1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
|
-----------------------------------------------------------------------------
-- |
-- Module : Data.SBV.Core.Kind
-- Copyright : (c) Levent Erkok
-- License : BSD3
-- Maintainer: erkokl@gmail.com
-- Stability : experimental
--
-- Internal data-structures for the sbv library
-----------------------------------------------------------------------------
{-# LANGUAGE CPP #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DefaultSignatures #-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE ViewPatterns #-}
{-# LANGUAGE UndecidableInstances #-}
{-# OPTIONS_GHC -Wall -Werror -fno-warn-orphans #-}
module Data.SBV.Core.Kind (
Kind(..), HasKind(..), constructUKind, smtType, hasUninterpretedSorts
, BVIsNonZero, ValidFloat, intOfProxy
, showBaseKind, needsFlattening, RoundingMode(..), smtRoundingMode
) where
import qualified Data.Generics as G (Data(..), DataType, dataTypeName, dataTypeOf, tyconUQname, dataTypeConstrs, constrFields)
import Data.Char (isSpace)
import Data.Int
import Data.Word
import Data.SBV.Core.AlgReals
import Data.Proxy
import Data.Kind
import Data.List (isPrefixOf, intercalate)
import Data.Typeable (Typeable)
import Data.Type.Bool
import Data.Type.Equality
import GHC.TypeLits
import Data.SBV.Utils.Lib (isKString)
-- | Kind of symbolic value
data Kind = KBool
| KBounded !Bool !Int
| KUnbounded
| KReal
| KUserSort String (Maybe [String]) -- name. Uninterpreted, or enumeration constants.
| KFloat
| KDouble
| KFP !Int !Int
| KChar
| KString
| KList Kind
| KSet Kind
| KTuple [Kind]
| KMaybe Kind
| KRational
| KEither Kind Kind
deriving (Eq, Ord, G.Data)
-- | The interesting about the show instance is that it can tell apart two kinds nicely; since it conveniently
-- ignores the enumeration constructors. Also, when we construct a 'KUserSort', we make sure we don't use any of
-- the reserved names; see 'constructUKind' for details.
instance Show Kind where
show KBool = "SBool"
show (KBounded False n) = pickType n "SWord" "SWord " ++ show n
show (KBounded True n) = pickType n "SInt" "SInt " ++ show n
show KUnbounded = "SInteger"
show KReal = "SReal"
show (KUserSort s _) = s
show KFloat = "SFloat"
show KDouble = "SDouble"
show (KFP eb sb) = "SFloatingPoint " ++ show eb ++ " " ++ show sb
show KString = "SString"
show KChar = "SChar"
show (KList e) = "[" ++ show e ++ "]"
show (KSet e) = "{" ++ show e ++ "}"
show (KTuple m) = "(" ++ intercalate ", " (show <$> m) ++ ")"
show (KMaybe k) = "SMaybe " ++ kindParen (showBaseKind k)
show (KEither k1 k2) = "SEither " ++ kindParen (showBaseKind k1) ++ " " ++ kindParen (showBaseKind k2)
show KRational = "SRational"
-- | A version of show for kinds that says Bool instead of SBool
showBaseKind :: Kind -> String
showBaseKind = sh
where sh k@KBool = noS (show k)
sh (KBounded False n) = pickType n "Word" "WordN " ++ show n
sh (KBounded True n) = pickType n "Int" "IntN " ++ show n
sh k@KUnbounded = noS (show k)
sh k@KReal = noS (show k)
sh k@KUserSort{} = show k -- Leave user-sorts untouched!
sh k@KFloat = noS (show k)
sh k@KDouble = noS (show k)
sh k@KFP{} = noS (show k)
sh k@KChar = noS (show k)
sh k@KString = noS (show k)
sh KRational = "Rational"
sh (KList k) = "[" ++ sh k ++ "]"
sh (KSet k) = "{" ++ sh k ++ "}"
sh (KTuple ks) = "(" ++ intercalate ", " (map sh ks) ++ ")"
sh (KMaybe k) = "Maybe " ++ kindParen (sh k)
sh (KEither k1 k2) = "Either " ++ kindParen (sh k1) ++ " " ++ kindParen (sh k2)
-- Drop the initial S if it's there
noS ('S':s) = s
noS s = s
-- For historical reasons, we show 8-16-32-64 bit values with no space; others with a space.
pickType :: Int -> String -> String -> String
pickType i standard other
| i `elem` [8, 16, 32, 64] = standard
| True = other
-- | Put parens if necessary. This test is rather crummy, but seems to work ok
kindParen :: String -> String
kindParen s@('[':_) = s
kindParen s@('(':_) = s
kindParen s | any isSpace s = '(' : s ++ ")"
| True = s
-- | How the type maps to SMT land
smtType :: Kind -> String
smtType KBool = "Bool"
smtType (KBounded _ sz) = "(_ BitVec " ++ show sz ++ ")"
smtType KUnbounded = "Int"
smtType KReal = "Real"
smtType KFloat = "(_ FloatingPoint 8 24)"
smtType KDouble = "(_ FloatingPoint 11 53)"
smtType (KFP eb sb) = "(_ FloatingPoint " ++ show eb ++ " " ++ show sb ++ ")"
smtType KString = "String"
smtType KChar = "String"
smtType (KList k) = "(Seq " ++ smtType k ++ ")"
smtType (KSet k) = "(Array " ++ smtType k ++ " Bool)"
smtType (KUserSort s _) = s
smtType (KTuple []) = "SBVTuple0"
smtType (KTuple kinds) = "(SBVTuple" ++ show (length kinds) ++ " " ++ unwords (smtType <$> kinds) ++ ")"
smtType KRational = "SBVRational"
smtType (KMaybe k) = "(SBVMaybe " ++ smtType k ++ ")"
smtType (KEither k1 k2) = "(SBVEither " ++ smtType k1 ++ " " ++ smtType k2 ++ ")"
instance Eq G.DataType where
a == b = G.tyconUQname (G.dataTypeName a) == G.tyconUQname (G.dataTypeName b)
instance Ord G.DataType where
a `compare` b = G.tyconUQname (G.dataTypeName a) `compare` G.tyconUQname (G.dataTypeName b)
-- | Does this kind represent a signed quantity?
kindHasSign :: Kind -> Bool
kindHasSign = \case KBool -> False
KBounded b _ -> b
KUnbounded -> True
KReal -> True
KFloat -> True
KDouble -> True
KFP{} -> True
KRational -> True
KUserSort{} -> False
KString -> False
KChar -> False
KList{} -> False
KSet{} -> False
KTuple{} -> False
KMaybe{} -> False
KEither{} -> False
-- | Construct an uninterpreted/enumerated kind from a piece of data; we distinguish simple enumerations as those
-- are mapped to proper SMT-Lib2 data-types; while others go completely uninterpreted
constructUKind :: forall a. (Read a, G.Data a) => a -> Kind
constructUKind a
| any (`isPrefixOf` sortName) badPrefixes
= error $ unlines [ "*** Data.SBV: Cannot construct user-sort with name: " ++ show sortName
, "***"
, "*** Must not start with any of: " ++ intercalate ", " badPrefixes
]
| True
= case (constrs, concatMap G.constrFields constrs) of
([], _) -> KUserSort sortName Nothing
(cs, []) -> KUserSort sortName $ Just (map show cs)
_ -> error $ unlines [ "*** Data.SBV: " ++ sortName ++ " is not an enumeration."
, "***"
, "*** To declare an enumeration, constructors should not have any fields."
, "*** To declare an uninterpreted sort, use a datatype with no constructors."
]
where -- make sure we don't step on ourselves:
-- NB. The sort "RoundingMode" is special. It's treated by SBV as a user-defined
-- sort, even though it's internally handled differently. So, that name doesn't appear
-- below.
badPrefixes = [ "SBool", "SWord", "SInt", "SInteger", "SReal", "SFloat", "SDouble"
, "SString", "SChar", "[", "SSet", "STuple", "SMaybe", "SEither"
, "SRational"
]
dataType = G.dataTypeOf a
sortName = G.tyconUQname . G.dataTypeName $ dataType
constrs = G.dataTypeConstrs dataType
-- | A class for capturing values that have a sign and a size (finite or infinite)
-- minimal complete definition: kindOf, unless you can take advantage of the default
-- signature: This class can be automatically derived for data-types that have
-- a 'G.Data' instance; this is useful for creating uninterpreted sorts. So, in
-- reality, end users should almost never need to define any methods.
class HasKind a where
kindOf :: a -> Kind
hasSign :: a -> Bool
intSizeOf :: a -> Int
isBoolean :: a -> Bool
isBounded :: a -> Bool -- NB. This really means word/int; i.e., Real/Float will test False
isReal :: a -> Bool
isFloat :: a -> Bool
isDouble :: a -> Bool
isRational :: a -> Bool
isFP :: a -> Bool
isUnbounded :: a -> Bool
isUserSort :: a -> Bool
isChar :: a -> Bool
isString :: a -> Bool
isList :: a -> Bool
isSet :: a -> Bool
isTuple :: a -> Bool
isMaybe :: a -> Bool
isEither :: a -> Bool
showType :: a -> String
-- defaults
hasSign x = kindHasSign (kindOf x)
intSizeOf x = case kindOf x of
KBool -> error "SBV.HasKind.intSizeOf((S)Bool)"
KBounded _ s -> s
KUnbounded -> error "SBV.HasKind.intSizeOf((S)Integer)"
KReal -> error "SBV.HasKind.intSizeOf((S)Real)"
KFloat -> 32
KDouble -> 64
KFP i j -> i + j
KRational -> error "SBV.HasKind.intSizeOf((S)Rational)"
KUserSort s _ -> error $ "SBV.HasKind.intSizeOf: Uninterpreted sort: " ++ s
KString -> error "SBV.HasKind.intSizeOf((S)Double)"
KChar -> error "SBV.HasKind.intSizeOf((S)Char)"
KList ek -> error $ "SBV.HasKind.intSizeOf((S)List)" ++ show ek
KSet ek -> error $ "SBV.HasKind.intSizeOf((S)Set)" ++ show ek
KTuple tys -> error $ "SBV.HasKind.intSizeOf((S)Tuple)" ++ show tys
KMaybe k -> error $ "SBV.HasKind.intSizeOf((S)Maybe)" ++ show k
KEither k1 k2 -> error $ "SBV.HasKind.intSizeOf((S)Either)" ++ show (k1, k2)
isBoolean (kindOf -> KBool{}) = True
isBoolean _ = False
isBounded (kindOf -> KBounded{}) = True
isBounded _ = False
isReal (kindOf -> KReal{}) = True
isReal _ = False
isFloat (kindOf -> KFloat{}) = True
isFloat _ = False
isDouble (kindOf -> KDouble{}) = True
isDouble _ = False
isFP (kindOf -> KFP{}) = True
isFP _ = False
isRational (kindOf -> KRational{}) = True
isRational _ = False
isUnbounded (kindOf -> KUnbounded{}) = True
isUnbounded _ = False
isUserSort (kindOf -> KUserSort{}) = True
isUserSort _ = False
isChar (kindOf -> KChar{}) = True
isChar _ = False
isString (kindOf -> KString{}) = True
isString _ = False
isList (kindOf -> KList{}) = True
isList _ = False
isSet (kindOf -> KSet{}) = True
isSet _ = False
isTuple (kindOf -> KTuple{}) = True
isTuple _ = False
isMaybe (kindOf -> KMaybe{}) = True
isMaybe _ = False
isEither (kindOf -> KEither{}) = True
isEither _ = False
showType = show . kindOf
-- default signature for uninterpreted/enumerated kinds
default kindOf :: (Read a, G.Data a) => a -> Kind
kindOf = constructUKind
-- | This instance allows us to use the `kindOf (Proxy @a)` idiom instead of
-- the `kindOf (undefined :: a)`, which is safer and looks more idiomatic.
instance HasKind a => HasKind (Proxy a) where
kindOf _ = kindOf (undefined :: a)
instance HasKind Bool where kindOf _ = KBool
instance HasKind Int8 where kindOf _ = KBounded True 8
instance HasKind Word8 where kindOf _ = KBounded False 8
instance HasKind Int16 where kindOf _ = KBounded True 16
instance HasKind Word16 where kindOf _ = KBounded False 16
instance HasKind Int32 where kindOf _ = KBounded True 32
instance HasKind Word32 where kindOf _ = KBounded False 32
instance HasKind Int64 where kindOf _ = KBounded True 64
instance HasKind Word64 where kindOf _ = KBounded False 64
instance HasKind Integer where kindOf _ = KUnbounded
instance HasKind AlgReal where kindOf _ = KReal
instance HasKind Rational where kindOf _ = KRational
instance HasKind Float where kindOf _ = KFloat
instance HasKind Double where kindOf _ = KDouble
instance HasKind Char where kindOf _ = KChar
-- | Grab the bit-size from the proxy. If the nat is too large to fit in an int,
-- we throw an error. (This would mean too big of a bit-size, that we can't
-- really deal with in any practical realm.) In fact, even the range allowed
-- by this conversion (i.e., the entire range of a 64-bit int) is just impractical,
-- but it's hard to come up with a better bound.
intOfProxy :: KnownNat n => Proxy n -> Int
intOfProxy p
| iv == fromIntegral r = r
| True = error $ unlines [ "Data.SBV: Too large bit-vector size: " ++ show iv
, ""
, "No reasonable proof can be performed with such large bit vectors involved,"
, "So, cowardly refusing to proceed any further! Please file this as a"
, "feature request."
]
where iv :: Integer
iv = natVal p
r :: Int
r = fromEnum iv
-- | Do we have a completely uninterpreted sort lying around anywhere?
hasUninterpretedSorts :: Kind -> Bool
hasUninterpretedSorts KBool = False
hasUninterpretedSorts KBounded{} = False
hasUninterpretedSorts KUnbounded = False
hasUninterpretedSorts KReal = False
hasUninterpretedSorts (KUserSort _ (Just _)) = False -- These are the enumerated sorts, and they are perfectly fine
hasUninterpretedSorts (KUserSort _ Nothing) = True -- These are the completely uninterpreted sorts, which we are looking for here
hasUninterpretedSorts KFloat = False
hasUninterpretedSorts KDouble = False
hasUninterpretedSorts KFP{} = False
hasUninterpretedSorts KRational = False
hasUninterpretedSorts KChar = False
hasUninterpretedSorts KString = False
hasUninterpretedSorts (KList k) = hasUninterpretedSorts k
hasUninterpretedSorts (KSet k) = hasUninterpretedSorts k
hasUninterpretedSorts (KTuple ks) = any hasUninterpretedSorts ks
hasUninterpretedSorts (KMaybe k) = hasUninterpretedSorts k
hasUninterpretedSorts (KEither k1 k2) = any hasUninterpretedSorts [k1, k2]
instance (Typeable a, HasKind a) => HasKind [a] where
kindOf x | isKString @[a] x = KString
| True = KList (kindOf (Proxy @a))
instance HasKind Kind where
kindOf = id
instance HasKind () where
kindOf _ = KTuple []
instance (HasKind a, HasKind b) => HasKind (a, b) where
kindOf _ = KTuple [kindOf (Proxy @a), kindOf (Proxy @b)]
instance (HasKind a, HasKind b, HasKind c) => HasKind (a, b, c) where
kindOf _ = KTuple [kindOf (Proxy @a), kindOf (Proxy @b), kindOf (Proxy @c)]
instance (HasKind a, HasKind b, HasKind c, HasKind d) => HasKind (a, b, c, d) where
kindOf _ = KTuple [kindOf (Proxy @a), kindOf (Proxy @b), kindOf (Proxy @c), kindOf (Proxy @d)]
instance (HasKind a, HasKind b, HasKind c, HasKind d, HasKind e) => HasKind (a, b, c, d, e) where
kindOf _ = KTuple [kindOf (Proxy @a), kindOf (Proxy @b), kindOf (Proxy @c), kindOf (Proxy @d), kindOf (Proxy @e)]
instance (HasKind a, HasKind b, HasKind c, HasKind d, HasKind e, HasKind f) => HasKind (a, b, c, d, e, f) where
kindOf _ = KTuple [kindOf (Proxy @a), kindOf (Proxy @b), kindOf (Proxy @c), kindOf (Proxy @d), kindOf (Proxy @e), kindOf (Proxy @f)]
instance (HasKind a, HasKind b, HasKind c, HasKind d, HasKind e, HasKind f, HasKind g) => HasKind (a, b, c, d, e, f, g) where
kindOf _ = KTuple [kindOf (Proxy @a), kindOf (Proxy @b), kindOf (Proxy @c), kindOf (Proxy @d), kindOf (Proxy @e), kindOf (Proxy @f), kindOf (Proxy @g)]
instance (HasKind a, HasKind b, HasKind c, HasKind d, HasKind e, HasKind f, HasKind g, HasKind h) => HasKind (a, b, c, d, e, f, g, h) where
kindOf _ = KTuple [kindOf (Proxy @a), kindOf (Proxy @b), kindOf (Proxy @c), kindOf (Proxy @d), kindOf (Proxy @e), kindOf (Proxy @f), kindOf (Proxy @g), kindOf (Proxy @h)]
instance (HasKind a, HasKind b) => HasKind (Either a b) where
kindOf _ = KEither (kindOf (Proxy @a)) (kindOf (Proxy @b))
instance HasKind a => HasKind (Maybe a) where
kindOf _ = KMaybe (kindOf (Proxy @a))
-- | Should we ask the solver to flatten the output? This comes in handy so output is parseable
-- Essentially, we're being conservative here and simply requesting flattening anything that has
-- some structure to it.
needsFlattening :: Kind -> Bool
needsFlattening KBool = False
needsFlattening KBounded{} = False
needsFlattening KUnbounded = False
needsFlattening KReal = False
needsFlattening KUserSort{} = False
needsFlattening KFloat = False
needsFlattening KDouble = False
needsFlattening KFP{} = False
needsFlattening KRational = False
needsFlattening KChar = False
needsFlattening KString = False
needsFlattening KList{} = True
needsFlattening KSet{} = True
needsFlattening KTuple{} = True
needsFlattening KMaybe{} = True
needsFlattening KEither{} = True
-- | Catch 0-width cases
type BVZeroWidth = 'Text "Zero-width bit-vectors are not allowed."
-- | Type family to create the appropriate non-zero constraint
type family BVIsNonZero (arg :: Nat) :: Constraint where
BVIsNonZero 0 = TypeError BVZeroWidth
BVIsNonZero _ = ()
#include "MachDeps.h"
-- Allowed sizes for floats, imposed by LibBF.
--
-- NB. In LibBF bindings (and libbf itself as well), minimum number of exponent bits is specified as 3. But this
-- seems unnecessarily restrictive; that constant doesn't seem to be used anywhere, and furthermore my tests with sb = 2
-- didn't reveal anything going wrong. I emailed the author of libbf regarding this, and he said:
--
-- I had no clear reason to use BF_EXP_BITS_MIN = 3. So if "2" is OK then
-- why not. The important is that the basic operations are OK. It is likely
-- there are tricky cases in the transcendental operations but even with
-- large exponents libbf may have problems with them !
--
-- So, in SBV, we allow sb == 2. If this proves problematic, change the number below in definition of FP_MIN_EB to 3!
--
-- NB. It would be nice if we could use the LibBF constants expBitsMin, expBitsMax, precBitsMin, precBitsMax
-- for determining the valid range. Unfortunately this doesn't seem to be possible.
-- See <https://stackoverflow.com/questions/51900360/making-a-type-constraint-based-on-runtime-value-of-maxbound-int> for a discussion.
-- So, we use CPP to work-around that.
#define FP_MIN_EB 2
#define FP_MIN_SB 2
#if WORD_SIZE_IN_BITS == 64
#define FP_MAX_EB 61
#define FP_MAX_SB 4611686018427387902
#else
#define FP_MAX_EB 29
#define FP_MAX_SB 1073741822
#endif
-- | Catch an invalid FP.
type InvalidFloat (eb :: Nat) (sb :: Nat)
= 'Text "Invalid floating point type `SFloatingPoint " ':<>: 'ShowType eb ':<>: 'Text " " ':<>: 'ShowType sb ':<>: 'Text "'"
':$$: 'Text ""
':$$: 'Text "A valid float of type 'SFloatingPoint eb sb' must satisfy:"
':$$: 'Text " eb `elem` [" ':<>: 'ShowType FP_MIN_EB ':<>: 'Text " .. " ':<>: 'ShowType FP_MAX_EB ':<>: 'Text "]"
':$$: 'Text " sb `elem` [" ':<>: 'ShowType FP_MIN_SB ':<>: 'Text " .. " ':<>: 'ShowType FP_MAX_SB ':<>: 'Text "]"
':$$: 'Text ""
':$$: 'Text "Given type falls outside of this range, or the sizes are not known naturals."
-- | A valid float has restrictions on eb/sb values.
-- NB. In the below encoding, I found that CPP is very finicky about substitution of the machine-dependent
-- macros. If you try to put the conditionals in the same line, it fails to substitute for some reason. Hence the awkward spacing.
-- Filed this as a bug report for CPPHS at <https://github.com/malcolmwallace/cpphs/issues/25>.
type family ValidFloat (eb :: Nat) (sb :: Nat) :: Constraint where
ValidFloat (eb :: Nat) (sb :: Nat) = ( KnownNat eb
, KnownNat sb
, If ( ( eb `CmpNat` FP_MIN_EB == 'EQ
|| eb `CmpNat` FP_MIN_EB == 'GT)
&& ( eb `CmpNat` FP_MAX_EB == 'EQ
|| eb `CmpNat` FP_MAX_EB == 'LT)
&& ( sb `CmpNat` FP_MIN_SB == 'EQ
|| sb `CmpNat` FP_MIN_SB == 'GT)
&& ( sb `CmpNat` FP_MAX_SB == 'EQ
|| sb `CmpNat` FP_MAX_SB == 'LT))
(() :: Constraint)
(TypeError (InvalidFloat eb sb))
)
-- | Rounding mode to be used for the IEEE floating-point operations.
-- Note that Haskell's default is 'RoundNearestTiesToEven'. If you use
-- a different rounding mode, then the counter-examples you get may not
-- match what you observe in Haskell.
data RoundingMode = RoundNearestTiesToEven -- ^ Round to nearest representable floating point value.
-- If precisely at half-way, pick the even number.
-- (In this context, /even/ means the lowest-order bit is zero.)
| RoundNearestTiesToAway -- ^ Round to nearest representable floating point value.
-- If precisely at half-way, pick the number further away from 0.
-- (That is, for positive values, pick the greater; for negative values, pick the smaller.)
| RoundTowardPositive -- ^ Round towards positive infinity. (Also known as rounding-up or ceiling.)
| RoundTowardNegative -- ^ Round towards negative infinity. (Also known as rounding-down or floor.)
| RoundTowardZero -- ^ Round towards zero. (Also known as truncation.)
deriving (Eq, Ord, Show, Read, G.Data, Bounded, Enum)
-- | 'RoundingMode' kind
instance HasKind RoundingMode
-- | Convert a rounding mode to the format SMT-Lib2 understands.
smtRoundingMode :: RoundingMode -> String
smtRoundingMode RoundNearestTiesToEven = "roundNearestTiesToEven"
smtRoundingMode RoundNearestTiesToAway = "roundNearestTiesToAway"
smtRoundingMode RoundTowardPositive = "roundTowardPositive"
smtRoundingMode RoundTowardNegative = "roundTowardNegative"
smtRoundingMode RoundTowardZero = "roundTowardZero"
|