, qt_trans = trans, qt_other = target }
_ -> err ("Cannot acceptTrans pattern "++show (qTop,pIn))
where -- Take a common destination and a sorted list of unique characters
-- and create a map from those characters to the common destination
toMap :: IntMap [(DoPa,[(Tag, TagUpdate)])] -> [Char]
-> CharMap (IntMap [(DoPa,[(Tag, TagUpdate)])])
toMap dest | caseSensitive compOpt = CharMap . IMap.fromDistinctAscList . map (\c -> (ord c,dest))
| otherwise = CharMap . IMap.fromList . ($ [])
. foldr (\c dl -> if isAlpha c
then (dl.((ord (toUpper c),dest):)
.((ord (toLower c),dest):)
)
else (dl.((ord c,dest):))
) id
addNewline | multiline compOpt = S.insert '\n'
| otherwise = id
dotTrans | multiline compOpt = Map.singleton '\n' mempty
| otherwise = Mon.mempty
{-
prepend architecture becomes
prependTags :: TagTask -> [Tag] -> QT -> QT
which always uses PreUpdate and the same task for all the tags
qt_win seems to only allow PreUpdate so why keep the same type?
ADD ORPHAN ID check and make this a fatal error while testing
-}
|