1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
|
-----------------------------------------------------------------------------
-- |
-- Module : Data.SBV.Char
-- Copyright : (c) Levent Erkok
-- License : BSD3
-- Maintainer: erkokl@gmail.com
-- Stability : experimental
--
-- A collection of character utilities, follows the namings
-- in "Data.Char" and is intended to be imported qualified.
-- Also, it is recommended you use the @OverloadedStrings@
-- extension to allow literal strings to be used as
-- symbolic-strings when working with symbolic characters
-- and strings.
--
-- 'SChar' type only covers all unicode characters, following the specification
-- in <http://smtlib.cs.uiowa.edu/theories-UnicodeStrings.shtml>.
-- However, some of the recognizers only support the Latin1 subset, suffixed
-- by @L1@. The reason for this is that there is no performant way of performing
-- these functions for the entire unicode set. As SMTLib's capabilities increase,
-- we will provide full unicode versions as well.
-----------------------------------------------------------------------------
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE Rank2Types #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# OPTIONS_GHC -Wall -Werror #-}
module Data.SBV.Char (
-- * Occurrence in a string
elem, notElem
-- * Conversion to\/from 'SInteger'
, ord, chr
-- * Conversion to upper\/lower case
, toLowerL1, toUpperL1
-- * Converting digits to ints and back
, digitToInt, intToDigit
-- * Character classification
, isControlL1, isSpaceL1, isLowerL1, isUpperL1, isAlphaL1, isAlphaNumL1, isPrintL1, isDigit, isOctDigit, isHexDigit
, isLetterL1, isMarkL1, isNumberL1, isPunctuationL1, isSymbolL1, isSeparatorL1
-- * Subranges
, isAscii, isLatin1, isAsciiUpper, isAsciiLower
) where
import Prelude hiding (elem, notElem)
import qualified Prelude as P
import Data.SBV.Core.Data
import Data.SBV.Core.Model
import qualified Data.Char as C
import Data.SBV.String (isInfixOf, singleton)
-- $setup
-- >>> -- For doctest purposes only:
-- >>> import Data.SBV
-- >>> import Data.SBV.String (isInfixOf, singleton)
-- >>> import Prelude hiding(elem, notElem)
-- >>> :set -XOverloadedStrings
-- | Is the character in the string?
--
-- >>> :set -XOverloadedStrings
-- >>> prove $ \c -> c `elem` singleton c
-- Q.E.D.
-- >>> prove $ \c -> sNot (c `elem` "")
-- Q.E.D.
elem :: SChar -> SString -> SBool
c `elem` s
| Just cs <- unliteral s, Just cc <- unliteral c
= literal (cc `P.elem` cs)
| Just cs <- unliteral s -- If only the second string is concrete, element-wise checking is still much better!
= sAny (c .==) $ map literal cs
| True
= singleton c `isInfixOf` s
-- | Is the character not in the string?
--
-- >>> prove $ \c s -> c `elem` s .<=> sNot (c `notElem` s)
-- Q.E.D.
notElem :: SChar -> SString -> SBool
c `notElem` s = sNot (c `elem` s)
-- | The 'ord' of a character.
ord :: SChar -> SInteger
ord c
| Just cc <- unliteral c
= literal (fromIntegral (C.ord cc))
| True
= SBV $ SVal KUnbounded $ Right $ cache r
where r st = do csv <- sbvToSV st c
newExpr st KUnbounded (SBVApp (StrOp StrToCode) [csv])
-- | Conversion from an integer to a character.
--
-- >>> prove $ \x -> 0 .<= x .&& x .< 256 .=> ord (chr x) .== x
-- Q.E.D.
-- >>> prove $ \x -> chr (ord x) .== x
-- Q.E.D.
chr :: SInteger -> SChar
chr w
| Just cw <- unliteral w
= literal (C.chr (fromIntegral cw))
| True
= SBV $ SVal KChar $ Right $ cache r
where r st = do wsv <- sbvToSV st w
newExpr st KChar (SBVApp (StrOp StrFromCode) [wsv])
-- | Lift a char function to a symbolic version. If the given char is
-- not in the class recognized by predicate, the output is the same as the input.
-- Only works for the Latin1 set, i.e., the first 256 characters. If the given
-- character is outside this range, it's returned unchanged.
liftFunL1 :: (Char -> Char) -> SChar -> SChar
liftFunL1 f c = walk kernel
where kernel = [g | g <- map C.chr [0 .. 255], g /= f g]
walk [] = c
walk (d:ds) = ite (literal d .== c) (literal (f d)) (walk ds)
-- | Lift a char predicate to a symbolic version. Only works for the Latin1 set, i.e., the
-- first 256 characters.
liftPredL1 :: (Char -> Bool) -> SChar -> SBool
liftPredL1 predicate c = c `sElem` [literal g | g <- map C.chr [0 .. 255], predicate g]
-- | Convert to lower-case. Only works for the Latin1 subset, otherwise returns its argument unchanged.
--
-- >>> prove $ \c -> toLowerL1 (toLowerL1 c) .== toLowerL1 c
-- Q.E.D.
-- >>> prove $ \c -> isLowerL1 c .&& c `notElem` "\181\255" .=> toLowerL1 (toUpperL1 c) .== c
-- Q.E.D.
toLowerL1 :: SChar -> SChar
toLowerL1 = liftFunL1 C.toLower
-- | Convert to upper-case. Only works for the Latin1 subset, otherwise returns its argument unchanged.
--
-- >>> prove $ \c -> toUpperL1 (toUpperL1 c) .== toUpperL1 c
-- Q.E.D.
-- >>> prove $ \c -> isUpperL1 c .=> toUpperL1 (toLowerL1 c) .== c
-- Q.E.D.
toUpperL1 :: SChar -> SChar
toUpperL1 = liftFunL1 C.toUpper
-- | Convert a digit to an integer. Works for hexadecimal digits too. If the input isn't a digit,
-- then return -1.
--
-- >>> prove $ \c -> isDigit c .|| isHexDigit c .=> digitToInt c .>= 0 .&& digitToInt c .<= 15
-- Q.E.D.
-- >>> prove $ \c -> sNot (isDigit c .|| isHexDigit c) .=> digitToInt c .== -1
-- Q.E.D.
digitToInt :: SChar -> SInteger
digitToInt c = ite (uc `elem` "0123456789") (sFromIntegral (o - ord (literal '0')))
$ ite (uc `elem` "ABCDEF") (sFromIntegral (o - ord (literal 'A') + 10))
$ -1
where uc = toUpperL1 c
o = ord uc
-- | Convert an integer to a digit, inverse of 'digitToInt'. If the integer is out of
-- bounds, we return the arbitrarily chosen space character. Note that for hexadecimal
-- letters, we return the corresponding lowercase letter.
--
-- >>> prove $ \i -> i .>= 0 .&& i .<= 15 .=> digitToInt (intToDigit i) .== i
-- Q.E.D.
-- >>> prove $ \i -> i .< 0 .|| i .> 15 .=> digitToInt (intToDigit i) .== -1
-- Q.E.D.
-- >>> prove $ \c -> digitToInt c .== -1 .<=> intToDigit (digitToInt c) .== literal ' '
-- Q.E.D.
intToDigit :: SInteger -> SChar
intToDigit i = ite (i .>= 0 .&& i .<= 9) (chr (sFromIntegral i + ord (literal '0')))
$ ite (i .>= 10 .&& i .<= 15) (chr (sFromIntegral i + ord (literal 'a') - 10))
$ literal ' '
-- | Is this a control character? Control characters are essentially the non-printing characters. Only works for the Latin1 subset, otherwise returns 'sFalse'.
isControlL1 :: SChar -> SBool
isControlL1 = liftPredL1 C.isControl
-- | Is this white-space? Only works for the Latin1 subset, otherwise returns 'sFalse'.
isSpaceL1 :: SChar -> SBool
isSpaceL1 = liftPredL1 C.isSpace
-- | Is this a lower-case character? Only works for the Latin1 subset, otherwise returns 'sFalse'.
--
-- >>> prove $ \c -> isUpperL1 c .=> isLowerL1 (toLowerL1 c)
-- Q.E.D.
isLowerL1 :: SChar -> SBool
isLowerL1 = liftPredL1 C.isLower
-- | Is this an upper-case character? Only works for the Latin1 subset, otherwise returns 'sFalse'.
--
-- >>> prove $ \c -> sNot (isLowerL1 c .&& isUpperL1 c)
-- Q.E.D.
isUpperL1 :: SChar -> SBool
isUpperL1 = liftPredL1 C.isUpper
-- | Is this an alphabet character? That is lower-case, upper-case and title-case letters, plus letters of caseless scripts and modifiers letters.
-- Only works for the Latin1 subset, otherwise returns 'sFalse'.
isAlphaL1 :: SChar -> SBool
isAlphaL1 = liftPredL1 C.isAlpha
-- | Is this an alphabetical character or a digit? Only works for the Latin1 subset, otherwise returns 'sFalse'.
--
-- >>> prove $ \c -> isAlphaNumL1 c .<=> isAlphaL1 c .|| isNumberL1 c
-- Q.E.D.
isAlphaNumL1 :: SChar -> SBool
isAlphaNumL1 = liftPredL1 C.isAlphaNum
-- | Is this a printable character? Only works for the Latin1 subset, otherwise returns 'sFalse'.
isPrintL1 :: SChar -> SBool
isPrintL1 = liftPredL1 C.isPrint
-- | Is this an ASCII digit, i.e., one of @0@..@9@. Note that this is a subset of 'isNumberL1'
--
-- >>> prove $ \c -> isDigit c .=> isNumberL1 c
-- Q.E.D.
isDigit :: SChar -> SBool
isDigit = liftPredL1 C.isDigit
-- | Is this an Octal digit, i.e., one of @0@..@7@.
isOctDigit :: SChar -> SBool
isOctDigit = liftPredL1 C.isOctDigit
-- | Is this a Hex digit, i.e, one of @0@..@9@, @a@..@f@, @A@..@F@.
--
-- >>> prove $ \c -> isHexDigit c .=> isAlphaNumL1 c
-- Q.E.D.
isHexDigit :: SChar -> SBool
isHexDigit = liftPredL1 C.isHexDigit
-- | Is this an alphabet character. Only works for the Latin1 subset, otherwise returns 'sFalse'.
--
-- >>> prove $ \c -> isLetterL1 c .<=> isAlphaL1 c
-- Q.E.D.
isLetterL1 :: SChar -> SBool
isLetterL1 = liftPredL1 C.isLetter
-- | Is this a mark? Only works for the Latin1 subset, otherwise returns 'sFalse'.
--
-- Note that there are no marks in the Latin1 set, so this function always returns false!
--
-- >>> prove $ sNot . isMarkL1
-- Q.E.D.
isMarkL1 :: SChar -> SBool
isMarkL1 = liftPredL1 C.isMark
-- | Is this a number character? Only works for the Latin1 subset, otherwise returns 'sFalse'.
isNumberL1 :: SChar -> SBool
isNumberL1 = liftPredL1 C.isNumber
-- | Is this a punctuation mark? Only works for the Latin1 subset, otherwise returns 'sFalse'.
isPunctuationL1 :: SChar -> SBool
isPunctuationL1 = liftPredL1 C.isPunctuation
-- | Is this a symbol? Only works for the Latin1 subset, otherwise returns 'sFalse'.
isSymbolL1 :: SChar -> SBool
isSymbolL1 = liftPredL1 C.isSymbol
-- | Is this a separator? Only works for the Latin1 subset, otherwise returns 'sFalse'.
--
-- >>> prove $ \c -> isSeparatorL1 c .=> isSpaceL1 c
-- Q.E.D.
isSeparatorL1 :: SChar -> SBool
isSeparatorL1 = liftPredL1 C.isSeparator
-- | Is this an ASCII character, i.e., the first 128 characters.
isAscii :: SChar -> SBool
isAscii c = ord c .< 128
-- | Is this a Latin1 character?
isLatin1 :: SChar -> SBool
isLatin1 c = ord c .< 256
-- | Is this an ASCII Upper-case letter? i.e., @A@ thru @Z@
--
-- >>> prove $ \c -> isAsciiUpper c .<=> ord c .>= ord (literal 'A') .&& ord c .<= ord (literal 'Z')
-- Q.E.D.
-- >>> prove $ \c -> isAsciiUpper c .<=> isAscii c .&& isUpperL1 c
-- Q.E.D.
isAsciiUpper :: SChar -> SBool
isAsciiUpper = liftPredL1 C.isAsciiUpper
-- | Is this an ASCII Lower-case letter? i.e., @a@ thru @z@
--
-- >>> prove $ \c -> isAsciiLower c .<=> ord c .>= ord (literal 'a') .&& ord c .<= ord (literal 'z')
-- Q.E.D.
-- >>> prove $ \c -> isAsciiLower c .<=> isAscii c .&& isLowerL1 c
-- Q.E.D.
isAsciiLower :: SChar -> SBool
isAsciiLower = liftPredL1 C.isAsciiLower
|