1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
|
import Codec.Crypto.RSA.Pure
import Control.Monad
import Data.Binary
import Data.ByteString.Lazy(ByteString)
import qualified Data.ByteString.Lazy as BS
import Data.Digest.Pure.SHA
import System.IO
import Test.QuickCheck
import Crypto.Random
import Test.Framework (defaultMain, testGroup)
import Test.Framework.Providers.QuickCheck2 (testProperty)
type KeyPairs = [(PublicKey, PrivateKey)]
numRandomKeyPairs :: Int
numRandomKeyPairs = length keySizes * 2
keySizes :: [Int]
keySizes = [128,256,512,1024,2048,4096]
main :: IO ()
main = do
putStr "Generating testing keys ... "
hFlush stdout
g :: SystemRandom <- newGenIO
let (keys, g') = buildRandomKeyPairs g (cycle keySizes) numRandomKeyPairs
unless (all ((> 5) . public_n . fst) keys) $ fail "Something odd."
putStrLn "done!"
defaultMain
[ testGroup "Random functions" [
testProperty "RandomBS generates the right length" (prop_randomBSLen g')
, testProperty "RandomNZBS generates good data" (prop_randomNZBS g')
]
, testGroup "Testing basic helper functions" [
testProperty "ByteString chunking works" prop_chunkifyWorks
, testProperty "Modular exponentiation works" prop_modExpWorks
, testProperty "Modular inversion works" (prop_modInvWorks g')
]
, testGroup "Testing RSA core functions" [
testProperty "Can roundtrip from Integer to BS and back" prop_i2o2iIdent
, testProperty "Can roundtrip from BS to Integer and back" prop_o2i2oIdent
, testProperty "Can roundtrip RSA's EP and DP functions"
(prop_epDpIdent keys)
, testProperty "Can roundtrip RSA's SP and VP functions"
(prop_spVpIdent keys)
]
, testGroup "Testing fixed-width RSA functions" [
testProperty "RSA PKCS sign/verify works"
(prop_pkcsSignVerifies keys)
, testProperty "RSA PKCS encrypt/decrypt works" (prop_pkcsInverts keys g)
, testProperty "RSA OAEP encrypt/decrypt works" (prop_oaepInverts keys g)
]
, testGroup "Testing top-level, arbitrary-width RSA functions" [
testProperty "Checking encrypt/decrypt roundtrips" (prop_encDec keys g)
, testProperty "Checking OAEP encrypt/decrypt roundtrips"
(prop_encDecO keys g)
, testProperty "Checking PKCS encrypt/decrypt roundtrips"
(prop_encDecP keys g)
, testProperty "Checking verify verifies sign" (propSignVerifies keys)
]
]
buildRandomKeyPairs :: CryptoRandomGen g => g -> [Int] -> Int -> (KeyPairs, g)
buildRandomKeyPairs g _ 0 = ([], g)
buildRandomKeyPairs _ [] _ = error "The world has gone insane."
buildRandomKeyPairs g (keySize:rest) x =
case generateKeyPair g keySize of
Left _ -> error "Couldn't generate initial random key pairs! (1)"
Right (pub, priv, g') ->
let (acc, g'') = buildRandomKeyPairs g' rest (x - 1)
in ((pub, priv) : acc, g'')
-- --------------------------------------------------------------------------
instance Arbitrary ByteString where
arbitrary = BS.pack `fmap` arbitrary
instance Show HashInfo where
show (HashInfo ident _)
| ident == algorithmIdent hashSHA1 = "<SHA1>"
| ident == algorithmIdent hashSHA224 = "<SHA224>"
| ident == algorithmIdent hashSHA256 = "<SHA256>"
| ident == algorithmIdent hashSHA384 = "<SHA384>"
| ident == algorithmIdent hashSHA512 = "<SHA512>"
| otherwise = "<unknownHASH>"
instance Arbitrary HashInfo where
arbitrary = elements [hashSHA1, hashSHA224,
hashSHA256, hashSHA384, hashSHA512]
data KeyPairIdx = KPI Int
deriving (Show)
instance Arbitrary KeyPairIdx where
arbitrary = KPI `fmap` choose (0, numRandomKeyPairs - 1)
data HashFun = HF String (ByteString -> ByteString)
instance Show HashFun where
show (HF s _) = "<" ++ s ++ ">"
instance Arbitrary HashFun where
arbitrary = elements [HF "SHA1" (bytestringDigest . sha1),
HF "SHA256" (bytestringDigest . sha256),
HF "SHA384" (bytestringDigest . sha384),
HF "SHA512" (bytestringDigest . sha512)]
prop_randomBSLen :: CryptoRandomGen g => g -> Positive Word16 -> Bool
prop_randomBSLen g x =
case randomBS g (fromIntegral (getPositive x)) of
Left _ -> False
Right (bstr, _) -> fromIntegral (BS.length bstr) == getPositive x
prop_randomNZBS :: CryptoRandomGen g => g -> Positive Word16 -> Bool
prop_randomNZBS g x =
case randomNZBS g (fromIntegral (getPositive x)) of
Left _ -> False
Right (bstr, _) ->
(fromIntegral (BS.length bstr) == getPositive x) && BS.all (/= 0) bstr
prop_chunkifyWorks :: ByteString -> Positive Integer -> Bool
prop_chunkifyWorks x l = all (\ bs -> BS.length bs <= l') chunks &&
(sum (map BS.length chunks) == BS.length x)
where
l' = fromIntegral (getPositive l)
chunks = chunkify x (fromIntegral l')
prop_modExpWorks :: Positive Integer -> Positive Integer -> Positive Integer ->
Bool
prop_modExpWorks b e m = ((b' ^ e') `mod` m') == modular_exponentiation b' e' m'
where
b' = getPositive b
e' = getPositive e
m' = getPositive m
prop_modInvWorks :: CryptoRandomGen g => g -> Word16 -> Bool
prop_modInvWorks g0 x =
let (p, g1) = primeGen (x `mod` 512) g0
(q, _) = primeGen (x `mod` 512) g1
e = 65537
phi = (p - 1) * (q - 1)
d = modular_inverse e phi
in (e * d) `mod` phi == 1
where
primeGen pre g =
case randomBS g (fromIntegral pre) of
Left e -> error ("Error prefetching bytestring:" ++ show e)
Right (_, g') ->
case largeRandomPrime g' 64 of
Left _ -> error "Large prime generation failure."
Right res -> res
prop_i2o2iIdent :: Positive Integer -> Bool
prop_i2o2iIdent px =
case i2osp x l of
Left _ -> False
Right x' -> os2ip x' == x
where
x = getPositive px
l = findLen 1 256
--
findLen b t | t > x = b
| otherwise = findLen (b + 1) (t * 256)
prop_o2i2oIdent :: ByteString -> Bool
prop_o2i2oIdent bs =
case i2osp (os2ip bs) (fromIntegral (BS.length bs)) of
Left _ -> False
Right bs' -> bs == bs'
prop_epDpIdent :: KeyPairs -> KeyPairIdx ->
Positive Integer ->
Bool
prop_epDpIdent kps (KPI idx) x = fromEither $
do let n = public_n pub
e = public_e pub
d = private_d priv
m = getPositive x `mod` n
ep <- rsa_ep n e m
m' <- rsa_dp n d ep
return (m == m')
where (pub, priv) = kps !! idx
prop_spVpIdent :: KeyPairs -> KeyPairIdx ->
Positive Integer ->
Bool
prop_spVpIdent kps (KPI idx) x = fromEither $
do let n = public_n pub
e = public_e pub
d = private_d priv
m = getPositive x `mod` n
sp <- rsa_sp1 n d m
m' <- rsa_vp1 n e sp
return (m == m')
where (pub, priv) = kps !! idx
prop_oaepInverts :: CryptoRandomGen g =>
KeyPairs -> g ->
HashFun -> KeyPairIdx ->
ByteString -> ByteString ->
Property
prop_oaepInverts kps g (HF _ hash) (KPI idx) l m = wellSized ==> fromEither $
do let mgf = generateMGF1 hash
(enc,_) <- rsaes_oaep_encrypt g hash mgf pub l m
m' <- rsaes_oaep_decrypt hash mgf priv l enc
return (m == m')
where
(pub, priv) = kps !! idx
hashLength = fromIntegral (BS.length (hash BS.empty))
keySize = public_size pub
msgLength = fromIntegral (BS.length m)
wellSized = (msgLength <= (keySize - (2 * hashLength) - 2)) && (msgLength>0)
prop_pkcsInverts :: CryptoRandomGen g =>
KeyPairs -> g -> KeyPairIdx ->
ByteString ->
Property
prop_pkcsInverts kps g (KPI idx) m = wellSized ==> fromEither $
do (enc,_) <- rsaes_pkcs1_v1_5_encrypt g pub m
m' <- rsaes_pkcs1_v1_5_decrypt priv enc
return (m == m')
where
(pub, priv) = kps !! idx
wellSized = (fromIntegral (BS.length m) < (public_size pub - 11)) &&
(BS.length m > 0)
prop_pkcsSignVerifies :: KeyPairs -> KeyPairIdx ->
HashInfo -> ByteString ->
Property
prop_pkcsSignVerifies kps (KPI idx) hash m = wellSized ==> fromEither $
do sig <- rsassa_pkcs1_v1_5_sign hash priv m
rsassa_pkcs1_v1_5_verify hash pub m sig
where
(pub, priv) = kps !! idx
wellSized = fromIntegral (public_size pub) > (algSize + hashLen + 1)
algSize = BS.length (algorithmIdent hash)
hashLen = BS.length (hashFunction hash BS.empty)
prop_encDec :: CryptoRandomGen g =>
KeyPairs -> g ->
KeyPairIdx -> ByteString ->
Bool
prop_encDec kps g (KPI idx) m = fromEither $
do (c, _) <- encrypt g pub m
m' <- decrypt priv c
return (m == m')
where (pub, priv) = findKeySized 66 kps idx
prop_encDecO :: CryptoRandomGen g =>
KeyPairs -> g ->
HashFun -> KeyPairIdx -> ByteString -> ByteString ->
Property
prop_encDecO kps g (HF _ hash) (KPI idx) l m = wellSized ==> fromEither $
do (c, _) <- encryptOAEP g hash (generateMGF1 hash) l pub m
m' <- decryptOAEP hash (generateMGF1 hash) l priv c
return (m == m')
where
(pub, priv) = kps !! idx
hashLength = fromIntegral (BS.length (hash BS.empty))
keySize = public_size pub
wellSized = (keySize - (2 * hashLength) - 2) > 0
prop_encDecP :: CryptoRandomGen g =>
KeyPairs -> g -> KeyPairIdx -> ByteString ->
Bool
prop_encDecP kps g (KPI idx) m = fromEither $
do (c, _) <- encryptPKCS g pub m
m' <- decryptPKCS priv c
return (m == m')
where (pub, priv) = findKeySized 11 kps idx
propSignVerifies :: KeyPairs -> KeyPairIdx -> ByteString -> Bool
propSignVerifies kps (KPI idx) m = fromEither $
do sig <- sign priv m
verify pub m sig
where (pub, priv) = findKeySized 64 kps idx
findKeySized :: Int -> KeyPairs -> Int -> (PublicKey, PrivateKey)
findKeySized size kps idx =
let pair@(pub, _) = kps !! idx
in if public_size pub >= size
then pair
else findKeySized size kps ((idx + 1) `mod` length kps)
-- --------------------------------------------------------------------------
fromEither :: Either a Bool -> Bool
fromEither (Left _) = False
fromEither (Right res) = res
|