1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
|
-----------------------------------------------------------------------------
-- |
-- Module : Data.SBV.Control.Utils
-- Copyright : (c) Levent Erkok
-- License : BSD3
-- Maintainer: erkokl@gmail.com
-- Stability : experimental
--
-- Query related utils.
-----------------------------------------------------------------------------
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FunctionalDependencies #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE NamedFieldPuns #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TupleSections #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE ViewPatterns #-}
{-# LANGUAGE UndecidableInstances #-}
{-# OPTIONS_GHC -Wall -Werror -fno-warn-orphans #-}
module Data.SBV.Control.Utils (
io
, ask, send, getValue, getFunction, getUninterpretedValue
, getValueCV, getUICVal, getUIFunCVAssoc, getUnsatAssumptions
, SMTFunction(..), registerUISMTFunction
, getQueryState, modifyQueryState, getConfig, getObjectives, getUIs
, getSBVAssertions, getSBVPgm, getObservables
, checkSat, checkSatUsing, getAllSatResult
, inNewContext, freshVar, freshVar_, freshArray, freshArray_, freshLambdaArray, freshLambdaArray_
, getTopLevelInputs, parse, unexpected
, timeout, queryDebug, retrieveResponse, recoverKindedValue, runProofOn, executeQuery
) where
import Data.List (sortBy, sortOn, elemIndex, partition, groupBy, tails, intercalate, nub, sort, isPrefixOf)
import Data.Char (isPunctuation, isSpace, isDigit)
import Data.Function (on)
import Data.Bifunctor (first)
import Data.Proxy
import qualified Data.Foldable as F (toList)
import qualified Data.Map.Strict as Map
import qualified Data.IntMap.Strict as IMap
import qualified Data.Sequence as S
import qualified Data.Text as T
import Control.Monad (join, unless, zipWithM, when, replicateM, forM_)
import Control.Monad.IO.Class (MonadIO, liftIO)
import Control.Monad.Trans (lift)
import Control.Monad.Reader (runReaderT)
import Data.Maybe (isNothing, isJust, mapMaybe)
import Data.IORef (readIORef, writeIORef, IORef, newIORef, modifyIORef')
import Data.Time (getZonedTime)
import Data.Ratio
import Data.SBV.Core.Data ( SV(..), trueSV, falseSV, CV(..), trueCV, falseCV, SBV, sbvToSV, kindOf, Kind(..)
, HasKind(..), mkConstCV, CVal(..), SMTResult(..)
, NamedSymVar, SMTConfig(..), SMTModel(..)
, QueryState(..), SVal(..), cache
, newExpr, SBVExpr(..), Op(..), FPOp(..), SBV(..), SymArray(..)
, SolverContext(..), SBool, Objective(..), SolverCapabilities(..), capabilities
, Result(..), SMTProblem(..), trueSV, SymVal(..), SBVPgm(..), SMTSolver(..), SBVRunMode(..)
, SBVType(..), forceSVArg, RoundingMode(RoundNearestTiesToEven), (.=>)
, RCSet(..), Lambda(..), QuantifiedBool(..)
)
import Data.SBV.Core.Symbolic ( IncState(..), withNewIncState, State(..), svToSV, symbolicEnv, SymbolicT
, MonadQuery(..), QueryContext(..), Queriable(..), Fresh(..), VarContext(..)
, registerLabel, svMkSymVar, validationRequested
, isSafetyCheckingIStage, isSetupIStage, isRunIStage, IStage(..), QueryT(..)
, extractSymbolicSimulationState, MonadSymbolic(..), newUninterpreted
, UserInputs, getSV, NamedSymVar(..), lookupInput, getUserName'
, Name, CnstMap, UICodeKind(UINone), smtDefGivenName, Inputs(..), ProgInfo(..)
, mustIgnoreVar
)
import Data.SBV.Core.AlgReals (mergeAlgReals, AlgReal(..), RealPoint(..))
import Data.SBV.Core.SizedFloats (fpZero, fpFromInteger, fpFromFloat, fpFromDouble)
import Data.SBV.Core.Kind (smtType, hasUninterpretedSorts)
import Data.SBV.Core.Operations (svNot, svNotEqual, svOr, svEqual)
import Data.SBV.SMT.SMT (showModel, parseCVs, SatModel, AllSatResult(..))
import Data.SBV.SMT.SMTLib (toIncSMTLib, toSMTLib)
import Data.SBV.SMT.Utils (showTimeoutValue, addAnnotations, alignPlain, debug, mergeSExpr, SBVException(..))
import Data.SBV.Utils.ExtractIO
import Data.SBV.Utils.Lib (qfsToString)
import Data.SBV.Utils.SExpr
import Data.SBV.Utils.PrettyNum (cvToSMTLib)
import Data.SBV.Lambda
import Data.SBV.Control.Types
import qualified Data.Set as Set (empty, fromList, toAscList)
import qualified Control.Exception as C
import GHC.Stack
-- | 'Data.SBV.Trans.Control.QueryT' as a 'SolverContext'.
instance MonadIO m => SolverContext (QueryT m) where
constrain = addQueryConstraint False [] . quantifiedBool
softConstrain = addQueryConstraint True [] . quantifiedBool
namedConstraint nm = addQueryConstraint False [(":named", nm)] . quantifiedBool
constrainWithAttribute attr = addQueryConstraint False attr . quantifiedBool
contextState = queryState
setOption o
| isStartModeOption o = error $ unlines [ ""
, "*** Data.SBV: '" ++ show o ++ "' can only be set at start-up time."
, "*** Hint: Move the call to 'setOption' before the query."
]
| True = send True $ setSMTOption o
-- | Adding a constraint, possibly with attributes and possibly soft. Only used internally.
-- Use 'constrain' and 'namedConstraint' from user programs.
addQueryConstraint :: (MonadIO m, MonadQuery m) => Bool -> [(String, String)] -> SBool -> m ()
addQueryConstraint isSoft atts b = do sv <- inNewContext (\st -> liftIO $ do mapM_ (registerLabel "Constraint" st) [nm | (":named", nm) <- atts]
sbvToSV st b)
unless (null atts && sv == trueSV) $
send True $ "(" ++ asrt ++ " " ++ addAnnotations atts (show sv) ++ ")"
where asrt | isSoft = "assert-soft"
| True = "assert"
-- | Get the current configuration
getConfig :: (MonadIO m, MonadQuery m) => m SMTConfig
getConfig = queryConfig <$> getQueryState
-- | Get the objectives
getObjectives :: (MonadIO m, MonadQuery m) => m [Objective (SV, SV)]
getObjectives = do State{rOptGoals} <- queryState
io $ reverse <$> readIORef rOptGoals
-- | Get the program
getSBVPgm :: (MonadIO m, MonadQuery m) => m SBVPgm
getSBVPgm = do State{spgm} <- queryState
io $ readIORef spgm
-- | Get the assertions put in via 'Data.SBV.sAssert'
getSBVAssertions :: (MonadIO m, MonadQuery m) => m [(String, Maybe CallStack, SV)]
getSBVAssertions = do State{rAsserts} <- queryState
io $ reverse <$> readIORef rAsserts
-- | Generalization of 'Data.SBV.Control.io'
io :: MonadIO m => IO a -> m a
io = liftIO
-- | Sync-up the external solver with new context we have generated
syncUpSolver :: (MonadIO m, MonadQuery m) => ProgInfo -> IORef CnstMap -> IncState -> m ()
syncUpSolver progInfo rGlobalConsts is = do
cfg <- getConfig
-- update global consts to have the new ones
(newConsts, allConsts) <- liftIO $ do nc <- readIORef (rNewConsts is)
oc <- readIORef rGlobalConsts
let allConsts = Map.union nc oc
writeIORef rGlobalConsts allConsts
pure (nc, allConsts)
ls <- io $ do let swap (a, b) = (b, a)
cmp (a, _) (b, _) = a `compare` b
arrange (i, (at, rt, es)) = ((i, at, rt), es)
inps <- reverse <$> readIORef (rNewInps is)
ks <- readIORef (rNewKinds is)
arrs <- IMap.toAscList <$> readIORef (rNewArrs is)
tbls <- map arrange . sortBy cmp . map swap . Map.toList <$> readIORef (rNewTbls is)
uis <- Map.toAscList <$> readIORef (rNewUIs is)
as <- readIORef (rNewAsgns is)
constraints <- readIORef (rNewConstraints is)
let cnsts = sortBy cmp . map swap . Map.toList $ newConsts
return $ toIncSMTLib cfg progInfo inps ks (allConsts, cnsts) arrs tbls uis as constraints cfg
mapM_ (send True) $ mergeSExpr ls
-- | Retrieve the query context
getQueryState :: (MonadIO m, MonadQuery m) => m QueryState
getQueryState = do state <- queryState
mbQS <- io $ readIORef (rQueryState state)
case mbQS of
Nothing -> error $ unlines [ ""
, "*** Data.SBV: Impossible happened: Query context required in a non-query mode."
, "Please report this as a bug!"
]
Just qs -> return qs
-- | Generalization of 'Data.SBV.Control.modifyQueryState'
modifyQueryState :: (MonadIO m, MonadQuery m) => (QueryState -> QueryState) -> m ()
modifyQueryState f = do state <- queryState
mbQS <- io $ readIORef (rQueryState state)
case mbQS of
Nothing -> error $ unlines [ ""
, "*** Data.SBV: Impossible happened: Query context required in a non-query mode."
, "Please report this as a bug!"
]
Just qs -> let fqs = f qs
in fqs `seq` io $ writeIORef (rQueryState state) $ Just fqs
-- | Generalization of 'Data.SBV.Control.inNewContext'
inNewContext :: (MonadIO m, MonadQuery m) => (State -> IO a) -> m a
inNewContext act = do st@State{rconstMap, rProgInfo} <- queryState
(is, r) <- io $ withNewIncState st act
progInfo <- io $ readIORef rProgInfo
syncUpSolver progInfo rconstMap is
return r
-- | Generic 'Queriable' instance for 'SymVal' values
instance (MonadIO m, SymVal a) => Queriable m (SBV a) where
type QueryResult (SBV a) = a
create = freshVar_
project = getValue
embed = return . literal
-- | Generic 'Queriable' instance for things that are 'Fresh' and look like containers:
instance (MonadIO m, SymVal a, Foldable t, Traversable t, Fresh m (t (SBV a))) => Queriable m (t (SBV a)) where
type QueryResult (t (SBV a)) = t a
create = fresh
project = mapM getValue
embed = return . fmap literal
-- | Generalization of 'Data.SBV.Control.freshVar_'
freshVar_ :: forall a m. (MonadIO m, MonadQuery m, SymVal a) => m (SBV a)
freshVar_ = inNewContext $ fmap SBV . svMkSymVar QueryVar k Nothing
where k = kindOf (Proxy @a)
-- | Generalization of 'Data.SBV.Control.freshVar'
freshVar :: forall a m. (MonadIO m, MonadQuery m, SymVal a) => String -> m (SBV a)
freshVar nm = inNewContext $ fmap SBV . svMkSymVar QueryVar k (Just nm)
where k = kindOf (Proxy @a)
-- | Generalization of 'Data.SBV.Control.freshArray_'
freshArray_ :: (MonadIO m, MonadQuery m, SymArray array, HasKind a, HasKind b) => Maybe (SBV b) -> m (array a b)
freshArray_ = mkFreshArray Nothing
-- | Generalization of 'Data.SBV.Control.freshArray'
freshArray :: (MonadIO m, MonadQuery m, SymArray array, HasKind a, HasKind b) => String -> Maybe (SBV b) -> m (array a b)
freshArray nm = mkFreshArray (Just nm)
-- | Creating arrays, internal use only.
mkFreshArray :: (MonadIO m, MonadQuery m, SymArray array, HasKind a, HasKind b) => Maybe String -> Maybe (SBV b) -> m (array a b)
mkFreshArray mbNm mbVal = inNewContext $ newArrayInState mbNm (Left mbVal)
-- | Generalization of 'Data.SBV.Control.freshLambdaArray_'
freshLambdaArray_ :: (MonadIO m, MonadQuery m, SymArray array, HasKind a, HasKind b, Lambda (SymbolicT IO) (a -> b)) => (a -> b) -> m (array a b)
freshLambdaArray_ = mkFreshLambdaArray Nothing
-- | Generalization of 'Data.SBV.Control.freshLambdaArray'
freshLambdaArray :: (MonadIO m, MonadQuery m, SymArray array, HasKind a, HasKind b, Lambda (SymbolicT IO) (a -> b)) => String -> (a -> b) -> m (array a b)
freshLambdaArray nm = mkFreshLambdaArray (Just nm)
-- | Creating arrays, internal use only.
mkFreshLambdaArray :: forall m array a b. (MonadIO m, MonadQuery m, SymArray array, HasKind a, HasKind b, Lambda (SymbolicT IO) (a -> b)) => Maybe String -> (a -> b) -> m (array a b)
mkFreshLambdaArray mbNm f = inNewContext $ \st -> do
lam <- lambdaStr st (kindOf (Proxy @b)) f
newArrayInState mbNm (Right lam) st
-- | Generalization of 'Data.SBV.Control.queryDebug'
queryDebug :: (MonadIO m, MonadQuery m) => [String] -> m ()
queryDebug msgs = do QueryState{queryConfig} <- getQueryState
io $ debug queryConfig msgs
-- | Generalization of 'Data.SBV.Control.ask'
ask :: (MonadIO m, MonadQuery m) => String -> m String
ask s = do QueryState{queryAsk, queryTimeOutValue} <- getQueryState
case queryTimeOutValue of
Nothing -> queryDebug ["[SEND] " `alignPlain` s]
Just i -> queryDebug ["[SEND, TimeOut: " ++ showTimeoutValue i ++ "] " `alignPlain` s]
r <- io $ queryAsk queryTimeOutValue s
queryDebug ["[RECV] " `alignPlain` r]
return r
-- | Send a string to the solver, and return the response. Except, if the response
-- is one of the "ignore" ones, keep querying.
askIgnoring :: (MonadIO m, MonadQuery m) => String -> [String] -> m String
askIgnoring s ignoreList = do
QueryState{queryAsk, queryRetrieveResponse, queryTimeOutValue} <- getQueryState
case queryTimeOutValue of
Nothing -> queryDebug ["[SEND] " `alignPlain` s]
Just i -> queryDebug ["[SEND, TimeOut: " ++ showTimeoutValue i ++ "] " `alignPlain` s]
r <- io $ queryAsk queryTimeOutValue s
queryDebug ["[RECV] " `alignPlain` r]
let loop currentResponse
| currentResponse `notElem` ignoreList
= return currentResponse
| True
= do queryDebug ["[WARN] Previous response is explicitly ignored, beware!"]
newResponse <- io $ queryRetrieveResponse queryTimeOutValue
queryDebug ["[RECV] " `alignPlain` newResponse]
loop newResponse
loop r
-- | Generalization of 'Data.SBV.Control.send'
send :: (MonadIO m, MonadQuery m) => Bool -> String -> m ()
send requireSuccess s = do
QueryState{queryAsk, querySend, queryConfig, queryTimeOutValue} <- getQueryState
if requireSuccess && supportsCustomQueries (capabilities (solver queryConfig))
then do r <- io $ queryAsk queryTimeOutValue s
case words r of
["success"] -> queryDebug ["[GOOD] " `alignPlain` s]
_ -> do case queryTimeOutValue of
Nothing -> queryDebug ["[FAIL] " `alignPlain` s]
Just i -> queryDebug [("[FAIL, TimeOut: " ++ showTimeoutValue i ++ "] ") `alignPlain` s]
let cmd = case words (dropWhile (\c -> isSpace c || isPunctuation c) s) of
(c:_) -> c
_ -> "Command"
unexpected cmd s "success" Nothing r Nothing
else do -- fire and forget. if you use this, you're on your own!
queryDebug ["[FIRE] " `alignPlain` s]
io $ querySend queryTimeOutValue s
-- | Generalization of 'Data.SBV.Control.retrieveResponse'
retrieveResponse :: (MonadIO m, MonadQuery m) => String -> Maybe Int -> m [String]
retrieveResponse userTag mbTo = do
ts <- io (show <$> getZonedTime)
let synchTag = show $ userTag ++ " (at: " ++ ts ++ ")"
cmd = "(echo " ++ synchTag ++ ")"
queryDebug ["[SYNC] Attempting to synchronize with tag: " ++ synchTag]
send False cmd
QueryState{queryRetrieveResponse} <- getQueryState
let loop sofar = do
s <- io $ queryRetrieveResponse mbTo
-- strictly speaking SMTLib requires solvers to print quotes around
-- echo'ed strings, but they don't always do. Accommodate for that
-- here, though I wish we didn't have to.
if s == synchTag || show s == synchTag
then do queryDebug ["[SYNC] Synchronization achieved using tag: " ++ synchTag]
return $ reverse sofar
else do queryDebug ["[RECV] " `alignPlain` s]
loop (s : sofar)
loop []
-- | Generalization of 'Data.SBV.Control.getValue'
getValue :: (MonadIO m, MonadQuery m, SymVal a) => SBV a -> m a
getValue s = do sv <- inNewContext (`sbvToSV` s)
cv <- getValueCV Nothing sv
return $ fromCV cv
-- | A class which allows for sexpr-conversion to functions
class (HasKind r, SatModel r) => SMTFunction fun a r | fun -> a r where
sexprToArg :: fun -> [SExpr] -> Maybe a
smtFunName :: (MonadIO m, SolverContext m, MonadSymbolic m) => fun -> m (String, Maybe [String])
smtFunSaturate :: fun -> SBV r
smtFunType :: fun -> SBVType
smtFunDefault :: fun -> Maybe r
sexprToFun :: (MonadIO m, SolverContext m, MonadQuery m, MonadSymbolic m, SymVal r) => fun -> (String, SExpr) -> m (Either String ([(a, r)], r))
{-# MINIMAL sexprToArg, smtFunSaturate, smtFunType #-}
-- Given the function, figure out a default "return value"
smtFunDefault _
| let v = defaultKindedValue (kindOf (Proxy @r)), Just (res, []) <- parseCVs [v]
= Just res
| True
= Nothing
-- Given the function, determine what its name is and do some sanity checks
smtFunName f = do st@State{rUIMap} <- contextState
uiMap <- liftIO $ readIORef rUIMap
nm <- findName st uiMap
-- Read the uiMap again here. Why? Because the act of finding the name might've
-- introduced it as an uninterperted name!
newUIMap <- liftIO $ readIORef rUIMap
case nm `Map.lookup` newUIMap of
Nothing -> cantFind newUIMap
Just (mbArgs, _) -> pure (nm, mbArgs)
where cantFind uiMap = error $ unlines $ [ ""
, "*** Data.SBV.getFunction: Must be called on an uninterpreted function!"
, "***"
, "*** Expected to receive a function created by \"uninterpret\""
]
++ tag
++ [ "***"
, "*** Make sure to call getFunction on uninterpreted functions only!"
, "*** If that is already the case, please report this as a bug."
]
where tag = case map fst (Map.toList uiMap) of
[] -> [ "*** But, there are no matching uninterpreted functions in the context." ]
[x] -> [ "*** The only possible candidate is: " ++ x ]
cands -> [ "*** Candidates are:"
, "*** " ++ intercalate ", " cands
]
findName st@State{spgm} uiMap = do
r <- liftIO $ sbvToSV st (smtFunSaturate f)
liftIO $ forceSVArg r
SBVPgm asgns <- liftIO $ readIORef spgm
case S.findIndexR ((== r) . fst) asgns of
Nothing -> cantFind uiMap
Just i -> case asgns `S.index` i of
(sv, SBVApp (Uninterpreted nm) _) | r == sv -> return nm
_ -> cantFind uiMap
sexprToFun f (s, e) = do nm <- fst <$> smtFunName f
mbRes <- case parseSExprFunction e of
Just (Left nm') -> case (nm == nm', smtFunDefault f) of
(True, Just v) -> return $ Just ([], v)
_ -> bailOut nm
Just (Right v) -> return $ convert v
Nothing -> do mbPVS <- pointWiseExtract nm (smtFunType f)
return $ mbPVS >>= convert
pure $ maybe (Left s) Right mbRes
where convert (vs, d) = (,) <$> mapM sexprPoint vs <*> sexprToVal d
sexprPoint (as, v) = (,) <$> sexprToArg f as <*> sexprToVal v
bailOut nm = error $ unlines [ ""
, "*** Data.SBV.getFunction: Unable to extract an interpretation for function " ++ show nm
, "***"
, "*** Failed while trying to extract a pointwise interpretation."
, "***"
, "*** This could be a bug with SBV or the backend solver. Please report!"
]
-- | Registering an uninterpreted SMT function. This is typically not necessary as uses of the UI
-- function itself will register it automatically. But there are cases where doing this explicitly can
-- come in handy.
registerUISMTFunction :: (MonadIO m, SolverContext m, MonadSymbolic m) => SMTFunction fun a r => fun -> m ()
registerUISMTFunction f = do st <- contextState
nmas <- smtFunName f
io $ newUninterpreted st nmas (smtFunType f) UINone
-- | Pointwise function value extraction. If we get unlucky and can't parse z3's output (happens
-- when we have all booleans and z3 decides to spit out an expression), just brute force our
-- way out of it. Note that we only do this if we have a pure boolean type, as otherwise we'd blow
-- up. And I think it'll only be necessary then, I haven't seen z3 try anything smarter in other scenarios.
pointWiseExtract :: forall m. (MonadIO m, MonadQuery m) => String -> SBVType -> m (Maybe ([([SExpr], SExpr)], SExpr))
pointWiseExtract nm typ = tryPointWise
where trueSExpr = ENum (1, Nothing)
falseSExpr = ENum (0, Nothing)
isTrueSExpr (ENum (1, Nothing)) = True
isTrueSExpr (ENum (0, Nothing)) = False
isTrueSExpr s = error $ "Data.SBV.pointWiseExtract: Impossible happened: Received: " ++ show s
(nArgs, isBoolFunc) = case typ of
SBVType ts -> (length ts - 1, all (== KBool) ts)
getBVal :: [SExpr] -> m ([SExpr], SExpr)
getBVal args = do let shc c | isTrueSExpr c = "true"
| True = "false"
as = unwords $ map shc args
cmd = "(get-value ((" ++ nm ++ " " ++ as ++ ")))"
bad = unexpected "get-value" cmd ("pointwise value of boolean function " ++ nm ++ " on " ++ show as) Nothing
r <- ask cmd
parse r bad $ \case EApp [EApp [_, e]] -> return (args, e)
_ -> bad r Nothing
getBVals :: m [([SExpr], SExpr)]
getBVals = mapM getBVal $ replicateM nArgs [falseSExpr, trueSExpr]
tryPointWise
| not isBoolFunc
= return Nothing
| nArgs < 1
= error $ "Data.SBV.pointWiseExtract: Impossible happened, nArgs < 1: " ++ show nArgs ++ " type: " ++ show typ
| True
= do vs <- getBVals
-- Pick the value that will give us the fewer entries
let (trues, falses) = partition (\(_, v) -> isTrueSExpr v) vs
return $ Just $ if length trues <= length falses
then (trues, falseSExpr)
else (falses, trueSExpr)
-- | For saturation purposes, get a proper argument. The forall quantification
-- is safe here since we only use in smtFunSaturate calls, which looks at the
-- kind stored inside only.
mkSaturatingArg :: forall a. Kind -> SBV a
mkSaturatingArg k = SBV $ SVal k (Left (defaultKindedValue k))
-- | Functions of arity 1
instance ( SymVal a, HasKind a
, SatModel r, HasKind r
) => SMTFunction (SBV a -> SBV r) a r
where
sexprToArg _ [a0] = sexprToVal a0
sexprToArg _ _ = Nothing
smtFunType _ = SBVType [kindOf (Proxy @a), kindOf (Proxy @r)]
smtFunSaturate f = f $ mkSaturatingArg (kindOf (Proxy @a))
-- | Functions of arity 2
instance ( SymVal a, HasKind a
, SymVal b, HasKind b
, SatModel r, HasKind r
) => SMTFunction (SBV a -> SBV b -> SBV r) (a, b) r
where
sexprToArg _ [a0, a1] = (,) <$> sexprToVal a0 <*> sexprToVal a1
sexprToArg _ _ = Nothing
smtFunType _ = SBVType [kindOf (Proxy @a), kindOf (Proxy @b), kindOf (Proxy @r)]
smtFunSaturate f = f (mkSaturatingArg (kindOf (Proxy @a)))
(mkSaturatingArg (kindOf (Proxy @b)))
-- | Functions of arity 3
instance ( SymVal a, HasKind a
, SymVal b, HasKind b
, SymVal c, HasKind c
, SatModel r, HasKind r
) => SMTFunction (SBV a -> SBV b -> SBV c -> SBV r) (a, b, c) r
where
sexprToArg _ [a0, a1, a2] = (,,) <$> sexprToVal a0 <*> sexprToVal a1 <*> sexprToVal a2
sexprToArg _ _ = Nothing
smtFunType _ = SBVType [kindOf (Proxy @a), kindOf (Proxy @b), kindOf (Proxy @c), kindOf (Proxy @r)]
smtFunSaturate f = f (mkSaturatingArg (kindOf (Proxy @a)))
(mkSaturatingArg (kindOf (Proxy @b)))
(mkSaturatingArg (kindOf (Proxy @c)))
-- | Functions of arity 4
instance ( SymVal a, HasKind a
, SymVal b, HasKind b
, SymVal c, HasKind c
, SymVal d, HasKind d
, SatModel r, HasKind r
) => SMTFunction (SBV a -> SBV b -> SBV c -> SBV d -> SBV r) (a, b, c, d) r
where
sexprToArg _ [a0, a1, a2, a3] = (,,,) <$> sexprToVal a0 <*> sexprToVal a1 <*> sexprToVal a2 <*> sexprToVal a3
sexprToArg _ _ = Nothing
smtFunType _ = SBVType [kindOf (Proxy @a), kindOf (Proxy @b), kindOf (Proxy @c), kindOf (Proxy @d), kindOf (Proxy @r)]
smtFunSaturate f = f (mkSaturatingArg (kindOf (Proxy @a)))
(mkSaturatingArg (kindOf (Proxy @b)))
(mkSaturatingArg (kindOf (Proxy @c)))
(mkSaturatingArg (kindOf (Proxy @d)))
-- | Functions of arity 5
instance ( SymVal a, HasKind a
, SymVal b, HasKind b
, SymVal c, HasKind c
, SymVal d, HasKind d
, SymVal e, HasKind e
, SatModel r, HasKind r
) => SMTFunction (SBV a -> SBV b -> SBV c -> SBV d -> SBV e -> SBV r) (a, b, c, d, e) r
where
sexprToArg _ [a0, a1, a2, a3, a4] = (,,,,) <$> sexprToVal a0 <*> sexprToVal a1 <*> sexprToVal a2 <*> sexprToVal a3 <*> sexprToVal a4
sexprToArg _ _ = Nothing
smtFunType _ = SBVType [kindOf (Proxy @a), kindOf (Proxy @b), kindOf (Proxy @c), kindOf (Proxy @d), kindOf (Proxy @e), kindOf (Proxy @r)]
smtFunSaturate f = f (mkSaturatingArg (kindOf (Proxy @a)))
(mkSaturatingArg (kindOf (Proxy @b)))
(mkSaturatingArg (kindOf (Proxy @c)))
(mkSaturatingArg (kindOf (Proxy @d)))
(mkSaturatingArg (kindOf (Proxy @e)))
-- | Functions of arity 6
instance ( SymVal a, HasKind a
, SymVal b, HasKind b
, SymVal c, HasKind c
, SymVal d, HasKind d
, SymVal e, HasKind e
, SymVal f, HasKind f
, SatModel r, HasKind r
) => SMTFunction (SBV a -> SBV b -> SBV c -> SBV d -> SBV e -> SBV f -> SBV r) (a, b, c, d, e, f) r
where
sexprToArg _ [a0, a1, a2, a3, a4, a5] = (,,,,,) <$> sexprToVal a0 <*> sexprToVal a1 <*> sexprToVal a2 <*> sexprToVal a3 <*> sexprToVal a4 <*> sexprToVal a5
sexprToArg _ _ = Nothing
smtFunType _ = SBVType [kindOf (Proxy @a), kindOf (Proxy @b), kindOf (Proxy @c), kindOf (Proxy @d), kindOf (Proxy @e), kindOf (Proxy @f), kindOf (Proxy @r)]
smtFunSaturate f = f (mkSaturatingArg (kindOf (Proxy @a)))
(mkSaturatingArg (kindOf (Proxy @b)))
(mkSaturatingArg (kindOf (Proxy @c)))
(mkSaturatingArg (kindOf (Proxy @d)))
(mkSaturatingArg (kindOf (Proxy @e)))
(mkSaturatingArg (kindOf (Proxy @f)))
-- | Functions of arity 7
instance ( SymVal a, HasKind a
, SymVal b, HasKind b
, SymVal c, HasKind c
, SymVal d, HasKind d
, SymVal e, HasKind e
, SymVal f, HasKind f
, SymVal g, HasKind g
, SatModel r, HasKind r
) => SMTFunction (SBV a -> SBV b -> SBV c -> SBV d -> SBV e -> SBV f -> SBV g -> SBV r) (a, b, c, d, e, f, g) r
where
sexprToArg _ [a0, a1, a2, a3, a4, a5, a6] = (,,,,,,) <$> sexprToVal a0 <*> sexprToVal a1 <*> sexprToVal a2 <*> sexprToVal a3 <*> sexprToVal a4 <*> sexprToVal a5 <*> sexprToVal a6
sexprToArg _ _ = Nothing
smtFunType _ = SBVType [kindOf (Proxy @a), kindOf (Proxy @b), kindOf (Proxy @c), kindOf (Proxy @d), kindOf (Proxy @e), kindOf (Proxy @f), kindOf (Proxy @g), kindOf (Proxy @r)]
smtFunSaturate f = f (mkSaturatingArg (kindOf (Proxy @a)))
(mkSaturatingArg (kindOf (Proxy @b)))
(mkSaturatingArg (kindOf (Proxy @c)))
(mkSaturatingArg (kindOf (Proxy @d)))
(mkSaturatingArg (kindOf (Proxy @e)))
(mkSaturatingArg (kindOf (Proxy @f)))
(mkSaturatingArg (kindOf (Proxy @g)))
-- | Functions of arity 8
instance ( SymVal a, HasKind a
, SymVal b, HasKind b
, SymVal c, HasKind c
, SymVal d, HasKind d
, SymVal e, HasKind e
, SymVal f, HasKind f
, SymVal g, HasKind g
, SymVal h, HasKind h
, SatModel r, HasKind r
) => SMTFunction (SBV a -> SBV b -> SBV c -> SBV d -> SBV e -> SBV f -> SBV g -> SBV h -> SBV r) (a, b, c, d, e, f, g, h) r
where
sexprToArg _ [a0, a1, a2, a3, a4, a5, a6, a7] = (,,,,,,,) <$> sexprToVal a0 <*> sexprToVal a1 <*> sexprToVal a2 <*> sexprToVal a3 <*> sexprToVal a4 <*> sexprToVal a5 <*> sexprToVal a6 <*> sexprToVal a7
sexprToArg _ _ = Nothing
smtFunType _ = SBVType [kindOf (Proxy @a), kindOf (Proxy @b), kindOf (Proxy @c), kindOf (Proxy @d), kindOf (Proxy @e), kindOf (Proxy @f), kindOf (Proxy @g), kindOf (Proxy @h), kindOf (Proxy @r)]
smtFunSaturate f = f (mkSaturatingArg (kindOf (Proxy @a)))
(mkSaturatingArg (kindOf (Proxy @b)))
(mkSaturatingArg (kindOf (Proxy @c)))
(mkSaturatingArg (kindOf (Proxy @d)))
(mkSaturatingArg (kindOf (Proxy @e)))
(mkSaturatingArg (kindOf (Proxy @f)))
(mkSaturatingArg (kindOf (Proxy @g)))
(mkSaturatingArg (kindOf (Proxy @h)))
-- Turn "((F (lambda ((x!1 Int)) (+ 3 (* 2 x!1)))))"
-- into something more palatable.
-- If we can't do that, we simply return the input unchanged
trimFunctionResponse :: String -> String -> Maybe [String] -> String
trimFunctionResponse resp nm mbArgs
| Just parsed <- makeHaskellFunction resp nm mbArgs
= parsed
| True
= def $ case trim resp of
'(':'(':rest | nm `isPrefixOf` rest -> butLast2 $ trim (drop (length nm) rest)
_ -> resp
where trim = dropWhile isSpace
butLast2 = reverse . drop 2 . reverse
def x = nm ++ " = fromSMTLib " ++ x
-- | Generalization of 'Data.SBV.Control.getFunction'
getFunction :: (MonadIO m, MonadQuery m, SolverContext m, MonadSymbolic m, SymVal a, SymVal r, SMTFunction fun a r)
=> fun -> m (Either String ([(a, r)], r))
getFunction f = do (nm, args) <- smtFunName f
let cmd = "(get-value (" ++ nm ++ "))"
bad = unexpected "getFunction" cmd "a function value" Nothing
r <- ask cmd
parse r bad $ \case EApp [EApp [ECon o, e]] | o == nm -> do mbAssocs <- sexprToFun f (trimFunctionResponse r nm args, e)
case mbAssocs of
Right assocs -> return $ Right assocs
Left raw -> do mbPVS <- pointWiseExtract nm (smtFunType f)
case mbPVS >>= convert of
Just x -> return $ Right x
Nothing -> return $ Left raw
_ -> bad r Nothing
where convert (vs, d) = (,) <$> mapM sexprPoint vs <*> sexprToVal d
sexprPoint (as, v) = (,) <$> sexprToArg f as <*> sexprToVal v
-- | Generalization of 'Data.SBV.Control.getUninterpretedValue'
getUninterpretedValue :: (MonadIO m, MonadQuery m, HasKind a) => SBV a -> m String
getUninterpretedValue s =
case kindOf s of
KUserSort _ Nothing -> do sv <- inNewContext (`sbvToSV` s)
let nm = show sv
cmd = "(get-value (" ++ nm ++ "))"
bad = unexpected "getValue" cmd "a model value" Nothing
r <- ask cmd
parse r bad $ \case EApp [EApp [ECon o, ECon v]] | o == show sv -> return v
_ -> bad r Nothing
k -> error $ unlines [""
, "*** SBV.getUninterpretedValue: Called on an 'interpreted' kind"
, "*** "
, "*** Kind: " ++ show k
, "*** Hint: Use 'getValue' to extract value for interpreted kinds."
, "*** "
, "*** Only truly uninterpreted sorts should be used with 'getUninterpretedValue.'"
]
-- | Get the value of a term, but in CV form. Used internally. The model-index, in particular is extremely Z3 specific!
getValueCVHelper :: (MonadIO m, MonadQuery m) => Maybe Int -> SV -> m CV
getValueCVHelper mbi s
| s == trueSV
= return trueCV
| s == falseSV
= return falseCV
| True
= extractValue mbi (show s) (kindOf s)
-- | "Make up" a CV for this type. Like zero, but smarter.
defaultKindedValue :: Kind -> CV
defaultKindedValue k = CV k $ cvt k
where cvt :: Kind -> CVal
cvt KBool = CInteger 0
cvt KBounded{} = CInteger 0
cvt KUnbounded = CInteger 0
cvt KReal = CAlgReal 0
cvt (KUserSort s ui) = uninterp s ui
cvt KFloat = CFloat 0
cvt KDouble = CDouble 0
cvt KRational = CRational 0
cvt (KFP eb sb) = CFP (fpZero False eb sb)
cvt KChar = CChar '\NUL' -- why not?
cvt KString = CString ""
cvt (KList _) = CList []
cvt (KSet _) = CSet $ RegularSet Set.empty -- why not? Arguably, could be the universal set
cvt (KTuple ks) = CTuple $ map cvt ks
cvt (KMaybe _) = CMaybe Nothing
cvt (KEither k1 _) = CEither . Left $ cvt k1 -- why not?
-- Tricky case of uninterpreted
uninterp _ (Just (c:_)) = CUserSort (Just 1, c)
uninterp _ (Just []) = error "defaultKindedValue: enumerated kind with no constructors!"
-- A completely uninterpreted sort, i.e., no elements. Return the witness element for it.
uninterp s Nothing = CUserSort (Nothing, s ++ "_witness")
-- | Go from an SExpr directly to a value
sexprToVal :: forall a. SymVal a => SExpr -> Maybe a
sexprToVal e = fromCV <$> recoverKindedValue (kindOf (Proxy @a)) e
-- | Recover a given solver-printed value with a possible interpretation
recoverKindedValue :: Kind -> SExpr -> Maybe CV
recoverKindedValue k e = case k of
KBool | ENum (i, _) <- e -> Just $ mkConstCV k i
| True -> Nothing
KBounded{} | ENum (i, _) <- e -> Just $ mkConstCV k i
| True -> Nothing
KUnbounded | ENum (i, _) <- e -> Just $ mkConstCV k i
| True -> Nothing
KReal | ENum (i, _) <- e -> Just $ mkConstCV k i
| EReal i <- e -> Just $ CV KReal (CAlgReal i)
| True -> interpretInterval e
KUserSort{} | ECon s <- e -> Just $ CV k $ CUserSort (getUIIndex k s, s)
| True -> Nothing
KFloat | ENum (i, _) <- e -> Just $ mkConstCV k i
| EFloat i <- e -> Just $ CV KFloat (CFloat i)
| True -> Nothing
KDouble | ENum (i, _) <- e -> Just $ mkConstCV k i
| EDouble i <- e -> Just $ CV KDouble (CDouble i)
| True -> Nothing
KFP eb sb | ENum (i, _) <- e -> Just $ CV k $ CFP $ fpFromInteger eb sb i
| EFloat f <- e -> Just $ CV k $ CFP $ fpFromFloat eb sb f
| EDouble d <- e -> Just $ CV k $ CFP $ fpFromDouble eb sb d
| EFloatingPoint c <- e -> Just $ CV k $ CFP c
| True -> Nothing
KChar | ECon s <- e -> Just $ CV KChar $ CChar $ interpretChar s
| True -> Nothing
KString | ECon s <- e -> Just $ CV KString $ CString $ interpretString s
| True -> Nothing
KRational -> Just $ CV k $ CRational $ interpretRational e
KList ek -> Just $ CV k $ CList $ interpretList ek e
KSet ek -> Just $ CV k $ CSet $ interpretSet ek e
KTuple{} -> Just $ CV k $ CTuple $ interpretTuple e
KMaybe{} -> Just $ CV k $ CMaybe $ interpretMaybe k e
KEither{} -> Just $ CV k $ CEither $ interpretEither k e
where getUIIndex (KUserSort _ (Just xs)) i = i `elemIndex` xs
getUIIndex _ _ = Nothing
stringLike xs = length xs >= 2 && head xs == '"' && last xs == '"'
-- Make sure strings are really strings
interpretString xs
| not (stringLike xs)
= error $ "Expected a string constant with quotes, received: <" ++ xs ++ ">"
| True
= qfsToString $ tail (init xs)
interpretChar xs = case interpretString xs of
[c] -> c
_ -> error $ "Expected a singleton char constant, received: <" ++ xs ++ ">"
interpretRational (EApp [ECon "SBV.Rational", v1, v2])
| Just (CV _ (CInteger n)) <- recoverKindedValue KUnbounded v1
, Just (CV _ (CInteger d)) <- recoverKindedValue KUnbounded v2
= n % d
interpretRational xs = error $ "Expected a rational constant, received: <" ++ show xs ++ ">"
interpretList ek topExpr = walk topExpr
where walk (EApp [ECon "as", ECon "seq.empty", _]) = []
walk (EApp [ECon "seq.unit", v]) = case recoverKindedValue ek v of
Just w -> [cvVal w]
Nothing -> error $ "Cannot parse a sequence item of kind " ++ show ek ++ " from: " ++ show v ++ extra v
walk (EApp (ECon "seq.++" : rest)) = concatMap walk rest
walk cur = error $ "Expected a sequence constant, but received: " ++ show cur ++ extra cur
extra cur | show cur == t = ""
| True = "\nWhile parsing: " ++ t
where t = show topExpr
-- Essentially treat sets as functions, since we do allow for store associations
interpretSet ke setExpr
| isUniversal setExpr = ComplementSet Set.empty
| isEmpty setExpr = RegularSet Set.empty
| Just (Right assocs) <- mbAssocs = decode assocs
| True = tbd "Expected a set value, but couldn't decipher the solver output."
where tbd :: String -> a
tbd w = error $ unlines [ ""
, "*** Data.SBV.interpretSet: Unable to process solver output."
, "***"
, "*** Kind : " ++ show (KSet ke)
, "*** Received: " ++ show setExpr
, "*** Reason : " ++ w
, "***"
, "*** This is either a bug or something SBV currently does not support."
, "*** Please report this as a feature request!"
]
isTrue (ENum (1, Nothing)) = True
isTrue (ENum (0, Nothing)) = False
isTrue bad = tbd $ "Non-boolean membership value seen: " ++ show bad
isUniversal (EApp [EApp [ECon "as", ECon "const", EApp [ECon "Array", _, ECon "Bool"]], r]) = isTrue r
isUniversal _ = False
isEmpty (EApp [EApp [ECon "as", ECon "const", EApp [ECon "Array", _, ECon "Bool"]], r]) = not $ isTrue r
isEmpty _ = False
mbAssocs = parseSExprFunction setExpr
decode (args, r) | isTrue r = ComplementSet $ Set.fromList [x | (x, False) <- concatMap (contents True) args] -- deletions from universal
| True = RegularSet $ Set.fromList [x | (x, True) <- concatMap (contents False) args] -- additions to empty
contents cvt ([v], r) = let t = isTrue r in map (, t) (element cvt v)
contents _ bad = tbd $ "Multi-valued set member seen: " ++ show bad
element cvt x = case (cvt, ke) of
(True, KChar) -> case recoverKindedValue KString x of
Just v -> case cvVal v of
CString [c] -> [CChar c]
CString _ -> []
_ -> tbd $ "Unexpected value for kind: " ++ show (x, ke)
Nothing -> tbd $ "Unexpected value for kind: " ++ show (x, ke)
_ -> case recoverKindedValue ke x of
Just v -> [cvVal v]
Nothing -> tbd $ "Unexpected value for kind: " ++ show (x, ke)
interpretTuple te = walk (1 :: Int) (zipWith recoverKindedValue ks args) []
where (ks, n) = case k of
KTuple eks -> (eks, length eks)
_ -> error $ unlines [ "Impossible: Expected a tuple kind, but got: " ++ show k
, "While trying to parse: " ++ show te
]
-- | Convert a sexpr of n-tuple to constituent sexprs. Z3 and CVC4 differ here on how they
-- present tuples, so we accommodate both:
args = try te
where -- Z3 way
try (EApp (ECon f : as)) = case splitAt (T.length "mkSBVTuple") f of
("mkSBVTuple", c) | all isDigit c && read c == n && length as == n -> as
_ -> bad
-- CVC4 way
try (EApp (EApp [ECon "as", ECon f, _] : as)) = try (EApp (ECon f : as))
try _ = bad
bad = error $ "Data.SBV.sexprToTuple: Impossible: Expected a constructor for " ++ show n ++ " tuple, but got: " ++ show te
walk _ [] sofar = reverse sofar
walk i (Just el:es) sofar = walk (i+1) es (cvVal el : sofar)
walk i (Nothing:_) _ = error $ unlines [ "Couldn't parse a tuple element at position " ++ show i
, "Kind: " ++ show k
, "Expr: " ++ show te
]
-- SMaybe
interpretMaybe (KMaybe _) (ECon "nothing_SBVMaybe") = Nothing
interpretMaybe (KMaybe ek) (EApp [ECon "just_SBVMaybe", a]) = case recoverKindedValue ek a of
Just (CV _ v) -> Just v
Nothing -> error $ unlines [ "Couldn't parse a maybe just value"
, "Kind: " ++ show ek
, "Expr: " ++ show a
]
-- CVC4 puts in full ascriptions, handle those:
interpretMaybe _ ( EApp [ECon "as", ECon "nothing_SBVMaybe", _]) = Nothing
interpretMaybe mk (EApp [EApp [ECon "as", ECon "just_SBVMaybe", _], a]) = interpretMaybe mk (EApp [ECon "just_SBVMaybe", a])
interpretMaybe _ other = error $ "Expected an SMaybe sexpr, but received: " ++ show (k, other)
-- SEither
interpretEither (KEither k1 _) (EApp [ECon "left_SBVEither", a]) = case recoverKindedValue k1 a of
Just (CV _ v) -> Left v
Nothing -> error $ unlines [ "Couldn't parse an either value on the left"
, "Kind: " ++ show k1
, "Expr: " ++ show a
]
interpretEither (KEither _ k2) (EApp [ECon "right_SBVEither", b]) = case recoverKindedValue k2 b of
Just (CV _ v) -> Right v
Nothing -> error $ unlines [ "Couldn't parse an either value on the right"
, "Kind: " ++ show k2
, "Expr: " ++ show b
]
-- CVC4 puts full ascriptions:
interpretEither ek (EApp [EApp [ECon "as", ECon "left_SBVEither", _], a]) = interpretEither ek (EApp [ECon "left_SBVEither", a])
interpretEither ek (EApp [EApp [ECon "as", ECon "right_SBVEither", _], b]) = interpretEither ek (EApp [ECon "right_SBVEither", b])
interpretEither _ other = error $ "Expected an SEither sexpr, but received: " ++ show (k, other)
-- Intervals, for dReal
interpretInterval expr = case expr of
EApp [ECon "interval", lo, hi] -> do vlo <- getBorder lo
vhi <- getBorder hi
pure $ CV KReal (CAlgReal (AlgInterval vlo vhi))
_ -> Nothing
where getBorder (EApp [ECon "open", v]) = recoverKindedValue KReal v >>= border OpenPoint
getBorder (EApp [ECon "closed", v]) = recoverKindedValue KReal v >>= border ClosedPoint
getBorder _ = Nothing
border b (CV KReal (CAlgReal (AlgRational True v))) = pure $ b v
border _ other = error $ "Data.SBV.interpretInterval.border: Expected a real-valued sexp, but received: " ++ show other
-- | Generalization of 'Data.SBV.Control.getValueCV'
getValueCV :: (MonadIO m, MonadQuery m) => Maybe Int -> SV -> m CV
getValueCV mbi s
| kindOf s /= KReal
= getValueCVHelper mbi s
| True
= do cfg <- getConfig
if not (supportsApproxReals (capabilities (solver cfg)))
then getValueCVHelper mbi s
else do send True "(set-option :pp.decimal false)"
rep1 <- getValueCVHelper mbi s
send True "(set-option :pp.decimal true)"
send True $ "(set-option :pp.decimal_precision " ++ show (printRealPrec cfg) ++ ")"
rep2 <- getValueCVHelper mbi s
let bad = unexpected "getValueCV" "get-value" ("a real-valued binding for " ++ show s) Nothing (show (rep1, rep2)) Nothing
case (rep1, rep2) of
(CV KReal (CAlgReal a), CV KReal (CAlgReal b)) -> return $ CV KReal (CAlgReal (mergeAlgReals ("Cannot merge real-values for " ++ show s) a b))
_ -> bad
-- | Retrieve value from the solver
extractValue :: forall m. (MonadIO m, MonadQuery m) => Maybe Int -> String -> Kind -> m CV
extractValue mbi nm k = do
let modelIndex = case mbi of
Nothing -> ""
Just i -> " :model_index " ++ show i
cmd = "(get-value (" ++ nm ++ ")" ++ modelIndex ++ ")"
bad = unexpected "getModel" cmd ("a value binding for kind: " ++ show k) Nothing
r <- ask cmd
let recover val = case recoverKindedValue k val of
Just cv -> return cv
Nothing -> bad r Nothing
parse r bad $ \case EApp [EApp [ECon v, val]] | v == nm -> recover val
_ -> bad r Nothing
-- | Generalization of 'Data.SBV.Control.getUICVal'
getUICVal :: forall m. (MonadIO m, MonadQuery m) => Maybe Int -> (String, (Maybe [String], SBVType)) -> m CV
getUICVal mbi (nm, (_, t)) = case t of
SBVType [k] -> extractValue mbi nm k
_ -> error $ "SBV.getUICVal: Expected to be called on an uninterpeted value of a base type, received something else: " ++ show (nm, t)
-- | Generalization of 'Data.SBV.Control.getUIFunCVAssoc'
getUIFunCVAssoc :: forall m. (MonadIO m, MonadQuery m) => Maybe Int -> (String, (Maybe [String], SBVType)) -> m (Either String ([([CV], CV)], CV))
getUIFunCVAssoc mbi (nm, (mbArgs, typ)) = do
let modelIndex = case mbi of
Nothing -> ""
Just i -> " :model_index " ++ show i
cmd = "(get-value (" ++ nm ++ ")" ++ modelIndex ++ ")"
bad = unexpected "get-value" cmd "a function value" Nothing
r <- ask cmd
let (ats, rt) = case typ of
SBVType as | length as > 1 -> (init as, last as)
_ -> error $ "Data.SBV.getUIFunCVAssoc: Expected a function type, got: " ++ show typ
let convert (vs, d) = (,) <$> mapM toPoint vs <*> toRes d
toPoint (as, v)
| length as == length ats = (,) <$> zipWithM recoverKindedValue ats as <*> toRes v
| True = error $ "Data.SBV.getUIFunCVAssoc: Mismatching type/value arity, got: " ++ show (as, ats)
toRes :: SExpr -> Maybe CV
toRes = recoverKindedValue rt
-- if we fail to parse, we'll return this answer as the string
fallBack = trimFunctionResponse r nm mbArgs
-- In case we end up in the pointwise scenario, boolify the result
-- as that's the only type we support here.
tryPointWise = do mbSExprs <- pointWiseExtract nm typ
case mbSExprs of
Nothing -> pure $ Left fallBack
Just sExprs -> pure $ maybe (Left fallBack) Right (convert sExprs)
parse r bad $ \case EApp [EApp [ECon o, e]] | o == nm -> case parseSExprFunction e of
Just (Right assocs) | Just res <- convert assocs -> return (Right res)
| True -> tryPointWise
Just (Left nm') | nm == nm', let res = defaultKindedValue rt -> return (Right ([], res))
| True -> bad r Nothing
Nothing -> tryPointWise
_ -> bad r Nothing
-- | Generalization of 'Data.SBV.Control.checkSat'
checkSat :: (MonadIO m, MonadQuery m) => m CheckSatResult
checkSat = do cfg <- getConfig
checkSatUsing $ satCmd cfg
-- | Generalization of 'Data.SBV.Control.checkSatUsing'
checkSatUsing :: (MonadIO m, MonadQuery m) => String -> m CheckSatResult
checkSatUsing cmd = do let bad = unexpected "checkSat" cmd "one of sat/unsat/unknown" Nothing
-- Sigh.. Ignore some of the pesky warnings. We only do it as an exception here.
ignoreList = ["WARNING: optimization with quantified constraints is not supported"]
r <- askIgnoring cmd ignoreList
-- query for the precision if supported
let getPrecision = do cfg <- getConfig
case supportsDeltaSat (capabilities (solver cfg)) of
Nothing -> pure Nothing
Just o -> Just <$> ask o
parse r bad $ \case ECon "sat" -> return Sat
ECon "unsat" -> return Unsat
ECon "unknown" -> return Unk
ECon "delta-sat" -> DSat <$> getPrecision
_ -> bad r Nothing
-- | What are the top level inputs? Trackers are returned as top level existentials
getTopLevelInputs :: (MonadIO m, MonadQuery m) => m UserInputs
getTopLevelInputs = do State{rinps} <- queryState
Inputs{userInputs, internInputs} <- liftIO $ readIORef rinps
pure $ userInputs <> internInputs
-- | Get observables, i.e., those explicitly labeled by the user with a call to 'Data.SBV.observe'.
getObservables :: (MonadIO m, MonadQuery m) => m [(Name, CV)]
getObservables = do State{rObservables} <- queryState
rObs <- liftIO $ readIORef rObservables
-- This intentionally reverses the result; since 'rObs' stores in reversed order
let walk [] !sofar = return sofar
walk ((n, f, s):os) !sofar = do cv <- getValueCV Nothing s
if f cv
then walk os ((n, cv) : sofar)
else walk os sofar
walk (F.toList rObs) []
-- | Get UIs, both constants and functions. This call returns both the before and after query ones.
-- Generalization of 'Data.SBV.Control.getUIs'.
getUIs :: forall m. (MonadIO m, MonadQuery m) => m [(String, (Maybe [String], SBVType))]
getUIs = do State{rUIMap, rDefns, rIncState} <- queryState
-- NB. no need to worry about new-defines, because we don't allow definitions once query mode starts
defines <- do allDefs <- io $ readIORef rDefns
pure $ mapMaybe smtDefGivenName allDefs
prior <- io $ readIORef rUIMap
new <- io $ readIORef rIncState >>= readIORef . rNewUIs
return $ nub $ sort [p | p@(n, _) <- Map.toList prior ++ Map.toList new, n `notElem` defines]
-- | Return all satisfying models.
getAllSatResult :: forall m. (MonadIO m, MonadQuery m, SolverContext m) => m AllSatResult
getAllSatResult = do queryDebug ["*** Checking Satisfiability, all solutions.."]
cfg <- getConfig
unless (supportsCustomQueries (capabilities (solver cfg))) $
error $ unlines [ ""
, "*** Data.SBV: Backend solver " ++ show (name (solver cfg)) ++ " does not support custom queries."
, "***"
, "*** Custom query support is needed for allSat functionality."
, "*** Please use a solver that supports this feature."
]
topState@State{rUsedKinds} <- queryState
ki <- liftIO $ readIORef rUsedKinds
allModelInputs <- getTopLevelInputs
allUninterpreteds <- getUIs
-- Functions have at least two kinds in their type and all components must be "interpreted"
let allUiFuns = [u | allSatTrackUFs cfg -- config says consider UIFs
, u@(nm, (_, SBVType as)) <- allUninterpreteds, length as > 1 -- get the function ones
, not (mustIgnoreVar cfg nm) -- make sure they aren't explicitly ignored
]
allUiRegs = [u | u@(nm, (_, SBVType as)) <- allUninterpreteds, length as == 1 -- non-function ones
, not (mustIgnoreVar cfg nm) -- make sure they aren't explicitly ignored
]
-- We can only "allSat" if all component types themselves are interpreted. (Otherwise
-- there is no way to reflect back the values to the solver.)
collectAcceptable [] sofar = return sofar
collectAcceptable ((nm, (_, t@(SBVType ats))):rest) sofar
| not (any hasUninterpretedSorts ats)
= collectAcceptable rest (nm : sofar)
| True
= do queryDebug [ "*** SBV.allSat: Uninterpreted function: " ++ nm ++ " :: " ++ show t
, "*** Will *not* be used in allSat considerations since its type"
, "*** has uninterpreted sorts present."
]
collectAcceptable rest sofar
uiFuns <- reverse <$> collectAcceptable allUiFuns []
_ <- collectAcceptable allUiRegs [] -- only done to get the queryDebug output. Actual result not needed/used
-- If there are uninterpreted functions, arrange so that z3's pretty-printer flattens things out
-- as cex's tend to get larger
unless (null uiFuns) $
let solverCaps = capabilities (solver cfg)
in case supportsFlattenedModels solverCaps of
Nothing -> return ()
Just cmds -> mapM_ (send True) cmds
let usorts = [s | us@(KUserSort s _) <- Set.toAscList ki, isFree us]
unless (null usorts) $ queryDebug [ "*** SBV.allSat: Uninterpreted sorts present: " ++ unwords usorts
, "*** SBV will use equivalence classes to generate all-satisfying instances."
]
-- Drop the things that are not model vars or internal
let vars :: S.Seq (SVal, NamedSymVar)
vars = let mkSVal nm@(getSV -> sv) = (SVal (kindOf sv) (Right (cache (const (return sv)))), nm)
ignored k = mustIgnoreVar cfg (getUserName' k)
in mkSVal <$> S.filter (not . ignored) allModelInputs
-- We can go fast using the disjoint model trick if things are simple enough:
-- - No uninterpreted functions (uninterpreted values are OK)
-- - No uninterpreted sorts
--
-- Why can't we support the above?
-- - Uninterpreted functions: There is no (standard) way to define a function as a literal in SMTLib.
-- Some solvers support lambda, but this isn't common/reliable yet.
-- - Uninterpreted sort: There's no way to access the value the solver assigns to an uninterpreted sort.
--
-- So, if these two things are present, we go the "slow" route, by repeatedly rejecting the
-- previous model and asking for a new one. If they don't exist (which is the common case anyhow)
-- we use an idea due to z3 folks <http://theory.stanford.edu/%7Enikolaj/programmingz3.html#sec-blocking-evaluations>
-- which splits the search space into disjoint models and can produce results much more quickly.
let isSimple = null allUiFuns && null usorts
start = AllSatResult { allSatMaxModelCountReached = False
, allSatSolverReturnedUnknown = False
, allSatSolverReturnedDSat = False
, allSatResults = []
}
if isSimple
then do let mkVar :: (String, (Maybe [String], SBVType)) -> IO (SVal, NamedSymVar)
mkVar (nm, (_, SBVType [k])) = do sv <- newExpr topState k (SBVApp (Uninterpreted nm) [])
let sval = SVal k $ Right $ cache $ \_ -> pure sv
nsv = NamedSymVar sv (T.pack nm)
pure (sval, nsv)
mkVar nmt = error $ "Data.SBV: Impossible happened; allSat.mkVar. Unexpected: " ++ show nmt
uiVars <- io $ S.fromList <$> mapM mkVar allUiRegs
fastAllSat allModelInputs (uiVars S.>< vars) cfg start
else loop topState (allUiFuns, uiFuns) allUiRegs allModelInputs vars cfg start
where isFree (KUserSort _ Nothing) = True
isFree _ = False
finalize cnt cfg sofar extra
= when (allSatPrintAlong cfg && not (null (allSatResults sofar))) $ do
let msg 0 = "No solutions found."
msg 1 = "This is the only solution."
msg n = "Found " ++ show n ++ " different solutions."
io . putStrLn $ msg (cnt - 1)
case extra of
Nothing -> pure ()
Just m -> io $ putStrLn m
fastAllSat :: S.Seq NamedSymVar -> S.Seq (SVal, NamedSymVar) -> SMTConfig -> AllSatResult -> m AllSatResult
fastAllSat allInputs vars cfg start = do
result <- io $ newIORef (0, start, False, Nothing)
go result vars
(found, sofar, _, extra) <- io $ readIORef result
finalize (found+1) cfg sofar extra
pure sofar
where haveEnough have = case allSatMaxModelCount cfg of
Just maxModels -> have >= maxModels
_ -> False
go :: IORef (Int, AllSatResult, Bool, Maybe String) -> S.Seq (SVal, NamedSymVar) -> m ()
go finalResult = walk True
where shouldContinue = do (have, _, exitLoop, _) <- io $ readIORef finalResult
pure $ not (exitLoop || haveEnough have)
walk :: Bool -> S.Seq (SVal, NamedSymVar) -> m ()
walk firstRun terms
| not firstRun && S.null terms
= pure ()
| True
= do mbCont <- do (have, sofar, exitLoop, _) <- io $ readIORef finalResult
if exitLoop
then pure Nothing
else case allSatMaxModelCount cfg of
Just maxModels
| have >= maxModels -> do unless (allSatMaxModelCountReached sofar) $ do
queryDebug ["*** Maximum model count request of " ++ show maxModels ++ " reached, stopping the search."]
when (allSatPrintAlong cfg) $ io $ putStrLn "Search stopped since model count request was reached."
io $ modifyIORef' finalResult $ \(h, s, _, m) -> (h, s{ allSatMaxModelCountReached = True }, True, m)
pure Nothing
_ -> pure $ Just $ have+1
case mbCont of
Nothing -> pure ()
Just cnt -> do
queryDebug ["Fast allSat, Looking for solution " ++ show cnt]
cs <- checkSat
case cs of
Unsat -> pure ()
Unk -> do let m = "Solver returned unknown, terminating query."
queryDebug ["*** " ++ m]
io $ modifyIORef' finalResult $ \(h, s, _, _) -> (h, s{allSatSolverReturnedUnknown = True}, True, Just ("[" ++ m ++ "]"))
DSat _ -> do let m = "Solver returned delta-sat, terminating query."
queryDebug ["*** " ++ m]
io $ modifyIORef' finalResult $ \(h, s, _, _) -> (h, s{allSatSolverReturnedDSat = True}, True, Just ("[" ++ m ++ "]"))
Sat -> do assocs <- mapM (\(sval, NamedSymVar sv n) -> do !cv <- getValueCV Nothing sv
return (sv, (n, (sval, cv)))) vars
bindings <- let grab i@(getSV -> sv) = case lookupInput fst sv assocs of
Just (_, (_, (_, cv))) -> return (i, cv)
Nothing -> do !cv <- getValueCV Nothing sv
return (i, cv)
in if validationRequested cfg
then Just <$> mapM grab allInputs
else return Nothing
obsvs <- getObservables
let lassocs = F.toList assocs
model = SMTModel { modelObjectives = []
, modelBindings = F.toList <$> bindings
, modelAssocs = (first T.unpack <$> sortOn fst obsvs)
<> [(T.unpack n, cv) | (_, (n, (_, cv))) <- lassocs]
, modelUIFuns = []
}
currentResult = Satisfiable cfg model
io $ modifyIORef' finalResult $ \(h, s, e, m) -> let h' = h+1 in h' `seq` (h', s{allSatResults = currentResult : allSatResults s}, e, m)
when (allSatPrintAlong cfg) $ do
io $ putStrLn $ "Solution #" ++ show cnt ++ ":"
io $ putStrLn $ showModel cfg model
let findVal :: (SVal, NamedSymVar) -> (SVal, CV)
findVal (_, NamedSymVar sv nm) = case F.toList (S.filter (\(sv', _) -> sv == sv') assocs) of
[(_, (_, scv))] -> scv
_ -> error $ "Data.SBV: Cannot uniquely determine " ++ show nm ++ " in " ++ show assocs
cstr :: Bool -> (SVal, CV) -> m ()
cstr shouldReject (sv, cv) = constrain (SBV $ mkEq (kindOf sv) sv (SVal (kindOf sv) (Left cv)) :: SBool)
where mkEq :: Kind -> SVal -> SVal -> SVal
mkEq k a b
| isDouble k || isFloat k || isFP k
= if shouldReject
then svNot (a `fpEq` b)
else a `fpEq` b
| True
= if shouldReject
then a `svNotEqual` b
else a `svEqual` b
fpEq a b = SVal KBool $ Right $ cache r
where r st = do sva <- svToSV st a
svb <- svToSV st b
newExpr st KBool (SBVApp (IEEEFP FP_ObjEqual) [sva, svb])
reject, accept :: (SVal, NamedSymVar) -> m ()
reject = cstr True . findVal
accept = cstr False . findVal
scope :: (SVal, NamedSymVar) -> S.Seq (SVal, NamedSymVar) -> m () -> m ()
scope cur pres c = do
send True "(push 1)"
reject cur
mapM_ accept pres
r <- c
send True "(pop 1)"
pure r
forM_ [0 .. length terms - 1] $ \i -> do
sc <- shouldContinue
when sc $ do case S.splitAt i terms of
(pre, rest@(cur S.:<| _)) -> scope cur pre $ walk False rest
_ -> error "Data.SBV.allSat: Impossible happened, ran out of terms!"
-- All sat loop. This is slower, as it implements the reject-the-previous model and loop around logic. But
-- it can handle uninterpreted sorts; so we keep it here as a fall-back.
loop topState (allUiFuns, uiFunsToReject) allUiRegs allInputs vars cfg = go (1::Int)
where go :: Int -> AllSatResult -> m AllSatResult
go !cnt !sofar
| Just maxModels <- allSatMaxModelCount cfg, cnt > maxModels
= do queryDebug ["*** Maximum model count request of " ++ show maxModels ++ " reached, stopping the search."]
when (allSatPrintAlong cfg) $ io $ putStrLn "Search stopped since model count request was reached."
return $! sofar { allSatMaxModelCountReached = True }
| True
= do queryDebug ["Looking for solution " ++ show cnt]
cs <- checkSat
let endMsg = finalize cnt cfg sofar
case cs of
Unsat -> do endMsg Nothing
return sofar
Unk -> do let m = "Solver returned unknown, terminating query."
queryDebug ["*** " ++ m]
endMsg $ Just $ "[" ++ m ++ "]"
return sofar{ allSatSolverReturnedUnknown = True }
DSat _ -> do let m = "Solver returned delta-sat, terminating query."
queryDebug ["*** " ++ m]
endMsg $ Just $ "[" ++ m ++ "]"
return sofar{ allSatSolverReturnedDSat = True }
Sat -> do assocs <- mapM (\(sval, NamedSymVar sv n) -> do !cv <- getValueCV Nothing sv
return (sv, (n, (sval, cv)))) vars
let getUIFun ui@(nm, (_, t)) = do cvs <- getUIFunCVAssoc Nothing ui
return (nm, (t, cvs))
uiFunVals <- mapM getUIFun allUiFuns
uiRegVals <- mapM (\ui@(nm, _) -> (nm,) <$> getUICVal Nothing ui) allUiRegs
obsvs <- getObservables
bindings <- let grab i@(getSV -> sv) = case lookupInput fst sv assocs of
Just (_, (_, (_, cv))) -> return (i, cv)
Nothing -> do !cv <- getValueCV Nothing sv
return (i, cv)
in if validationRequested cfg
then Just <$> mapM grab allInputs
else return Nothing
let model = SMTModel { modelObjectives = []
, modelBindings = F.toList <$> bindings
, modelAssocs = uiRegVals
<> (first T.unpack <$> sortOn fst obsvs)
<> [(T.unpack n, cv) | (_, (n, (_, cv))) <- F.toList assocs]
, modelUIFuns = uiFunVals
}
m = Satisfiable cfg model
(interpreteds, uninterpreteds) = S.partition (not . isFree . kindOf . fst) (fmap (snd . snd) assocs)
interpretedRegUis = filter (not . isFree . kindOf . snd) uiRegVals
interpretedRegUiSVs = [(cvt n (kindOf cv), cv) | (n, cv) <- interpretedRegUis]
where cvt :: String -> Kind -> SVal
cvt nm k = SVal k $ Right $ cache r
where r st = newExpr st k (SBVApp (Uninterpreted nm) [])
-- For each interpreted variable, figure out the model equivalence
-- NB. When the kind is floating, we *have* to be careful, since +/- zero, and NaN's
-- and equality don't get along!
interpretedEqs :: [SVal]
interpretedEqs = [mkNotEq (kindOf sv) sv (SVal (kindOf sv) (Left cv)) | (sv, cv) <- interpretedRegUiSVs <> F.toList interpreteds]
where mkNotEq k a b
| isDouble k || isFloat k || isFP k
= svNot (a `fpEq` b)
| True
= a `svNotEqual` b
fpEq a b = SVal KBool $ Right $ cache r
where r st = do sva <- svToSV st a
svb <- svToSV st b
newExpr st KBool (SBVApp (IEEEFP FP_ObjEqual) [sva, svb])
-- For each uninterpreted constant, use equivalence class
uninterpretedEqs :: [SVal]
uninterpretedEqs = concatMap pwDistinct -- Assert that they are pairwise distinct
. filter (\l -> length l > 1) -- Only need this class if it has at least two members
. map (map fst) -- throw away values, we only need svals
. groupBy ((==) `on` snd) -- make sure they belong to the same sort and have the same value
. sortOn snd -- sort them according to their CV (i.e., sort/value)
$ F.toList uninterpreteds
where pwDistinct :: [SVal] -> [SVal]
pwDistinct ss = [x `svNotEqual` y | (x:ys) <- tails ss, y <- ys]
-- For each uninterpreted function, create a disqualifying equation
-- We do this rather brute-force, since we need to create a new function
-- and do an existential assertion.
uninterpretedReject :: Maybe [String]
uninterpretedFuns :: [String]
(uninterpretedReject, uninterpretedFuns) = (uiReject, concat defs)
where uiReject = case rejects of
[] -> Nothing
xs -> Just xs
(rejects, defs) = unzip [mkNotEq ui | ui@(nm, _) <- uiFunVals, nm `elem` uiFunsToReject]
-- Otherwise, we have things to refute, go for it if we have a good interpretation for it
mkNotEq (nm, (typ, Left def)) =
error $ unlines [
""
, "*** allSat: Unsupported: Building a rejecting instance for:"
, "***"
, "*** " ++ nm ++ " :: " ++ show typ
, "*** " ++ def
, "***"
, "*** At this time, SBV cannot compute allSat when the model has a non-table definition."
, "***"
, "*** You can ignore specific functions via the 'isNonModelVar' filter:"
, "***"
, "*** allSatWith z3{isNonModelVar = (`elem` [" ++ show nm ++ "])} ..."
, "***"
, "*** Or you can ignore all uninterpreted functions for all-sat purposes using the 'allSatTrackUFs' parameter:"
, "***"
, "*** allSatWith z3{allSatTrackUFs = False} ..."
, "***"
, "*** You can see the response from the solver by running with the '{verbose = True}' option."
, "***"
, "*** NB. If this is a use case you'd like SBV to support, please get in touch!"
]
mkNotEq (nm, (SBVType ts, Right vs)) = (reject, def ++ dif)
where nm' = nm ++ "_model" ++ show cnt
reject = nm' ++ "_reject"
-- rounding mode doesn't matter here, just pick one
scv = cvToSMTLib RoundNearestTiesToEven
(ats, rt) = (init ts, last ts)
args = unwords ["(x!" ++ show i ++ " " ++ smtType t ++ ")" | (t, i) <- zip ats [(0::Int)..]]
res = smtType rt
params = ["x!" ++ show i | (_, i) <- zip ats [(0::Int)..]]
uparams = unwords params
chain (vals, fallThru) = walk vals
where walk [] = [" " ++ scv fallThru ++ replicate (length vals) ')']
walk ((as, r) : rest) = (" (ite " ++ cond as ++ " " ++ scv r) : walk rest
cond as = "(and " ++ unwords (zipWith eq params as) ++ ")"
eq p a = "(= " ++ p ++ " " ++ scv a ++ ")"
def = ("(define-fun " ++ nm' ++ " (" ++ args ++ ") " ++ res)
: chain vs
++ [")"]
pad = replicate (1 + length nm' - length nm) ' '
dif = [ "(define-fun " ++ reject ++ " () Bool"
, " (exists (" ++ args ++ ")"
, " (distinct (" ++ nm ++ pad ++ uparams ++ ")"
, " (" ++ nm' ++ " " ++ uparams ++ "))))"
]
eqs = interpretedEqs ++ uninterpretedEqs
disallow = case eqs of
[] -> Nothing
_ -> Just $ SBV $ foldr1 svOr eqs
when (allSatPrintAlong cfg) $ do
io $ putStrLn $ "Solution #" ++ show cnt ++ ":"
io $ putStrLn $ showModel cfg model
let resultsSoFar = sofar { allSatResults = m : allSatResults sofar }
-- This is clunky, but let's not generate a rejector unless we really need it
needMoreIterations
| Just maxModels <- allSatMaxModelCount cfg, (cnt+1) > maxModels = False
| True = True
-- Send function disequalities, if any:
if not needMoreIterations
then go (cnt+1) resultsSoFar
else do let uiFunRejector = "uiFunRejector_model_" ++ show cnt
header = "define-fun " ++ uiFunRejector ++ " () Bool "
defineRejector [] = return ()
defineRejector [x] = send True $ "(" ++ header ++ x ++ ")"
defineRejector (x:xs) = mapM_ (send True) $ mergeSExpr $ ("(" ++ header)
: (" (or " ++ x)
: [" " ++ e | e <- xs]
++ [" ))"]
rejectFuncs <- case uninterpretedReject of
Nothing -> return Nothing
Just fs -> do mapM_ (send True) $ mergeSExpr uninterpretedFuns
defineRejector fs
return $ Just uiFunRejector
-- send the disallow clause and the uninterpreted rejector:
case (disallow, rejectFuncs) of
(Nothing, Nothing) -> pure resultsSoFar
(Just d, Nothing) -> do constrain d
go (cnt+1) resultsSoFar
(Nothing, Just f) -> do send True $ "(assert " ++ f ++ ")"
go (cnt+1) resultsSoFar
(Just d, Just f) -> -- This is where it gets ugly. We have an SBV and a string and we need to "or" them.
-- But we need a way to force 'd' to be produced. So, go ahead and force it:
do constrain $ d .=> d -- NB: Redundant, but it makes sure the corresponding constraint gets shown
svd <- io $ svToSV topState (unSBV d)
send True $ "(assert (or " ++ f ++ " " ++ show svd ++ "))"
go (cnt+1) resultsSoFar
-- | Generalization of 'Data.SBV.Control.getUnsatAssumptions'
getUnsatAssumptions :: (MonadIO m, MonadQuery m) => [String] -> [(String, a)] -> m [a]
getUnsatAssumptions originals proxyMap = do
let cmd = "(get-unsat-assumptions)"
bad = unexpected "getUnsatAssumptions" cmd "a list of unsatisfiable assumptions"
$ Just [ "Make sure you use:"
, ""
, " setOption $ ProduceUnsatAssumptions True"
, ""
, "to make sure the solver is ready for producing unsat assumptions,"
, "and that there is a model by first issuing a 'checkSat' call."
]
fromECon (ECon s) = Just s
fromECon _ = Nothing
r <- ask cmd
-- If unsat-cores are enabled, z3 might end-up printing an assumption that wasn't
-- in the original list of assumptions for `check-sat-assuming`. So, we walk over
-- and ignore those that weren't in the original list, and put a warning for those
-- we couldn't find.
let walk [] sofar = return $ reverse sofar
walk (a:as) sofar = case a `lookup` proxyMap of
Just v -> walk as (v:sofar)
Nothing -> do queryDebug [ "*** In call to 'getUnsatAssumptions'"
, "***"
, "*** Unexpected assumption named: " ++ show a
, "*** Was expecting one of : " ++ show originals
, "***"
, "*** This can happen if unsat-cores are also enabled. Ignoring."
]
walk as sofar
parse r bad $ \case
EApp es | Just xs <- mapM fromECon es -> walk xs []
_ -> bad r Nothing
-- | Generalization of 'Data.SBV.Control.timeout'
timeout :: (MonadIO m, MonadQuery m) => Int -> m a -> m a
timeout n q = do modifyQueryState (\qs -> qs {queryTimeOutValue = Just n})
r <- q
modifyQueryState (\qs -> qs {queryTimeOutValue = Nothing})
return r
-- | Bail out if a parse goes bad
parse :: String -> (String -> Maybe [String] -> a) -> (SExpr -> a) -> a
parse r fCont sCont = case parseSExpr r of
Left e -> fCont r (Just [e])
Right res -> sCont res
-- | Generalization of 'Data.SBV.Control.unexpected'
unexpected :: (MonadIO m, MonadQuery m) => String -> String -> String -> Maybe [String] -> String -> Maybe [String] -> m a
unexpected ctx sent expected mbHint received mbReason = do
-- empty the response channel first
extras <- retrieveResponse "terminating upon unexpected response" (Just 5000000)
cfg <- getConfig
let exc = SBVException { sbvExceptionDescription = "Unexpected response from the solver, context: " ++ ctx
, sbvExceptionSent = Just sent
, sbvExceptionExpected = Just expected
, sbvExceptionReceived = Just received
, sbvExceptionStdOut = Just $ unlines extras
, sbvExceptionStdErr = Nothing
, sbvExceptionExitCode = Nothing
, sbvExceptionConfig = cfg
, sbvExceptionReason = mbReason
, sbvExceptionHint = mbHint
}
io $ C.throwIO exc
-- | Convert a query result to an SMT Problem
runProofOn :: SBVRunMode -> QueryContext -> [String] -> Result -> SMTProblem
runProofOn rm context comments res@(Result progInfo ki _qcInfo _observables _codeSegs is consts tbls arrs uis defns pgm cstrs _assertions outputs) =
let (config, isSat, isSafe, isSetup) = case rm of
SMTMode _ stage s c -> (c, s, isSafetyCheckingIStage stage, isSetupIStage stage)
_ -> error $ "runProofOn: Unexpected run mode: " ++ show rm
o | isSafe = trueSV
| True = case outputs of
[] | isSetup -> trueSV
[so] -> case so of
SV KBool _ -> so
_ -> error $ unlines [ "Impossible happened, non-boolean output: " ++ show so
, "Detected while generating the trace:\n" ++ show res
]
os -> error $ unlines [ "User error: Multiple output values detected: " ++ show os
, "Detected while generating the trace:\n" ++ show res
, "*** Check calls to \"output\", they are typically not needed!"
]
in SMTProblem { smtLibPgm = toSMTLib config context progInfo ki isSat comments is consts tbls arrs uis defns pgm cstrs o }
-- | Generalization of 'Data.SBV.Control.executeQuery'
executeQuery :: forall m a. ExtractIO m => QueryContext -> QueryT m a -> SymbolicT m a
executeQuery queryContext (QueryT userQuery) = do
st <- symbolicEnv
rm <- liftIO $ readIORef (runMode st)
-- Make sure the phases match:
() <- liftIO $ case (queryContext, rm) of
(QueryInternal, _) -> return () -- no worries, internal
(QueryExternal, SMTMode QueryExternal ISetup _ _) -> return () -- legitimate runSMT call
_ -> invalidQuery rm
case rm of
-- Transitioning from setup
SMTMode qc stage isSAT cfg | not (isRunIStage stage) -> do
let slvr = solver cfg
backend = engine slvr
-- make sure if we have dsat precision, then solver supports it
let dsatOK = isNothing (dsatPrecision cfg)
|| isJust (supportsDeltaSat (capabilities slvr))
unless dsatOK $ error $ unlines
[ ""
, "*** Data.SBV: Delta-sat precision is specified."
, "*** But the chosen solver (" ++ show (name slvr) ++ ") does not support"
, "*** delta-satisfiability."
]
res <- liftIO $ extractSymbolicSimulationState st
setOpts <- liftIO $ reverse <$> readIORef (rSMTOptions st)
let SMTProblem{smtLibPgm} = runProofOn rm queryContext [] res
cfg' = cfg { solverSetOptions = solverSetOptions cfg ++ setOpts }
pgm = smtLibPgm cfg'
liftIO $ writeIORef (runMode st) $ SMTMode qc IRun isSAT cfg
lift $ join $ liftIO $ backend cfg' st (show pgm) $ extractIO . runReaderT userQuery
-- Already in a query, in theory we can just continue, but that causes use-case issues
-- so we reject it. TODO: Review if we should actually support this. The issue arises with
-- expressions like this:
--
-- In the following t0's output doesn't get recorded, as the output call is too late when we get
-- here. (The output field isn't "incremental.") So, t0/t1 behave differently!
--
-- t0 = satWith z3{verbose=True, transcript=Just "t.smt2"} $ query (return (false::SBool))
-- t1 = satWith z3{verbose=True, transcript=Just "t.smt2"} $ ((return (false::SBool)) :: Predicate)
--
-- Also, not at all clear what it means to go in an out of query mode:
--
-- r = runSMTWith z3{verbose=True} $ do
-- a' <- sInteger "a"
--
-- (a, av) <- query $ do _ <- checkSat
-- av <- getValue a'
-- return (a', av)
--
-- liftIO $ putStrLn $ "Got: " ++ show av
-- -- constrain $ a .> literal av + 1 -- Can't do this since we're "out" of query. Sigh.
--
-- bv <- query $ do constrain $ a .> literal av + 1
-- _ <- checkSat
-- getValue a
--
-- return $ a' .== a' + 1
--
-- This would be one possible implementation, alas it has the problems above:
--
-- SMTMode IRun _ _ -> liftIO $ evalStateT userQuery st
--
-- So, we just reject it.
SMTMode _ IRun _ _ -> error $ unlines [ ""
, "*** Data.SBV: Unsupported nested query is detected."
, "***"
, "*** Please group your queries into one block. Note that this"
, "*** can also arise if you have a call to 'query' not within 'runSMT'"
, "*** For instance, within 'sat'/'prove' calls with custom user queries."
, "*** The solution is to do the sat/prove part in the query directly."
, "***"
, "*** While multiple/nested queries should not be necessary in general,"
, "*** please do get in touch if your use case does require such a feature,"
, "*** to see how we can accommodate such scenarios."
]
-- Otherwise choke!
_ -> invalidQuery rm
where invalidQuery rm = error $ unlines [ ""
, "*** Data.SBV: Invalid query call."
, "***"
, "*** Current mode: " ++ show rm
, "***"
, "*** Query calls are only valid within runSMT/runSMTWith calls,"
, "*** and each call to runSMT should have only one query call inside."
]
{- HLint ignore module "Reduce duplication" -}
{- HLint ignore getAllSatResult "Use forM_" -}
|