File: Data.hs

package info (click to toggle)
haskell-sbv 10.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 8,148 kB
  • sloc: haskell: 31,176; makefile: 4
file content (992 lines) | stat: -rw-r--r-- 41,135 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
-----------------------------------------------------------------------------
-- |
-- Module    : Data.SBV.Core.Data
-- Copyright : (c) Levent Erkok
-- License   : BSD3
-- Maintainer: erkokl@gmail.com
-- Stability : experimental
--
-- Internal data-structures for the sbv library
-----------------------------------------------------------------------------

{-# LANGUAGE CPP                   #-}
{-# LANGUAGE DataKinds             #-}
{-# LANGUAGE DefaultSignatures     #-}
{-# LANGUAGE DeriveAnyClass        #-}
{-# LANGUAGE DeriveGeneric         #-}
{-# LANGUAGE FlexibleContexts      #-}
{-# LANGUAGE FlexibleInstances     #-}
{-# LANGUAGE InstanceSigs          #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE PatternGuards         #-}
{-# LANGUAGE ScopedTypeVariables   #-}
{-# LANGUAGE TypeApplications      #-}
{-# LANGUAGE TypeOperators         #-}
{-# LANGUAGE TypeFamilies          #-}
{-# LANGUAGE UndecidableInstances  #-}

{-# OPTIONS_GHC -Wall -Werror #-}

module Data.SBV.Core.Data
 ( SBool, SWord8, SWord16, SWord32, SWord64
 , SInt8, SInt16, SInt32, SInt64, SInteger, SReal, SFloat, SDouble
 , SFloatingPoint, SFPHalf, SFPBFloat, SFPSingle, SFPDouble, SFPQuad
 , SRational
 , SChar, SString, SList
 , SEither, SMaybe
 , STuple, STuple2, STuple3, STuple4, STuple5, STuple6, STuple7, STuple8
 , RCSet(..), SSet
 , nan, infinity, sNaN, sInfinity, RoundingMode(..), SRoundingMode
 , sRoundNearestTiesToEven, sRoundNearestTiesToAway, sRoundTowardPositive, sRoundTowardNegative, sRoundTowardZero
 , sRNE, sRNA, sRTP, sRTN, sRTZ
 , SymVal(..)
 , CV(..), CVal(..), AlgReal(..), AlgRealPoly(..), ExtCV(..), GeneralizedCV(..), isRegularCV, cvSameType, cvToBool
 , mkConstCV ,liftCV2, mapCV, mapCV2
 , SV(..), trueSV, falseSV, trueCV, falseCV, normCV
 , SVal(..)
 , sTrue, sFalse, sNot, (.&&), (.||), (.<+>), (.~&), (.~|), (.=>), (.<=>), sAnd, sOr, sAny, sAll, fromBool
 , SBV(..), NodeId(..), mkSymSBV
 , ArrayContext(..), ArrayInfo, SymArray(..), SArray(..)
 , sbvToSV, sbvToSymSV, forceSVArg
 , SBVExpr(..), newExpr
 , cache, Cached, uncache, uncacheAI, HasKind(..)
 , Op(..), PBOp(..), FPOp(..), StrOp(..), RegExOp(..), SeqOp(..), RegExp(..), NamedSymVar(..), OvOp(..), getTableIndex
 , SBVPgm(..), Symbolic, runSymbolic, State, getPathCondition, extendPathCondition
 , inSMTMode, SBVRunMode(..), Kind(..), Outputtable(..), Result(..)
 , SolverContext(..), internalVariable, internalConstraint, isCodeGenMode
 , SBVType(..), newUninterpreted
 , Quantifier(..), needsExistentials
 , SMTLibPgm(..), SMTLibVersion(..), smtLibVersionExtension, smtLibReservedNames
 , SolverCapabilities(..)
 , extractSymbolicSimulationState
 , SMTScript(..), Solver(..), SMTSolver(..), SMTResult(..), SMTModel(..), SMTConfig(..)
 , OptimizeStyle(..), Penalty(..), Objective(..)
 , QueryState(..), QueryT(..), SMTProblem(..), Constraint(..), Lambda(..), Forall(..), Exists(..), ExistsUnique(..), ForallN(..), ExistsN(..)
 , QuantifiedBool(..), EqSymbolic(..), QNot(..), Skolemize(skolemize, taggedSkolemize)
 ) where

import GHC.TypeLits (KnownNat, Nat, Symbol, KnownSymbol, symbolVal, AppendSymbol)

import GHC.Exts     (IsList(..))

import Control.DeepSeq        (NFData(..))
import Control.Monad          (void, replicateM)
import Control.Monad.Trans    (liftIO, MonadIO)
import Data.Int               (Int8, Int16, Int32, Int64)
import Data.Word              (Word8, Word16, Word32, Word64)
import Data.List              (elemIndex)
import Data.Maybe             (fromMaybe)

import Data.Kind (Type)
import Data.Proxy
import Data.Typeable          (Typeable)

import GHC.Generics (Generic, U1(..), M1(..), (:*:)(..), K1(..), (:+:)(..))
import qualified GHC.Generics  as G
import qualified Data.Generics as G (Data(..))

import qualified Data.IORef         as R    (readIORef)
import qualified Data.IntMap.Strict as IMap (size, insert)

import System.Random

import Data.SBV.Core.AlgReals
import Data.SBV.Core.SizedFloats
import Data.SBV.Core.Kind
import Data.SBV.Core.Concrete
import Data.SBV.Core.Symbolic
import Data.SBV.Core.Operations

import Data.SBV.Control.Types

import Data.SBV.SMT.SMTLibNames

import Data.SBV.Utils.Lib

-- | Get the current path condition
getPathCondition :: State -> SBool
getPathCondition st = SBV (getSValPathCondition st)

-- | Extend the path condition with the given test value.
extendPathCondition :: State -> (SBool -> SBool) -> State
extendPathCondition st f = extendSValPathCondition st (unSBV . f . SBV)

-- | The "Symbolic" value. The parameter @a@ is phantom, but is
-- extremely important in keeping the user interface strongly typed.
newtype SBV a = SBV { unSBV :: SVal }
              deriving (Generic, NFData)

-- | A symbolic boolean/bit
type SBool   = SBV Bool

-- | 8-bit unsigned symbolic value
type SWord8  = SBV Word8

-- | 16-bit unsigned symbolic value
type SWord16 = SBV Word16

-- | 32-bit unsigned symbolic value
type SWord32 = SBV Word32

-- | 64-bit unsigned symbolic value
type SWord64 = SBV Word64

-- | 8-bit signed symbolic value, 2's complement representation
type SInt8   = SBV Int8

-- | 16-bit signed symbolic value, 2's complement representation
type SInt16  = SBV Int16

-- | 32-bit signed symbolic value, 2's complement representation
type SInt32  = SBV Int32

-- | 64-bit signed symbolic value, 2's complement representation
type SInt64  = SBV Int64

-- | Infinite precision signed symbolic value
type SInteger = SBV Integer

-- | Infinite precision symbolic algebraic real value
type SReal = SBV AlgReal

-- | IEEE-754 single-precision floating point numbers
type SFloat = SBV Float

-- | IEEE-754 double-precision floating point numbers
type SDouble = SBV Double

-- | A symbolic arbitrary precision floating point value
type SFloatingPoint (eb :: Nat) (sb :: Nat) = SBV (FloatingPoint eb sb)

-- | A symbolic half-precision float
type SFPHalf = SBV FPHalf

-- | A symbolic brain-float precision float
type SFPBFloat = SBV FPBFloat

-- | A symbolic single-precision float
type SFPSingle = SBV FPSingle

-- | A symbolic double-precision float
type SFPDouble = SBV FPDouble

-- | A symbolic quad-precision float
type SFPQuad = SBV FPQuad

-- | A symbolic character. Note that this is the full unicode character set.
-- see: <http://smtlib.cs.uiowa.edu/theories-UnicodeStrings.shtml>
-- for details.
type SChar = SBV Char

-- | A symbolic string. Note that a symbolic string is /not/ a list of symbolic characters,
-- that is, it is not the case that @SString = [SChar]@, unlike what one might expect following
-- Haskell strings. An 'SString' is a symbolic value of its own, of possibly arbitrary but finite length,
-- and internally processed as one unit as opposed to a fixed-length list of characters.
type SString = SBV String

-- | A symbolic rational value.
type SRational = SBV Rational

-- | A symbolic list of items. Note that a symbolic list is /not/ a list of symbolic items,
-- that is, it is not the case that @SList a = [a]@, unlike what one might expect following
-- haskell lists\/sequences. An 'SList' is a symbolic value of its own, of possibly arbitrary but finite
-- length, and internally processed as one unit as opposed to a fixed-length list of items.
-- Note that lists can be nested, i.e., we do allow lists of lists of ... items.
type SList a = SBV [a]

-- | Symbolic 'Either'
type SEither a b = SBV (Either a b)

-- | Symbolic 'Maybe'
type SMaybe a = SBV (Maybe a)

-- | Symbolic 'Data.Set'. Note that we use 'RCSet', which supports
-- both regular sets and complements, i.e., those obtained from the
-- universal set (of the right type) by removing elements.
type SSet a = SBV (RCSet a)

-- | Symbolic 2-tuple. NB. 'STuple' and 'STuple2' are equivalent.
type STuple a b = SBV (a, b)

-- | Symbolic 2-tuple. NB. 'STuple' and 'STuple2' are equivalent.
type STuple2 a b = SBV (a, b)

-- | Symbolic 3-tuple.
type STuple3 a b c = SBV (a, b, c)

-- | Symbolic 4-tuple.
type STuple4 a b c d = SBV (a, b, c, d)

-- | Symbolic 5-tuple.
type STuple5 a b c d e = SBV (a, b, c, d, e)

-- | Symbolic 6-tuple.
type STuple6 a b c d e f = SBV (a, b, c, d, e, f)

-- | Symbolic 7-tuple.
type STuple7 a b c d e f g = SBV (a, b, c, d, e, f, g)

-- | Symbolic 8-tuple.
type STuple8 a b c d e f g h = SBV (a, b, c, d, e, f, g, h)

-- | IsList instance allows list literals to be written compactly.
instance SymVal [a] => IsList (SList a) where
  type Item (SList a) = a
  fromList = literal
  toList x = fromMaybe (error "IsList.toList used in a symbolic context!") (unliteral x)

-- | Not-A-Number for 'Double' and 'Float'. Surprisingly, Haskell
-- Prelude doesn't have this value defined, so we provide it here.
nan :: Floating a => a
nan = 0/0

-- | Infinity for 'Double' and 'Float'. Surprisingly, Haskell
-- Prelude doesn't have this value defined, so we provide it here.
infinity :: Floating a => a
infinity = 1/0

-- | Symbolic variant of Not-A-Number. This value will inhabit
-- 'SFloat', 'SDouble' and 'SFloatingPoint'. types.
sNaN :: (Floating a, SymVal a) => SBV a
sNaN = literal nan

-- | Symbolic variant of infinity. This value will inhabit both
-- 'SFloat', 'SDouble' and 'SFloatingPoint'. types.
sInfinity :: (Floating a, SymVal a) => SBV a
sInfinity = literal infinity

-- | Internal representation of a symbolic simulation result
newtype SMTProblem = SMTProblem {smtLibPgm :: SMTConfig -> SMTLibPgm} -- ^ SMTLib representation, given the config

-- | Symbolic 'True'
sTrue :: SBool
sTrue = SBV (svBool True)

-- | Symbolic 'False'
sFalse :: SBool
sFalse = SBV (svBool False)

-- | Symbolic boolean negation
sNot :: SBool -> SBool
sNot (SBV b) = SBV (svNot b)

-- | Symbolic conjunction
infixr 3 .&&
(.&&) :: SBool -> SBool -> SBool
SBV x .&& SBV y = SBV (x `svAnd` y)

-- | Symbolic disjunction
infixr 2 .||
(.||) :: SBool -> SBool -> SBool
SBV x .|| SBV y = SBV (x `svOr` y)

-- | Symbolic logical xor
infixl 6 .<+>
(.<+>) :: SBool -> SBool -> SBool
SBV x .<+> SBV y = SBV (x `svXOr` y)

-- | Symbolic nand
infixr 3 .~&
(.~&) :: SBool -> SBool -> SBool
x .~& y = sNot (x .&& y)

-- | Symbolic nor
infixr 2 .~|
(.~|) :: SBool -> SBool -> SBool
x .~| y = sNot (x .|| y)

-- | Symbolic implication
infixr 1 .=>
(.=>) :: SBool -> SBool -> SBool
SBV x .=> SBV y = SBV (x `svImplies` y)
-- NB. Do *not* try to optimize @x .=> x = True@ here! If constants go through, it'll get simplified.
-- The case "x .=> x" can hit is extremely rare, and the getAllSatResult function relies on this
-- trick to generate constraints in the unlucky case of ui-function models.

-- | Symbolic boolean equivalence
infixr 1 .<=>
(.<=>) :: SBool -> SBool -> SBool
SBV x .<=> SBV y = SBV (x `svEqual` y)

-- | Conversion from 'Bool' to 'SBool'
fromBool :: Bool -> SBool
fromBool True  = sTrue
fromBool False = sFalse

-- | Generalization of 'and'
sAnd :: [SBool] -> SBool
sAnd = foldr (.&&) sTrue

-- | Generalization of 'or'
sOr :: [SBool] -> SBool
sOr  = foldr (.||) sFalse

-- | Generalization of 'any'
sAny :: (a -> SBool) -> [a] -> SBool
sAny f = sOr  . map f

-- | Generalization of 'all'
sAll :: (a -> SBool) -> [a] -> SBool
sAll f = sAnd . map f

-- | 'RoundingMode' can be used symbolically
instance SymVal RoundingMode

-- | The symbolic variant of 'RoundingMode'
type SRoundingMode = SBV RoundingMode

-- | Symbolic variant of 'RoundNearestTiesToEven'
sRoundNearestTiesToEven :: SRoundingMode
sRoundNearestTiesToEven = literal RoundNearestTiesToEven

-- | Symbolic variant of 'RoundNearestTiesToAway'
sRoundNearestTiesToAway :: SRoundingMode
sRoundNearestTiesToAway = literal RoundNearestTiesToAway

-- | Symbolic variant of 'RoundTowardPositive'
sRoundTowardPositive :: SRoundingMode
sRoundTowardPositive = literal RoundTowardPositive

-- | Symbolic variant of 'RoundTowardNegative'
sRoundTowardNegative :: SRoundingMode
sRoundTowardNegative = literal RoundTowardNegative

-- | Symbolic variant of 'RoundTowardZero'
sRoundTowardZero :: SRoundingMode
sRoundTowardZero = literal RoundTowardZero

-- | Alias for 'sRoundNearestTiesToEven'
sRNE :: SRoundingMode
sRNE = sRoundNearestTiesToEven

-- | Alias for 'sRoundNearestTiesToAway'
sRNA :: SRoundingMode
sRNA = sRoundNearestTiesToAway

-- | Alias for 'sRoundTowardPositive'
sRTP :: SRoundingMode
sRTP = sRoundTowardPositive

-- | Alias for 'sRoundTowardNegative'
sRTN :: SRoundingMode
sRTN = sRoundTowardNegative

-- | Alias for 'sRoundTowardZero'
sRTZ :: SRoundingMode
sRTZ = sRoundTowardZero

-- | A 'Show' instance is not particularly "desirable," when the value is symbolic,
-- but we do need this instance as otherwise we cannot simply evaluate Haskell functions
-- that return symbolic values and have their constant values printed easily!
instance Show (SBV a) where
  show (SBV sv) = show sv

-- | This instance is only defined so that we can define an instance for
-- 'Data.Bits.Bits'. '==' and '/=' simply throw an error. Use
-- 'Data.SBV.EqSymbolic' instead.
instance Eq (SBV a) where
  SBV a == SBV b = a == b
  SBV a /= SBV b = a /= b

instance HasKind a => HasKind (SBV a) where
  kindOf _ = kindOf (Proxy @a)

-- | Convert a symbolic value to a symbolic-word
sbvToSV :: State -> SBV a -> IO SV
sbvToSV st (SBV s) = svToSV st s

-------------------------------------------------------------------------
-- * Symbolic Computations
-------------------------------------------------------------------------

-- | Generalization of 'Data.SBV.mkSymSBV'
mkSymSBV :: forall a m. MonadSymbolic m => VarContext -> Kind -> Maybe String -> m (SBV a)
mkSymSBV vc k mbNm = SBV <$> (symbolicEnv >>= liftIO . svMkSymVar vc k mbNm)

-- | Generalization of 'Data.SBV.sbvToSymSW'
sbvToSymSV :: MonadSymbolic m => SBV a -> m SV
sbvToSymSV sbv = do
        st <- symbolicEnv
        liftIO $ sbvToSV st sbv

-- | Values that we can turn into a constraint
class MonadSymbolic m => Constraint m a where
  mkConstraint :: State -> a -> m ()

-- | Base case: simple booleans
instance MonadSymbolic m => Constraint m SBool where
  mkConstraint _ out = void $ output out

-- | An existential symbolic variable, used in building quantified constraints. The name
-- attached via the symbol is used during skolemization to create a skolem-function name
-- when this variable is eliminated.
newtype Exists (nm :: Symbol) a = Exists (SBV a)

-- | An existential unique symbolic variable, used in building quantified constraints. The name
-- attached via the symbol is used during skolemization. It's split into two extra names, suffixed
-- @_eu1@ and @_eu2@, to name the universals in the equivalent formula:
-- \(\exists! x\,P(x)\Leftrightarrow \exists x\,P(x) \land \forall x_{eu1} \forall x_{eu2} (P(x_{eu1}) \land P(x_{eu2}) \Rightarrow x_{eu1} = x_{eu2}) \)
newtype ExistsUnique (nm :: Symbol) a = ExistsUnique (SBV a)

-- | A universal symbolic variable, used in building quantified constraints. The name attached via the symbol is used
-- during skolemization. It names the corresponding argument to the skolem-functions within the scope of this quantifier.
newtype Forall (nm :: Symbol) a = Forall (SBV a)

-- | Exactly @n@ existential symbolic variables, used in building quantified constraints. The name attached
-- will be prefixed in front of @_1@, @_2@, ..., @_n@ to form the names of the variables.
newtype ExistsN (n :: Nat) (nm :: Symbol) a = ExistsN [SBV a]

-- | Exactly @n@ universal symbolic variables, used in in building quantified constraints. The name attached
-- will be prefixed in front of @_1@, @_2@, ..., @_n@ to form the names of the variables.
newtype ForallN (n :: Nat) (nm :: Symbol) a = ForallN [SBV a]

-- | make a quantifier argument in the given state
mkQArg :: forall m a. (HasKind a, MonadIO m) => State -> Quantifier -> m (SBV a)
mkQArg st q = do let k = kindOf (Proxy @a)
                 sv <- liftIO $ quantVar q st k
                 pure $ SBV $ SVal k (Right (cache (const (return sv))))

-- | Functions of a single existential
instance (SymVal a, Constraint m r) => Constraint m (Exists nm a -> r) where
  mkConstraint st fn = mkQArg st EX >>= mkConstraint st . fn . Exists

-- | Functions of a unique single existential
instance (SymVal a, Constraint m r, EqSymbolic (SBV a), QuantifiedBool r) => Constraint m (ExistsUnique nm a -> r) where
  mkConstraint st = mkConstraint st . rewriteExistsUnique

-- | Functions of a number of existentials
instance (KnownNat n, SymVal a, Constraint m r) => Constraint m (ExistsN n nm a -> r) where
  mkConstraint st fn = replicateM (intOfProxy (Proxy @n)) (mkQArg st EX) >>= mkConstraint st . fn . ExistsN

-- | Functions of a single universal
instance (SymVal a, Constraint m r) => Constraint m (Forall nm a -> r) where
  mkConstraint st fn = mkQArg st ALL >>= mkConstraint st . fn . Forall

-- | Functions of a number of universals
instance (KnownNat n, SymVal a, Constraint m r) => Constraint m (ForallN n nm a -> r) where
  mkConstraint st fn = replicateM (intOfProxy (Proxy @n)) (mkQArg st ALL) >>= mkConstraint st . fn . ForallN

-- | Values that we can turn into a lambda abstraction
class MonadSymbolic m => Lambda m a where
  mkLambda :: State -> a -> m ()

-- | Base case, simple values
instance MonadSymbolic m => Lambda m (SBV a) where
  mkLambda _ out = void $ output out

-- | Functions
instance (SymVal a, Lambda m r) => Lambda m (SBV a -> r) where
  mkLambda st fn = mkArg >>= mkLambda st . fn
    where mkArg = do let k = kindOf (Proxy @a)
                     sv <- liftIO $ lambdaVar st k
                     pure $ SBV $ SVal k (Right (cache (const (return sv))))

-- | A value that can be used as a quantified boolean
class QuantifiedBool a where
  -- | Turn a quantified boolean into a regular boolean. That is, this function turns an exists/forall quantified
  -- formula to a simple boolean that can be used as a regular boolean value. An example is:
  --
  -- @
  --   quantifiedBool $ \\(Forall x) (Exists y) -> y .> (x :: SInteger)
  -- @
  --
  -- is equivalent to `sTrue`. You can think of this function as performing quantifier-elimination: It takes
  -- a quantified formula, and reduces it to a simple boolean that is equivalent to it, but has no quantifiers.
  quantifiedBool :: a -> SBool

-- | Base case of quantification, simple booleans
instance {-# OVERLAPPING #-} QuantifiedBool SBool where
  quantifiedBool = id

-- | Actions we can do in a context: Either at problem description
-- time or while we are dynamically querying. 'Symbolic' and 'Query' are
-- two instances of this class. Note that we use this mechanism
-- internally and do not export it from SBV.
class SolverContext m where
   -- | Add a constraint, any satisfying instance must satisfy this condition.
   constrain :: QuantifiedBool a => a -> m ()

   -- | Add a soft constraint. The solver will try to satisfy this condition if possible, but won't if it cannot.
   softConstrain :: QuantifiedBool a => a -> m ()

   -- | Add a named constraint. The name is used in unsat-core extraction.
   namedConstraint :: QuantifiedBool a => String -> a -> m ()

   -- | Add a constraint, with arbitrary attributes.
   constrainWithAttribute :: QuantifiedBool a => [(String, String)] -> a -> m ()

   -- | Set info. Example: @setInfo ":status" ["unsat"]@.
   setInfo :: String -> [String] -> m ()

   -- | Set an option.
   setOption :: SMTOption -> m ()

   -- | Set the logic.
   setLogic :: Logic -> m ()

   -- | Set a solver time-out value, in milli-seconds. This function
   -- essentially translates to the SMTLib call @(set-info :timeout val)@,
   -- and your backend solver may or may not support it! The amount given
   -- is in milliseconds. Also see the function 'Data.SBV.Control.timeOut' for finer level
   -- control of time-outs, directly from SBV.
   setTimeOut :: Integer -> m ()

   -- | Get the state associated with this context
   contextState :: m State

   {-# MINIMAL constrain, softConstrain, namedConstraint, constrainWithAttribute, setOption, contextState #-}

   -- time-out, logic, and info are  simply options in our implementation, so default implementation suffices
   setTimeOut t = setOption $ OptionKeyword ":timeout" [show t]
   setLogic     = setOption . SetLogic
   setInfo    k = setOption . SetInfo k

-- | A class representing what can be returned from a symbolic computation.
class Outputtable a where
  -- | Generalization of 'Data.SBV.output'
  output :: MonadSymbolic m => a -> m a

instance Outputtable (SBV a) where
  output i = do
          outputSVal (unSBV i)
          return i

instance Outputtable a => Outputtable [a] where
  output = mapM output

instance Outputtable () where
  output = return

instance (Outputtable a, Outputtable b) => Outputtable (a, b) where
  output = mlift2 (,) output output

instance (Outputtable a, Outputtable b, Outputtable c) => Outputtable (a, b, c) where
  output = mlift3 (,,) output output output

instance (Outputtable a, Outputtable b, Outputtable c, Outputtable d) => Outputtable (a, b, c, d) where
  output = mlift4 (,,,) output output output output

instance (Outputtable a, Outputtable b, Outputtable c, Outputtable d, Outputtable e) => Outputtable (a, b, c, d, e) where
  output = mlift5 (,,,,) output output output output output

instance (Outputtable a, Outputtable b, Outputtable c, Outputtable d, Outputtable e, Outputtable f) => Outputtable (a, b, c, d, e, f) where
  output = mlift6 (,,,,,) output output output output output output

instance (Outputtable a, Outputtable b, Outputtable c, Outputtable d, Outputtable e, Outputtable f, Outputtable g) => Outputtable (a, b, c, d, e, f, g) where
  output = mlift7 (,,,,,,) output output output output output output output

instance (Outputtable a, Outputtable b, Outputtable c, Outputtable d, Outputtable e, Outputtable f, Outputtable g, Outputtable h) => Outputtable (a, b, c, d, e, f, g, h) where
  output = mlift8 (,,,,,,,) output output output output output output output output

-------------------------------------------------------------------------------
-- * Symbolic Values
-------------------------------------------------------------------------------
-- | A 'SymVal' is a potential symbolic value that can be created instances of to be fed to a symbolic program.
class (HasKind a, Typeable a) => SymVal a where
  -- | Generalization of 'Data.SBV.mkSymVal'
  mkSymVal :: MonadSymbolic m => VarContext -> Maybe String -> m (SBV a)

  -- | Turn a literal constant to symbolic
  literal :: a -> SBV a

  -- | Extract a literal, from a CV representation
  fromCV :: CV -> a

  -- | Does it concretely satisfy the given predicate?
  isConcretely :: SBV a -> (a -> Bool) -> Bool

  -- minimal complete definition: Nothing.
  -- Giving no instances is okay when defining an uninterpreted/enumerated sort, but otherwise you really
  -- want to define: literal, fromCV, mkSymVal

  default mkSymVal :: (MonadSymbolic m, Read a, G.Data a) => VarContext -> Maybe String -> m (SBV a)
  mkSymVal vc mbNm = SBV <$> (symbolicEnv >>= liftIO . svMkSymVar vc k mbNm)
    where -- NB.A call of the form
          --      constructUKind (Proxy @a)
          -- would be wrong here, as it would uninterpret the Proxy datatype!
          -- So, we have to use the dreaded undefined value in this case.
          k = constructUKind (undefined :: a)

  default literal :: Show a => a -> SBV a
  literal x = let k  = kindOf x
                  sx = show x
                  conts = case k of
                           KUserSort _ cts -> cts
                           _               -> Nothing
                  mbIdx = case conts of
                            Just xs -> sx `elemIndex` xs
                            Nothing -> Nothing
              in SBV $ SVal k (Left (CV k (CUserSort (mbIdx, sx))))

  default fromCV :: Read a => CV -> a
  fromCV (CV _ (CUserSort (_, s))) = read s
  fromCV cv                        = error $ "Cannot convert CV " ++ show cv ++ " to kind " ++ show (kindOf (Proxy @a))

  isConcretely s p
    | Just i <- unliteral s = p i
    | True                  = False

  -- | Generalization of 'Data.SBV.free'
  free :: MonadSymbolic m => String -> m (SBV a)
  free = mkSymVal (NonQueryVar Nothing) . Just

  -- | Generalization of 'Data.SBV.free_'
  free_ :: MonadSymbolic m => m (SBV a)
  free_ = mkSymVal (NonQueryVar Nothing) Nothing

  -- | Generalization of 'Data.SBV.mkFreeVars'
  mkFreeVars :: MonadSymbolic m => Int -> m [SBV a]
  mkFreeVars n = mapM (const free_) [1 .. n]

  -- | Generalization of 'Data.SBV.symbolic'
  symbolic :: MonadSymbolic m => String -> m (SBV a)
  symbolic = free

  -- | Generalization of 'Data.SBV.symbolics'
  symbolics :: MonadSymbolic m => [String] -> m [SBV a]
  symbolics = mapM symbolic

  -- | Extract a literal, if the value is concrete
  unliteral :: SBV a -> Maybe a
  unliteral (SBV (SVal _ (Left c))) = Just $ fromCV c
  unliteral _                       = Nothing

  -- | Is the symbolic word concrete?
  isConcrete :: SBV a -> Bool
  isConcrete (SBV (SVal _ (Left _))) = True
  isConcrete _                       = False

  -- | Is the symbolic word really symbolic?
  isSymbolic :: SBV a -> Bool
  isSymbolic = not . isConcrete

instance (Random a, SymVal a) => Random (SBV a) where
  randomR (l, h) g = case (unliteral l, unliteral h) of
                       (Just lb, Just hb) -> let (v, g') = randomR (lb, hb) g in (literal (v :: a), g')
                       _                  -> error "SBV.Random: Cannot generate random values with symbolic bounds"
  random         g = let (v, g') = random g in (literal (v :: a) , g')

---------------------------------------------------------------------------------
-- * Symbolic Arrays
---------------------------------------------------------------------------------

-- | Arrays of symbolic values
-- An @array a b@ is an array indexed by the type @'SBV' a@, with elements of type @'SBV' b@.
--
-- If a default value is supplied, then all the array elements will be initialized to this value.
-- Otherwise, they will be left unspecified, i.e., a read from an unwritten location will produce
-- an uninterpreted constant.
--
-- The reason for this class is rather historic. In the past, SBV provided two different kinds of
-- arrays: an `SArray` abstraction that mapped directly to SMTLib arrays  (which is still available
-- today), and a functional notion of arrays that used internal caching, called @SFunArray@. The latter
-- has been removed as the code turned out to be rather tricky and hard to maintain; so we only
-- have one instance of this class. But end users can add their own instances, if needed.
--
-- NB. 'sListArray' insists on a concrete initializer, because not having one would break
-- referential transparency. See https://github.com/LeventErkok/sbv/issues/553 for details.
class SymArray array where
  -- | Generalization of 'Data.SBV.newArray_'
  newArray_ :: (MonadSymbolic m, HasKind a, HasKind b) => Maybe (SBV b) -> m (array a b)

  -- | Generalization of 'Data.SBV.newArray'
  newArray  :: (MonadSymbolic m, HasKind a, HasKind b) => String -> Maybe (SBV b) -> m (array a b)

  -- | Create a literal array
  sListArray :: (HasKind a, SymVal b) => b -> [(SBV a, SBV b)] -> array a b

  -- | Read the array element at @a@
  readArray :: array a b -> SBV a -> SBV b

  -- | Update the element at @a@ to be @b@
  writeArray :: SymVal b => array a b -> SBV a -> SBV b -> array a b

  -- | Merge two given arrays on the symbolic condition
  -- Intuitively: @mergeArrays cond a b = if cond then a else b@.
  -- Merging pushes the if-then-else choice down on to elements
  mergeArrays :: SymVal b => SBV Bool -> array a b -> array a b -> array a b

  -- | Internal function, not exported to the user
  newArrayInState :: (HasKind a, HasKind b) => Maybe String -> Either (Maybe (SBV b)) String -> State -> IO (array a b)

  {-# MINIMAL readArray, writeArray, mergeArrays, ((newArray_, newArray) | newArrayInState), sListArray #-}
  newArray_   mbVal = symbolicEnv >>= liftIO . newArrayInState Nothing   (Left mbVal)
  newArray nm mbVal = symbolicEnv >>= liftIO . newArrayInState (Just nm) (Left mbVal)

  -- Despite our MINIMAL pragma and default implementations for newArray_ and
  -- newArray, we must provide a dummy implementation for newArrayInState:
  newArrayInState = error "undefined: newArrayInState"

-- | Arrays implemented in terms of SMT-arrays: <http://smtlib.cs.uiowa.edu/theories-ArraysEx.shtml>
--
--   * Maps directly to SMT-lib arrays
--
--   * Reading from an uninitialized value is OK. If the default value is given in 'newArray', it will
--     be the result. Otherwise, the read yields an uninterpreted constant.
--
--   * Can check for equality of these arrays
--
--   * Cannot be used in code-generation (i.e., compilation to C)
--
--   * Cannot quick-check theorems using @SArray@ values
newtype SArray a b = SArray { unSArray :: SArr }

instance (HasKind a, HasKind b) => Show (SArray a b) where
  show SArray{} = "SArray<" ++ showType (Proxy @a) ++ ":" ++ showType (Proxy @b) ++ ">"

instance SymArray SArray where
  readArray   (SArray arr) (SBV a)               = SBV (readSArr arr a)
  writeArray  (SArray arr) (SBV a)    (SBV b)    = SArray (writeSArr arr a b)
  mergeArrays (SBV t)      (SArray a) (SArray b) = SArray (mergeSArr t a b)

  sListArray :: forall a b. (HasKind a, SymVal b) => b -> [(SBV a, SBV b)] -> SArray a b
  sListArray initializer = foldl (uncurry . writeArray) arr
    where arr = SArray $ SArr ks $ cache r
           where ks   = (kindOf (Proxy @a), kindOf (Proxy @b))
                 r st = do amap <- R.readIORef (rArrayMap st)

                           let k    = ArrayIndex $ IMap.size amap
                               iVal = literal initializer

                           iSV <- sbvToSV st iVal

                           let upd  = IMap.insert (unArrayIndex k) ("array_" ++ show k, ks, ArrayFree (Left (Just iSV)))

                           k `seq` modifyState st rArrayMap upd $ modifyIncState st rNewArrs upd
                           return k

  newArrayInState :: forall a b. (HasKind a, HasKind b) => Maybe String -> Either (Maybe (SBV b)) String -> State -> IO (SArray a b)
  newArrayInState mbNm eiVal st = do mapM_ (registerKind st) [aknd, bknd]
                                     SArray <$> newSArr st (aknd, bknd) (mkNm mbNm) (either (Left . (unSBV <$>)) Right eiVal)
     where mkNm Nothing   t = "array_" ++ show t
           mkNm (Just nm) _ = nm
           aknd = kindOf (Proxy @a)
           bknd = kindOf (Proxy @b)

-- | Symbolic Equality. Note that we can't use Haskell's 'Eq' class since Haskell insists on returning Bool
-- Comparing symbolic values will necessarily return a symbolic value.
--
-- Minimal complete definition: None, if the type is instance of @Generic@. Otherwise '(.==)'.
infix 4 .==, ./=, .===, ./==
class EqSymbolic a where
  -- | Symbolic equality.
  (.==) :: a -> a -> SBool
  -- | Symbolic inequality.
  (./=) :: a -> a -> SBool
  -- | Strong equality. On floats ('SFloat'/'SDouble'), strong equality is object equality; that
  -- is @NaN == NaN@ holds, but @+0 == -0@ doesn't. On other types, (.===) is simply (.==).
  -- Note that (.==) is the /right/ notion of equality for floats per IEEE754 specs, since by
  -- definition @+0 == -0@ and @NaN@ equals no other value including itself. But occasionally
  -- we want to be stronger and state @NaN@ equals @NaN@ and @+0@ and @-0@ are different from
  -- each other. In a context where your type is concrete, simply use `Data.SBV.fpIsEqualObject`. But in
  -- a polymorphic context, use the strong equality instead.
  --
  -- NB. If you do not care about or work with floats, simply use (.==) and (./=).
  (.===) :: a -> a -> SBool
  -- | Negation of strong equality. Equaivalent to negation of (.===) on all types.
  (./==) :: a -> a -> SBool

  -- | Returns (symbolic) 'sTrue' if all the elements of the given list are different.
  distinct :: [a] -> SBool

  -- | Returns (symbolic) `sTrue` if all the elements of the given list are different. The second
  -- list contains exceptions, i.e., if an element belongs to that set, it will be considered
  -- distinct regardless of repetition.
  distinctExcept :: [a] -> [a] -> SBool

  -- | Returns (symbolic) 'sTrue' if all the elements of the given list are the same.
  allEqual :: [a] -> SBool

  -- | Symbolic membership test.
  sElem    :: a -> [a] -> SBool

  -- | Symbolic negated membership test.
  sNotElem :: a -> [a] -> SBool

  x ./=  y = sNot (x .==  y)
  x .=== y = x .== y
  x ./== y = sNot (x .=== y)

  allEqual []     = sTrue
  allEqual (x:xs) = sAll (x .==) xs

  -- Default implementation of 'distinct'. Note that we override
  -- this method for the base types to generate better code.
  distinct []     = sTrue
  distinct (x:xs) = sAll (x ./=) xs .&& distinct xs

  -- Default implementation of 'distinctExcept'. Note that we override
  -- this method for the base types to generate better code.
  distinctExcept es ignored = go es
    where isIgnored = (`sElem` ignored)

          go []     = sTrue
          go (x:xs) = let xOK  = isIgnored x .|| sAll (\y -> isIgnored y .|| x ./= y) xs
                      in xOK .&& go xs

  x `sElem`    xs = sAny (.== x) xs
  x `sNotElem` xs = sNot (x `sElem` xs)

  -- Default implementation for '(.==)' if the type is 'Generic'
  default (.==) :: (G.Generic a, GEqSymbolic (G.Rep a)) => a -> a -> SBool
  (.==) = symbolicEqDefault

-- | Default implementation of symbolic equality, when the underlying type is generic
-- Not exported, used with automatic deriving.
symbolicEqDefault :: (G.Generic a, GEqSymbolic (G.Rep a)) => a -> a -> SBool
symbolicEqDefault x y = symbolicEq (G.from x) (G.from y)

-- | Not exported, used for implementing generic equality.
class GEqSymbolic f where
  symbolicEq :: f a -> f a -> SBool

{-
 - N.B. A V1 instance like the below would be wrong!
 - Why? Because in SBV, we use empty data to mean "uninterpreted" sort; not
 - something that has no constructors. Perhaps that was a bad design
 - decision. So, do not allow equality checking of such values.
instance GEqSymbolic V1 where
  symbolicEq _ _ = sTrue
-}

instance GEqSymbolic U1 where
  symbolicEq _ _ = sTrue

instance (EqSymbolic c) => GEqSymbolic (K1 i c) where
  symbolicEq (K1 x) (K1 y) = x .== y

instance (GEqSymbolic f) => GEqSymbolic (M1 i c f) where
  symbolicEq (M1 x) (M1 y) = symbolicEq x y

instance (GEqSymbolic f, GEqSymbolic g) => GEqSymbolic (f :*: g) where
  symbolicEq (x1 :*: y1) (x2 :*: y2) = symbolicEq x1 x2 .&& symbolicEq y1 y2

instance (GEqSymbolic f, GEqSymbolic g) => GEqSymbolic (f :+: g) where
  symbolicEq (L1 l) (L1 r) = symbolicEq l r
  symbolicEq (R1 l) (R1 r) = symbolicEq l r
  symbolicEq (L1 _) (R1 _) = sFalse
  symbolicEq (R1 _) (L1 _) = sFalse

-- | A class of values that can be skolemized. Note that we don't export this class. Use
-- the 'skolemize' function instead.
class Skolemize a where
  type SkolemsTo a :: Type
  skolem :: String -> [(SVal, String)] -> a -> SkolemsTo a

  -- | Skolemization. For any formula, skolemization gives back an equisatisfiable formula that
  -- has no existential quantifiers in it. You have to provide enough names for all the
  -- existentials in the argument. (Extras OK, so you can pass an infinite list if you like.)
  -- The names should be distinct, and also different from any other uninterpreted name
  -- you might have elsewhere.
  skolemize :: (Constraint Symbolic (SkolemsTo a), Skolemize a) => a -> SkolemsTo a
  skolemize = skolem "" []

  -- | If you use the same names for skolemized arguments in different functions, they will
  -- collide; which is undesirable. Unfortunately there's no easy way for SBV to detect this.
  -- In such cases, use 'taggedSkolemize' to add a scope to the skolem-function names generated.
  taggedSkolemize :: (Constraint Symbolic (SkolemsTo a), Skolemize a) => String -> a -> SkolemsTo a
  taggedSkolemize scope = skolem (scope ++ "_") []

-- | Base case; pure symbolic values
instance Skolemize (SBV a) where
  type SkolemsTo (SBV a) = SBV a
  skolem _ _ = id

-- | Skolemize over a universal quantifier
instance (KnownSymbol nm, Skolemize r) => Skolemize (Forall nm a -> r) where
  type SkolemsTo (Forall nm a -> r) = Forall nm a -> SkolemsTo r
  skolem scope args f arg@(Forall a) = skolem scope (args ++ [(unSBV a, symbolVal (Proxy @nm))]) (f arg)

-- | Skolemize over a number of universal quantifiers
instance (KnownSymbol nm, Skolemize r) => Skolemize (ForallN n nm a -> r) where
  type SkolemsTo (ForallN n nm a -> r) = ForallN n nm a -> SkolemsTo r
  skolem scope args f arg@(ForallN xs) = skolem scope (args ++ zipWith grab xs [(1::Int)..]) (f arg)
    where pre = symbolVal (Proxy @nm)
          grab x i = (unSBV x, pre ++ "_" ++ show i)

-- | Skolemize over an existential quantifier
instance (HasKind a, KnownSymbol nm, Skolemize r) => Skolemize (Exists nm a -> r) where
  type SkolemsTo (Exists nm a -> r) = SkolemsTo r
  skolem scope args f = skolem scope args (f (Exists skolemized))
    where skolemized = SBV $ svUninterpretedNamedArgs (kindOf (Proxy @a)) (scope ++ symbolVal (Proxy @nm)) UINone args

-- | Skolemize over a number of existential quantifiers
instance (HasKind a, KnownNat n, KnownSymbol nm, Skolemize r) => Skolemize (ExistsN n nm a -> r) where
  type SkolemsTo (ExistsN n nm a -> r) = SkolemsTo r
  skolem scope args f = skolem scope args (f (ExistsN skolemized))
    where need   = intOfProxy (Proxy @n)
          prefix = symbolVal (Proxy @nm)
          fs     = [prefix ++ "_" ++ show i | i <- [1 .. need]]
          skolemized = [SBV $ svUninterpretedNamedArgs (kindOf (Proxy @a)) (scope ++ n) UINone args | n <- fs]

-- | Skolemize over a unique existential quantifier
instance (  HasKind a
          , EqSymbolic (SBV a)
          , KnownSymbol nm
          , QuantifiedBool r
          , Skolemize (Forall (AppendSymbol nm "_eu1") a -> Forall (AppendSymbol nm "_eu2") a -> SBool)
         ) => Skolemize (ExistsUnique nm a -> r) where
  type SkolemsTo (ExistsUnique nm a -> r) =  Forall (AppendSymbol nm "_eu1") a
                                          -> Forall (AppendSymbol nm "_eu2") a
                                          -> SBool
  skolem scope args f = skolem scope args (rewriteExistsUnique f (Exists skolemized))
    where skolemized = SBV $ svUninterpretedNamedArgs (kindOf (Proxy @a)) (scope ++ symbolVal (Proxy @nm)) UINone args

-- | Class of things that we can logically negate
class QNot a where
  type NegatesTo a :: Type
  -- | Negation of a quantified formula. This operation essentially lifts 'sNot' to quantified formulae.
  -- Note that you can achieve the same using @'sNot' . 'quantifiedBool'@, but that will hide the
  -- quantifiers, so prefer this version if you want to keep them around.
  qNot :: a -> NegatesTo a

-- | Base case; pure symbolic boolean
instance QNot SBool where
  type NegatesTo SBool = SBool
  qNot = sNot

-- | Negate over a universal quantifier. Switches to existential.
instance QNot r => QNot (Forall nm a -> r) where
  type NegatesTo (Forall nm a -> r) = Exists nm a -> NegatesTo r
  qNot f (Exists a) = qNot (f (Forall a))

-- | Negate over a number of universal quantifiers
instance QNot r => QNot (ForallN nm n a -> r) where
  type NegatesTo (ForallN nm n a -> r) = ExistsN nm n a -> NegatesTo r
  qNot f (ExistsN xs) = qNot (f (ForallN xs))

-- | Negate over an existential quantifier. Switches to universal.
instance QNot r => QNot (Exists nm a -> r) where
  type NegatesTo (Exists nm a -> r) = Forall nm a -> NegatesTo r
  qNot f (Forall a) = qNot (f (Exists a))

-- | Negate over a number of existential quantifiers
instance QNot r => QNot (ExistsN nm n a -> r) where
  type NegatesTo (ExistsN nm n a -> r) = ForallN nm n a -> NegatesTo r
  qNot f (ForallN xs) = qNot (f (ExistsN xs))

-- | Negate over an unique existential quantifier
instance (QNot r, QuantifiedBool r, EqSymbolic (SBV a)) => QNot (ExistsUnique nm a -> r) where
  type NegatesTo (ExistsUnique nm a -> r) =  Forall nm a
                                          -> Exists (AppendSymbol nm "_eu1") a
                                          -> Exists (AppendSymbol nm "_eu2") a
                                          -> SBool
  qNot = qNot . rewriteExistsUnique

-- | Get rid of exists unique.
rewriteExistsUnique :: ( QuantifiedBool b                 -- If b can be turned into a boolean
                       , EqSymbolic (SBV a)               -- If we can do equality on symbolic a's
                       )                                  -- THEN
                    => (ExistsUnique nm a -> b)           -- Given an unique-existential, we can
                    -> Exists nm a                        -- Turn it into an existential
                    -> Forall (AppendSymbol nm "_eu1") a  -- A universal
                    -> Forall (AppendSymbol nm "_eu2") a  -- Another universal
                    -> SBool                                  -- Making sure given holds, and if both univers hold, they're the same
rewriteExistsUnique f (Exists x) (Forall x1) (Forall x2) = fx .&& unique
  where fx    = quantifiedBool $ f (ExistsUnique x)
        fx1   = f (ExistsUnique x1)
        fx2   = f (ExistsUnique x2)

        bothHolds  = quantifiedBool fx1 .&& quantifiedBool fx2
        mustEqual  = x1 .== x2
        unique     = bothHolds .=> mustEqual