1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
|
{-# LANGUAGE TypeOperators, FlexibleInstances, ScopedTypeVariables #-}
-- | Index types.
module Data.Array.Repa.Index
(
-- * Index types
Z (..)
, (:.) (..)
-- * Common dimensions.
, DIM0, DIM1, DIM2, DIM3, DIM4, DIM5
, ix1, ix2, ix3, ix4, ix5)
where
import Data.Array.Repa.Shape
import GHC.Base (quotInt, remInt)
stage = "Data.Array.Repa.Index"
-- | An index of dimension zero
data Z = Z
deriving (Show, Read, Eq, Ord)
-- | Our index type, used for both shapes and indices.
infixl 3 :.
data tail :. head
= !tail :. !head
deriving (Show, Read, Eq, Ord)
-- Common dimensions
type DIM0 = Z
type DIM1 = DIM0 :. Int
type DIM2 = DIM1 :. Int
type DIM3 = DIM2 :. Int
type DIM4 = DIM3 :. Int
type DIM5 = DIM4 :. Int
-- | Helper for index construction.
--
-- Use this instead of explicit constructors like @(Z :. (x :: Int))@.
-- The this is sometimes needed to ensure that 'x' is constrained to
-- be in @Int@.
ix1 :: Int -> DIM1
ix1 x = Z :. x
{-# INLINE ix1 #-}
ix2 :: Int -> Int -> DIM2
ix2 y x = Z :. y :. x
{-# INLINE ix2 #-}
ix3 :: Int -> Int -> Int -> DIM3
ix3 z y x = Z :. z :. y :. x
{-# INLINE ix3 #-}
ix4 :: Int -> Int -> Int -> Int -> DIM4
ix4 a z y x = Z :. a :. z :. y :. x
{-# INLINE ix4 #-}
ix5 :: Int -> Int -> Int -> Int -> Int -> DIM5
ix5 b a z y x = Z :. b :. a :. z :. y :. x
{-# INLINE ix5 #-}
-- Shape ----------------------------------------------------------------------
instance Shape Z where
{-# INLINE [1] rank #-}
rank _ = 0
{-# INLINE [1] zeroDim #-}
zeroDim = Z
{-# INLINE [1] unitDim #-}
unitDim = Z
{-# INLINE [1] intersectDim #-}
intersectDim _ _ = Z
{-# INLINE [1] addDim #-}
addDim _ _ = Z
{-# INLINE [1] size #-}
size _ = 1
{-# INLINE [1] sizeIsValid #-}
sizeIsValid _ = True
{-# INLINE [1] toIndex #-}
toIndex _ _ = 0
{-# INLINE [1] fromIndex #-}
fromIndex _ _ = Z
{-# INLINE [1] inShapeRange #-}
inShapeRange Z Z Z = True
{-# NOINLINE listOfShape #-}
listOfShape _ = []
{-# NOINLINE shapeOfList #-}
shapeOfList [] = Z
shapeOfList _ = error $ stage ++ ".fromList: non-empty list when converting to Z."
{-# INLINE deepSeq #-}
deepSeq Z x = x
instance Shape sh => Shape (sh :. Int) where
{-# INLINE [1] rank #-}
rank (sh :. _)
= rank sh + 1
{-# INLINE [1] zeroDim #-}
zeroDim = zeroDim :. 0
{-# INLINE [1] unitDim #-}
unitDim = unitDim :. 1
{-# INLINE [1] intersectDim #-}
intersectDim (sh1 :. n1) (sh2 :. n2)
= (intersectDim sh1 sh2 :. (min n1 n2))
{-# INLINE [1] addDim #-}
addDim (sh1 :. n1) (sh2 :. n2)
= addDim sh1 sh2 :. (n1 + n2)
{-# INLINE [1] size #-}
size (sh1 :. n)
= size sh1 * n
{-# INLINE [1] sizeIsValid #-}
sizeIsValid (sh1 :. n)
| size sh1 > 0
= n <= maxBound `div` size sh1
| otherwise
= False
{-# INLINE [1] toIndex #-}
toIndex (sh1 :. sh2) (sh1' :. sh2')
= toIndex sh1 sh1' * sh2 + sh2'
{-# INLINE [1] fromIndex #-}
fromIndex (ds :. d) n
= fromIndex ds (n `quotInt` d) :. r
where
-- If we assume that the index is in range, there is no point
-- in computing the remainder for the highest dimension since
-- n < d must hold. This saves one remInt per element access which
-- is quite a big deal.
r | rank ds == 0 = n
| otherwise = n `remInt` d
{-# INLINE [1] inShapeRange #-}
inShapeRange (zs :. z) (sh1 :. n1) (sh2 :. n2)
= (n2 >= z) && (n2 < n1) && (inShapeRange zs sh1 sh2)
{-# NOINLINE listOfShape #-}
listOfShape (sh :. n)
= n : listOfShape sh
{-# NOINLINE shapeOfList #-}
shapeOfList xx
= case xx of
[] -> error $ stage ++ ".toList: empty list when converting to (_ :. Int)"
x:xs -> shapeOfList xs :. x
{-# INLINE deepSeq #-}
deepSeq (sh :. n) x = deepSeq sh (n `seq` x)
|