1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
|
{-# LANGUAGE BangPatterns, MagicHash #-}
module Data.Array.Repa.Eval.Reduction
( foldS, foldP
, foldAllS, foldAllP)
where
import Data.Array.Repa.Eval.Gang
import qualified Data.Vector.Unboxed as V
import qualified Data.Vector.Unboxed.Mutable as M
import GHC.Base ( quotInt, divInt )
import GHC.Exts
-- | Sequential reduction of a multidimensional array along the innermost dimension.
foldS :: V.Unbox a
=> M.IOVector a -- ^ vector to write elements into
-> (Int# -> a) -- ^ function to get an element from the given index
-> (a -> a -> a) -- ^ binary associative combination function
-> a -- ^ starting value (typically an identity)
-> Int# -- ^ inner dimension (length to fold over)
-> IO ()
{-# INLINE [1] foldS #-}
foldS !vec get c !r !n
= iter 0# 0#
where
!(I# end) = M.length vec
{-# INLINE iter #-}
iter !sh !sz
| 1# <- sh >=# end
= return ()
| otherwise
= do let !next = sz +# n
M.unsafeWrite vec (I# sh) (reduceAny get c r sz next)
iter (sh +# 1#) next
-- | Parallel reduction of a multidimensional array along the innermost dimension.
-- Each output value is computed by a single thread, with the output values
-- distributed evenly amongst the available threads.
foldP :: V.Unbox a
=> M.IOVector a -- ^ vector to write elements into
-> (Int -> a) -- ^ function to get an element from the given index
-> (a -> a -> a) -- ^ binary associative combination operator
-> a -- ^ starting value. Must be neutral with respect
-- ^ to the operator. eg @0 + a = a@.
-> Int -- ^ inner dimension (length to fold over)
-> IO ()
{-# INLINE [1] foldP #-}
foldP vec f c !r (I# n)
= gangIO theGang
$ \(I# tid) -> fill (split tid) (split (tid +# 1#))
where
!(I# threads) = gangSize theGang
!(I# len) = M.length vec
!step = (len +# threads -# 1#) `quotInt#` threads
{-# INLINE split #-}
split !ix
= let !ix' = ix *# step
in case len <# ix' of
0# -> ix'
_ -> len
{-# INLINE fill #-}
fill !start !end
= iter start (start *# n)
where
{-# INLINE iter #-}
iter !sh !sz
| 1# <- sh >=# end
= return ()
| otherwise
= do let !next = sz +# n
M.unsafeWrite vec (I# sh) (reduce f c r (I# sz) (I# next))
iter (sh +# 1#) next
-- | Sequential reduction of all the elements in an array.
foldAllS :: (Int# -> a) -- ^ function to get an element from the given index
-> (a -> a -> a) -- ^ binary associative combining function
-> a -- ^ starting value
-> Int# -- ^ number of elements
-> a
{-# INLINE [1] foldAllS #-}
foldAllS f c !r !len
= reduceAny (\i -> f i) c r 0# len
-- | Parallel tree reduction of an array to a single value. Each thread takes an
-- equally sized chunk of the data and computes a partial sum. The main thread
-- then reduces the array of partial sums to the final result.
--
-- We don't require that the initial value be a neutral element, so each thread
-- computes a fold1 on its chunk of the data, and the seed element is only
-- applied in the final reduction step.
--
foldAllP :: V.Unbox a
=> (Int -> a) -- ^ function to get an element from the given index
-> (a -> a -> a) -- ^ binary associative combining function
-> a -- ^ starting value
-> Int -- ^ number of elements
-> IO a
{-# INLINE [1] foldAllP #-}
foldAllP f c !r !len
| len == 0 = return r
| otherwise = do
mvec <- M.unsafeNew chunks
gangIO theGang $ \tid -> fill mvec tid (split tid) (split (tid+1))
vec <- V.unsafeFreeze mvec
return $! V.foldl' c r vec
where
!threads = gangSize theGang
!step = (len + threads - 1) `quotInt` threads
chunks = ((len + step - 1) `divInt` step) `min` threads
{-# INLINE split #-}
split !ix = len `min` (ix * step)
{-# INLINE fill #-}
fill !mvec !tid !start !end
| start >= end = return ()
| otherwise = M.unsafeWrite mvec tid (reduce f c (f start) (start+1) end)
-- Reduce ---------------------------------------------------------------------
-- | This is the primitive reduction function.
-- We use manual specialisations and rewrite rules to avoid the result
-- being boxed up in the final iteration.
{-# INLINE [0] reduce #-}
reduce :: (Int -> a) -- ^ Get data from the array.
-> (a -> a -> a) -- ^ Function to combine elements.
-> a -- ^ Starting value.
-> Int -- ^ Starting index in array.
-> Int -- ^ Ending index in array.
-> a -- ^ Result.
reduce f c !r (I# start) (I# end)
= reduceAny (\i -> f (I# i)) c r start end
-- | Sequentially reduce values between the given indices
{-# INLINE [0] reduceAny #-}
reduceAny :: (Int# -> a) -> (a -> a -> a) -> a -> Int# -> Int# -> a
reduceAny f c !r !start !end
= iter start r
where
{-# INLINE iter #-}
iter !i !z
| 1# <- i >=# end = z
| otherwise = iter (i +# 1#) (z `c` f i)
{-# INLINE [0] reduceInt #-}
reduceInt
:: (Int# -> Int#)
-> (Int# -> Int# -> Int#)
-> Int#
-> Int# -> Int#
-> Int#
reduceInt f c !r !start !end
= iter start r
where
{-# INLINE iter #-}
iter !i !z
| 1# <- i >=# end = z
| otherwise = iter (i +# 1#) (z `c` f i)
{-# INLINE [0] reduceFloat #-}
reduceFloat
:: (Int# -> Float#)
-> (Float# -> Float# -> Float#)
-> Float#
-> Int# -> Int#
-> Float#
reduceFloat f c !r !start !end
= iter start r
where
{-# INLINE iter #-}
iter !i !z
| 1# <- i >=# end = z
| otherwise = iter (i +# 1#) (z `c` f i)
{-# INLINE [0] reduceDouble #-}
reduceDouble
:: (Int# -> Double#)
-> (Double# -> Double# -> Double#)
-> Double#
-> Int# -> Int#
-> Double#
reduceDouble f c !r !start !end
= iter start r
where
{-# INLINE iter #-}
iter !i !z
| 1# <- i >=# end = z
| otherwise = iter (i +# 1#) (z `c` f i)
{-# INLINE unboxInt #-}
unboxInt :: Int -> Int#
unboxInt (I# i) = i
{-# INLINE unboxFloat #-}
unboxFloat :: Float -> Float#
unboxFloat (F# f) = f
{-# INLINE unboxDouble #-}
unboxDouble :: Double -> Double#
unboxDouble (D# d) = d
{-# RULES "reduceInt"
forall (get :: Int# -> Int) f r start end
. reduceAny get f r start end
= I# (reduceInt
(\i -> unboxInt (get i))
(\d1 d2 -> unboxInt (f (I# d1) (I# d2)))
(unboxInt r)
start
end)
#-}
{-# RULES "reduceFloat"
forall (get :: Int# -> Float) f r start end
. reduceAny get f r start end
= F# (reduceFloat
(\i -> unboxFloat (get i))
(\d1 d2 -> unboxFloat (f (F# d1) (F# d2)))
(unboxFloat r)
start
end)
#-}
{-# RULES "reduceDouble"
forall (get :: Int# -> Double) f r start end
. reduceAny get f r start end
= D# (reduceDouble
(\i -> unboxDouble (get i))
(\d1 d2 -> unboxDouble (f (D# d1) (D# d2)))
(unboxDouble r)
start
end)
#-}
|