File: Parse.hs

package info (click to toggle)
haskell-s-cargot 0.1.6.0-2
  • links: PTS
  • area: main
  • in suites: forky, sid, trixie
  • size: 268 kB
  • sloc: haskell: 1,970; makefile: 5
file content (261 lines) | stat: -rw-r--r-- 9,867 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
{-# LANGUAGE ViewPatterns #-}
{-# LANGUAGE OverloadedStrings #-}

module Data.SCargot.Parse
  ( -- * Parsing
    decode
  , decodeOne
    -- * Parsing Control
  , SExprParser
  , Reader
  , Comment
  , mkParser
  , setCarrier
  , addReader
  , setComment
    -- * Specific SExprParser Conversions
  , asRich
  , asWellFormed
  , withQuote
  ) where

#if !MIN_VERSION_base(4,8,0)
import Control.Applicative ((<$>), (<*), pure)
#endif
import           Control.Monad ((>=>))
import           Data.Map.Strict (Map)
import qualified Data.Map.Strict as M
import           Data.Text (Text)
import           Data.String (IsString)
import           Text.Parsec ( (<|>)
                             , (<?>)
                             , char
                             , eof
                             , lookAhead
                             , many1
                             , runParser
                             , skipMany
                             )
import           Text.Parsec.Char (anyChar, space)
import           Text.Parsec.Text (Parser)

import           Data.SCargot.Repr ( SExpr(..)
                                   , RichSExpr
                                   , WellFormedSExpr
                                   , toRich
                                   , toWellFormed
                                   )

type ReaderMacroMap atom = Map Char (Reader atom)

-- | A 'Reader' represents a reader macro: it takes a parser for
--   the S-Expression type and performs as much or as little
--   parsing as it would like, and then returns an S-expression.
type Reader atom = (Parser (SExpr atom) -> Parser (SExpr atom))

-- | A 'Comment' represents any kind of skippable comment. This
--   parser __must__ be able to fail if a comment is not being
--   recognized, and it __must__ not consume any input in case
--   of failure.
type Comment = Parser ()

-- | A 'SExprParser' describes a parser for a particular value
--   that has been serialized as an s-expression. The @atom@ parameter
--   corresponds to a Haskell type used to represent the atoms,
--   and the @carrier@ parameter corresponds to the parsed S-Expression
--   structure.
data SExprParser atom carrier = SExprParser
  { sesPAtom   :: Parser atom
  , readerMap  :: ReaderMacroMap atom
  , comment    :: Maybe Comment
  , postparse  :: SExpr atom -> Either String carrier
  }

-- | Create a basic 'SExprParser' when given a parser
--   for an atom type.
--
--   >>> import Text.Parsec (alphaNum, many1)
--   >>> let parser = mkParser (many1 alphaNum)
--   >>> decode parser "(ele phant)"
--   Right [SCons (SAtom "ele") (SCons (SAtom "phant") SNil)]
mkParser :: Parser atom -> SExprParser atom (SExpr atom)
mkParser parser = SExprParser
  { sesPAtom   = parser
  , readerMap  = M.empty
  , comment    = Nothing
  , postparse  = return
  }

-- | Modify the carrier type for a 'SExprParser'. This is
--   used internally to convert between various 'SExpr' representations,
--   but could also be used externally to add an extra conversion layer
--   onto a 'SExprParser'.
--
-- >>> import Text.Parsec (alphaNum, many1)
-- >>> import Data.SCargot.Repr (toRich)
-- >>> let parser = setCarrier (return . toRich) (mkParser (many1 alphaNum))
-- >>> decode parser "(ele phant)"
-- Right [RSlist [RSAtom "ele",RSAtom "phant"]]
setCarrier :: (b -> Either String c) -> SExprParser a b -> SExprParser a c
setCarrier f spec = spec { postparse = postparse spec >=> f }

-- | Convert the final output representation from the 'SExpr' type
--   to the 'RichSExpr' type.
--
-- >>> import Text.Parsec (alphaNum, many1)
-- >>> let parser = asRich (mkParser (many1 alphaNum))
-- >>> decode parser "(ele phant)"
-- Right [RSlist [RSAtom "ele",RSAtom "phant"]]
asRich :: SExprParser a (SExpr b) -> SExprParser a (RichSExpr b)
asRich = setCarrier (return . toRich)

-- | Convert the final output representation from the 'SExpr' type
--   to the 'WellFormedSExpr' type.
--
-- >>> import Text.Parsec (alphaNum, many1)
-- >>> let parser = asWellFormed (mkParser (many1 alphaNum))
-- >>> decode parser "(ele phant)"
-- Right [WFSList [WFSAtom "ele",WFSAtom "phant"]]
asWellFormed :: SExprParser a (SExpr b) -> SExprParser a (WellFormedSExpr b)
asWellFormed = setCarrier toWellFormed

-- | Add the ability to execute some particular reader macro, as
--   defined by its initial character and the 'Parser' which returns
--   the parsed S-Expression. The 'Reader' is passed a 'Parser' which
--   can be recursively called to parse more S-Expressions, and begins
--   parsing after the reader character has been removed from the
--   stream.
--
-- >>> import Text.Parsec (alphaNum, char, many1)
-- >>> let vecReader p = (char ']' *> pure SNil) <|> (SCons <$> p <*> vecReader p)
-- >>> let parser = addReader '[' vecReader (mkParser (many1 alphaNum))
-- >>> decode parser "(an [ele phant])"
-- Right [SCons (SAtom "an") (SCons (SCons (SAtom "ele") (SCons (SAtom "phant") SNil)) SNil)]

addReader :: Char -> Reader a -> SExprParser a c -> SExprParser a c
addReader c reader spec = spec
  { readerMap = M.insert c reader (readerMap spec) }

-- | Add the ability to ignore some kind of comment. This gets
--   factored into whitespace parsing, and it's very important that
--   the parser supplied __be able to fail__ (as otherwise it will
--   cause an infinite loop), and also that it __not consume any input__
--   (which may require it to be wrapped in 'try'.)
--
-- >>> import Text.Parsec (alphaNum, anyChar, manyTill, many1, string)
-- >>> let comment = string "//" *> manyTill anyChar newline *> pure ()
-- >>> let parser = setComment comment (mkParser (many1 alphaNum))
-- >>> decode parser "(ele //a comment\n  phant)"
-- Right [SCons (SAtom "ele") (SCons (SAtom "phant") SNil)]

setComment :: Comment -> SExprParser a c -> SExprParser a c
setComment c spec = spec { comment = Just (c <?> "comment") }

-- | Add the ability to understand a quoted S-Expression.
--   Many Lisps use @'sexpr@ as sugar for @(quote sexpr)@. This
--   assumes that the underlying atom type implements the "IsString"
--   class, and will create the @quote@ atom using @fromString "quote"@.
--
-- >>> import Text.Parsec (alphaNum, many1)
-- >>> let parser = withQuote (mkParser (many1 alphaNum))
-- >>> decode parser "'elephant"
-- Right [SCons (SAtom "quote") (SCons (SAtom "foo") SNil)]
withQuote :: IsString t => SExprParser t (SExpr t) -> SExprParser t (SExpr t)
withQuote = addReader '\'' (fmap go)
  where go s  = SCons "quote" (SCons s SNil)

peekChar :: Parser (Maybe Char)
peekChar = Just <$> lookAhead anyChar <|> pure Nothing

parseGenericSExpr ::
  Parser atom  -> ReaderMacroMap atom -> Parser () -> Parser (SExpr atom)
parseGenericSExpr atom reader skip = do
  let sExpr = parseGenericSExpr atom reader skip <?> "s-expr"
  skip
  c <- peekChar
  r <- case c of
    Nothing -> fail "Unexpected end of input"
    Just '(' -> char '(' >> skip >> parseList sExpr skip
    Just (flip M.lookup reader -> Just r) -> anyChar >> r sExpr
    _ -> SAtom `fmap` atom
  skip
  return r

parseList :: Parser (SExpr atom) -> Parser () -> Parser (SExpr atom)
parseList sExpr skip = do
  i <- peekChar
  case i of
    Nothing  -> fail "Unexpected end of input"
    Just ')' -> char ')' >> return SNil
    _        -> do
      car <- sExpr
      skip
      c <- peekChar
      case c of
        Just '.' -> do
          _ <- char '.'
          cdr <- sExpr
          skip
          _ <- char ')'
          skip
          return (SCons car cdr)
        Just ')' -> do
          _ <- char ')'
          skip
          return (SCons car SNil)
        _ -> do
          cdr <- parseList sExpr skip
          return (SCons car cdr)

-- | Given a CommentMap, create the corresponding parser to
--   skip those comments (if they exist).
buildSkip :: Maybe (Parser ()) -> Parser ()
buildSkip Nothing  = skipMany space
buildSkip (Just c) = alternate
  where alternate = skipMany space >> ((c >> alternate) <|> return ())

doParse :: Parser a -> Text -> Either String a
doParse p t = case runParser p () "" t of
  Left err -> Left (show err)
  Right x  -> Right x

-- | Decode a single S-expression. If any trailing input is left after
--   the S-expression (ignoring comments or whitespace) then this
--   will fail: for those cases, use 'decode', which returns a list of
--   all the S-expressions found at the top level.
decodeOne :: SExprParser atom carrier -> Text -> Either String carrier
decodeOne spec = doParse (parser <* eof) >=> (postparse spec)
  where parser = parseGenericSExpr
                   (sesPAtom spec)
                   (readerMap spec)
                   (buildSkip (comment spec))

-- | Decode several S-expressions according to a given 'SExprParser'. This
--   will return a list of every S-expression that appears at the top-level
--   of the document.
decode :: SExprParser atom carrier -> Text -> Either String [carrier]
decode spec =
  doParse (many1 parser <* eof) >=> mapM (postparse spec)
    where parser = parseGenericSExpr
                     (sesPAtom spec)
                     (readerMap spec)
                     (buildSkip (comment spec))

{-
-- | Encode (without newlines) a single S-expression.
encodeSExpr :: SExpr atom -> (atom -> Text) -> Text
encodeSExpr SNil _         = "()"
encodeSExpr (SAtom s) t    = t s
encodeSExpr (SCons x xs) t = go xs (encodeSExpr x t)
  where go (SAtom s) rs = "(" <> rs <> " . " <> t s <> ")"
        go SNil rs      = "(" <> rs <> ")"
        go (SCons x xs) rs = go xs (rs <> " " <> encodeSExpr x t)

-- | Emit an S-Expression in a machine-readable way. This does no
--   pretty-printing or indentation, and produces no comments.
encodeOne :: SExprParser atom carrier -> carrier -> Text
encodeOne spec c = encodeSExpr (preserial spec c) (sesSAtom spec)

encode :: SExprParser atom carrier -> [carrier] -> Text
encode spec cs = T.concat (map (encodeOne spec) cs)
-}