1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
|
{-# LANGUAGE FunctionalDependencies, UndecidableInstances #-}
module Data.Array.Repa.Operators.Mapping
( -- * Generic maps
map
, zipWith
, (+^), (-^), (*^), (/^)
-- * Structured maps
, Structured(..))
where
import Data.Array.Repa.Shape
import Data.Array.Repa.Base
import Data.Array.Repa.Repr.ByteString
import Data.Array.Repa.Repr.Cursored
import Data.Array.Repa.Repr.Delayed
import Data.Array.Repa.Repr.ForeignPtr
import Data.Array.Repa.Repr.HintSmall
import Data.Array.Repa.Repr.HintInterleave
import Data.Array.Repa.Repr.Partitioned
import Data.Array.Repa.Repr.Unboxed
import Data.Array.Repa.Repr.Undefined
import Prelude hiding (map, zipWith)
import Foreign.Storable
import Data.Word
-- | Apply a worker function to each element of an array,
-- yielding a new array with the same extent.
--
map :: (Shape sh, Source r a)
=> (a -> b) -> Array r sh a -> Array D sh b
map f arr
= case delay arr of
ADelayed sh g -> ADelayed sh (f . g)
{-# INLINE [3] map #-}
-- ZipWith --------------------------------------------------------------------
-- | Combine two arrays, element-wise, with a binary operator.
-- If the extent of the two array arguments differ,
-- then the resulting array's extent is their intersection.
--
zipWith :: (Shape sh, Source r1 a, Source r2 b)
=> (a -> b -> c)
-> Array r1 sh a -> Array r2 sh b
-> Array D sh c
zipWith f arr1 arr2
= let get ix = f (arr1 `unsafeIndex` ix) (arr2 `unsafeIndex` ix)
{-# INLINE get #-}
in fromFunction
(intersectDim (extent arr1) (extent arr2))
get
{-# INLINE [2] zipWith #-}
infixl 7 *^, /^
infixl 6 +^, -^
(+^) = zipWith (+)
{-# INLINE (+^) #-}
(-^) = zipWith (-)
{-# INLINE (-^) #-}
(*^) = zipWith (*)
{-# INLINE (*^) #-}
(/^) = zipWith (/)
{-# INLINE (/^) #-}
-- Structured -------------------------------------------------------------------
-- | Structured versions of @map@ and @zipWith@ that preserve the representation
-- of cursored and partitioned arrays.
--
-- For cursored (@C@) arrays, the cursoring of the source array is preserved.
--
-- For partitioned (@P@) arrays, the worker function is fused with each array
-- partition separately, instead of treating the whole array as a single
-- bulk object.
--
-- Preserving the cursored and\/or paritioned representation of an array
-- is will make follow-on computation more efficient than if the array was
-- converted to a vanilla Delayed (@D@) array as with plain `map` and `zipWith`.
--
-- If the source array is not cursored or partitioned then `smap` and
-- `szipWith` are identical to the plain functions.
--
class Structured r1 a b where
-- | The target result representation.
type TR r1
-- | Structured @map@.
smap :: Shape sh
=> (a -> b)
-> Array r1 sh a
-> Array (TR r1) sh b
-- | Structured @zipWith@.
-- If you have a cursored or partitioned source array then use that as
-- the third argument (corresponding to @r1@ here)
szipWith
:: (Shape sh, Source r c)
=> (c -> a -> b)
-> Array r sh c
-> Array r1 sh a
-> Array (TR r1) sh b
-- ByteString -------------------------
instance Structured B Word8 b where
type TR B = D
smap = map
szipWith = zipWith
-- Cursored ---------------------------
instance Structured C a b where
type TR C = C
smap f (ACursored sh makec shiftc loadc)
= ACursored sh makec shiftc (f . loadc)
{-# INLINE [3] smap #-}
szipWith f arr1 (ACursored sh makec shiftc loadc)
= let makec' ix = (ix, makec ix)
{-# INLINE makec' #-}
shiftc' off (ix, cur) = (addDim off ix, shiftc off cur)
{-# INLINE shiftc' #-}
load' (ix, cur) = f (arr1 `unsafeIndex` ix) (loadc cur)
{-# INLINE load' #-}
in ACursored
(intersectDim (extent arr1) sh)
makec' shiftc' load'
{-# INLINE [2] szipWith #-}
-- Delayed ----------------------------
instance Structured D a b where
type TR D = D
smap = map
szipWith = zipWith
-- ForeignPtr -------------------------
instance Storable a => Structured F a b where
type TR F = D
smap = map
szipWith = zipWith
-- Partitioned ------------------------
instance (Structured r1 a b
, Structured r2 a b)
=> Structured (P r1 r2) a b where
type TR (P r1 r2) = P (TR r1) (TR r2)
smap f (APart sh range arr1 arr2)
= APart sh range (smap f arr1) (smap f arr2)
{-# INLINE [3] smap #-}
szipWith f arr1 (APart sh range arr21 arr22)
= APart sh range (szipWith f arr1 arr21)
(szipWith f arr1 arr22)
{-# INLINE [2] szipWith #-}
-- Small ------------------------------
instance Structured r1 a b
=> Structured (S r1) a b where
type TR (S r1) = S (TR r1)
smap f (ASmall arr1)
= ASmall (smap f arr1)
{-# INLINE [3] smap #-}
szipWith f arr1 (ASmall arr2)
= ASmall (szipWith f arr1 arr2)
{-# INLINE [3] szipWith #-}
-- Interleaved ------------------------
instance Structured r1 a b
=> Structured (I r1) a b where
type TR (I r1) = I (TR r1)
smap f (AInterleave arr1)
= AInterleave (smap f arr1)
{-# INLINE [3] smap #-}
szipWith f arr1 (AInterleave arr2)
= AInterleave (szipWith f arr1 arr2)
{-# INLINE [3] szipWith #-}
-- Unboxed ----------------------------
instance Unbox a => Structured U a b where
type TR U = D
smap = map
szipWith = zipWith
-- Undefined --------------------------
instance Structured X a b where
type TR X = X
smap _ (AUndefined sh) = AUndefined sh
szipWith _ _ (AUndefined sh) = AUndefined sh
|