1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798
|
-----------------------------------------------------------------------------
-- |
-- Module : Data.SBV.Core.Model
-- Copyright : (c) Levent Erkok
-- License : BSD3
-- Maintainer: erkokl@gmail.com
-- Stability : experimental
--
-- Instance declarations for our symbolic world
-----------------------------------------------------------------------------
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE ConstrainedClassMethods #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DefaultSignatures #-}
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE Rank2Types #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}
{-# OPTIONS_GHC -Wall -Werror -fno-warn-orphans -Wno-incomplete-uni-patterns #-}
module Data.SBV.Core.Model (
Mergeable(..), Equality(..), EqSymbolic(..), OrdSymbolic(..), SDivisible(..), SMTDefinable(..), Metric(..), minimize, maximize, assertWithPenalty, SIntegral, SFiniteBits(..)
, ite, iteLazy, sFromIntegral, sShiftLeft, sShiftRight, sRotateLeft, sBarrelRotateLeft, sRotateRight, sBarrelRotateRight, sSignedShiftArithRight, (.^)
, oneIf, genVar, genVar_
, pbAtMost, pbAtLeast, pbExactly, pbLe, pbGe, pbEq, pbMutexed, pbStronglyMutexed
, sBool, sBool_, sBools, sWord8, sWord8_, sWord8s, sWord16, sWord16_, sWord16s, sWord32, sWord32_, sWord32s
, sWord64, sWord64_, sWord64s, sInt8, sInt8_, sInt8s, sInt16, sInt16_, sInt16s, sInt32, sInt32_, sInt32s, sInt64, sInt64_
, sInt64s, sInteger, sInteger_, sIntegers, sReal, sReal_, sReals, sFloat, sFloat_, sFloats, sDouble, sDouble_, sDoubles
, sFPHalf, sFPHalf_, sFPHalfs, sFPBFloat, sFPBFloat_, sFPBFloats, sFPSingle, sFPSingle_, sFPSingles, sFPDouble, sFPDouble_, sFPDoubles, sFPQuad, sFPQuad_, sFPQuads
, sFloatingPoint, sFloatingPoint_, sFloatingPoints
, sChar, sChar_, sChars, sString, sString_, sStrings, sList, sList_, sLists
, sRational, sRational_, sRationals
, SymTuple, sTuple, sTuple_, sTuples
, sEither, sEither_, sEithers, sMaybe, sMaybe_, sMaybes
, sSet, sSet_, sSets
, sEDivMod, sEDiv, sEMod
, solve
, slet
, sRealToSInteger, label, observe, observeIf, sObserve
, sAssert
, liftQRem, liftDMod, symbolicMergeWithKind
, genLiteral, genFromCV, genMkSymVar
, sbvQuickCheck, lambdaAsArray
)
where
import Control.Applicative (ZipList(ZipList))
import Control.Monad (when, unless, mplus)
import Control.Monad.Trans (liftIO)
import Control.Monad.IO.Class (MonadIO)
import GHC.Generics (M1(..), U1(..), (:*:)(..), K1(..))
import qualified GHC.Generics as G
import GHC.Stack
import Data.Array (Array, Ix, listArray, elems, bounds, rangeSize)
import Data.Bits (Bits(..))
import Data.Char (toLower, isDigit)
import Data.Int (Int8, Int16, Int32, Int64)
import Data.Kind (Type)
import Data.List (genericLength, genericIndex, genericTake, unzip4, unzip5, unzip6, unzip7, intercalate, isPrefixOf)
import Data.Maybe (fromMaybe, mapMaybe)
import Data.String (IsString(..))
import Data.Word (Word8, Word16, Word32, Word64)
import qualified Data.Set as Set
import Data.Proxy
import Data.Dynamic (fromDynamic, toDyn)
import Test.QuickCheck (Testable(..), Arbitrary(..))
import qualified Test.QuickCheck.Test as QC (isSuccess)
import qualified Test.QuickCheck as QC (quickCheckResult, counterexample)
import qualified Test.QuickCheck.Monadic as QC (monadicIO, run, assert, pre, monitor)
import qualified Data.Foldable as F (toList)
import Data.SBV.Core.AlgReals
import Data.SBV.Core.SizedFloats
import Data.SBV.Core.Data
import Data.SBV.Core.Symbolic
import Data.SBV.Core.Operations
import Data.SBV.Core.Kind
import Data.SBV.Lambda
import Data.SBV.Provers.Prover (defaultSMTCfg, SafeResult(..), prove)
import Data.SBV.SMT.SMT (ThmResult, showModel)
import Data.SBV.Utils.Lib (isKString)
import Data.SBV.Utils.Numeric (fpIsEqualObjectH)
import Data.IORef (readIORef)
-- Symbolic-Word class instances
-- | Generate a variable, named
genVar :: MonadSymbolic m => VarContext -> Kind -> String -> m (SBV a)
genVar q k = mkSymSBV q k . Just
-- | Generate an unnamed variable
genVar_ :: MonadSymbolic m => VarContext -> Kind -> m (SBV a)
genVar_ q k = mkSymSBV q k Nothing
-- | Generate a finite constant bitvector
genLiteral :: Integral a => Kind -> a -> SBV b
genLiteral k = SBV . SVal k . Left . mkConstCV k
-- | Convert a constant to an integral value
genFromCV :: Integral a => CV -> a
genFromCV (CV _ (CInteger x)) = fromInteger x
genFromCV c = error $ "genFromCV: Unsupported non-integral value: " ++ show c
-- | Generalization of 'Data.SBV.genMkSymVar'
genMkSymVar :: MonadSymbolic m => Kind -> VarContext -> Maybe String -> m (SBV a)
genMkSymVar k mbq Nothing = genVar_ mbq k
genMkSymVar k mbq (Just s) = genVar mbq k s
instance SymVal Bool where
mkSymVal = genMkSymVar KBool
literal = SBV . svBool
fromCV = cvToBool
instance SymVal Word8 where
mkSymVal = genMkSymVar (KBounded False 8)
literal = genLiteral (KBounded False 8)
fromCV = genFromCV
instance SymVal Int8 where
mkSymVal = genMkSymVar (KBounded True 8)
literal = genLiteral (KBounded True 8)
fromCV = genFromCV
instance SymVal Word16 where
mkSymVal = genMkSymVar (KBounded False 16)
literal = genLiteral (KBounded False 16)
fromCV = genFromCV
instance SymVal Int16 where
mkSymVal = genMkSymVar (KBounded True 16)
literal = genLiteral (KBounded True 16)
fromCV = genFromCV
instance SymVal Word32 where
mkSymVal = genMkSymVar (KBounded False 32)
literal = genLiteral (KBounded False 32)
fromCV = genFromCV
instance SymVal Int32 where
mkSymVal = genMkSymVar (KBounded True 32)
literal = genLiteral (KBounded True 32)
fromCV = genFromCV
instance SymVal Word64 where
mkSymVal = genMkSymVar (KBounded False 64)
literal = genLiteral (KBounded False 64)
fromCV = genFromCV
instance SymVal Int64 where
mkSymVal = genMkSymVar (KBounded True 64)
literal = genLiteral (KBounded True 64)
fromCV = genFromCV
instance SymVal Integer where
mkSymVal = genMkSymVar KUnbounded
literal = SBV . SVal KUnbounded . Left . mkConstCV KUnbounded
fromCV = genFromCV
instance SymVal Rational where
mkSymVal = genMkSymVar KRational
literal = SBV . SVal KRational . Left . CV KRational . CRational
fromCV (CV _ (CRational r)) = r
fromCV c = error $ "SymVal.Rational: Unexpected non-rational value: " ++ show c
instance SymVal AlgReal where
mkSymVal = genMkSymVar KReal
literal = SBV . SVal KReal . Left . CV KReal . CAlgReal
fromCV (CV _ (CAlgReal a)) = a
fromCV c = error $ "SymVal.AlgReal: Unexpected non-real value: " ++ show c
-- AlgReal needs its own definition of isConcretely
-- to make sure we avoid using unimplementable Haskell functions
isConcretely (SBV (SVal KReal (Left (CV KReal (CAlgReal v))))) p
| isExactRational v = p v
isConcretely _ _ = False
instance SymVal Float where
mkSymVal = genMkSymVar KFloat
literal = SBV . SVal KFloat . Left . CV KFloat . CFloat
fromCV (CV _ (CFloat a)) = a
fromCV c = error $ "SymVal.Float: Unexpected non-float value: " ++ show c
-- For Float, we conservatively return 'False' for isConcretely. The reason is that
-- this function is used for optimizations when only one of the argument is concrete,
-- and in the presence of NaN's it would be incorrect to do any optimization
isConcretely _ _ = False
instance SymVal Double where
mkSymVal = genMkSymVar KDouble
literal = SBV . SVal KDouble . Left . CV KDouble . CDouble
fromCV (CV _ (CDouble a)) = a
fromCV c = error $ "SymVal.Double: Unexpected non-double value: " ++ show c
-- For Double, we conservatively return 'False' for isConcretely. The reason is that
-- this function is used for optimizations when only one of the argument is concrete,
-- and in the presence of NaN's it would be incorrect to do any optimization
isConcretely _ _ = False
instance SymVal Char where
mkSymVal = genMkSymVar KChar
literal c = SBV . SVal KChar . Left . CV KChar $ CChar c
fromCV (CV _ (CChar a)) = a
fromCV c = error $ "SymVal.String: Unexpected non-char value: " ++ show c
instance SymVal a => SymVal [a] where
mkSymVal
| isKString @[a] undefined = genMkSymVar KString
| True = genMkSymVar (KList (kindOf (Proxy @a)))
literal as
| isKString @[a] undefined = case fromDynamic (toDyn as) of
Just s -> SBV . SVal KString . Left . CV KString . CString $ s
Nothing -> error "SString: Cannot construct literal string!"
| True = let k = KList (kindOf (Proxy @a))
in SBV $ SVal k $ Left $ CV k $ CList $ map toCV as
fromCV (CV _ (CString a)) = fromMaybe (error "SString: Cannot extract a literal string!")
(fromDynamic (toDyn a))
fromCV (CV _ (CList a)) = fromCV . CV (kindOf (Proxy @a)) <$> a
fromCV c = error $ "SymVal.fromCV: Unexpected non-list value: " ++ show c
instance ValidFloat eb sb => HasKind (FloatingPoint eb sb) where
kindOf _ = KFP (intOfProxy (Proxy @eb)) (intOfProxy (Proxy @sb))
instance ValidFloat eb sb => SymVal (FloatingPoint eb sb) where
mkSymVal = genMkSymVar (KFP (intOfProxy (Proxy @eb)) (intOfProxy (Proxy @sb)))
literal (FloatingPoint r) = let k = KFP (intOfProxy (Proxy @eb)) (intOfProxy (Proxy @sb))
in SBV $ SVal k $ Left $ CV k (CFP r)
fromCV (CV _ (CFP r)) = FloatingPoint r
fromCV c = error $ "SymVal.FPR: Unexpected non-arbitrary-precision value: " ++ show c
toCV :: SymVal a => a -> CVal
toCV a = case literal a of
SBV (SVal _ (Left cv)) -> cvVal cv
_ -> error "SymVal.toCV: Impossible happened, couldn't produce a concrete value"
mkCVTup :: Int -> Kind -> [CVal] -> SBV a
mkCVTup i k@(KTuple ks) cs
| lks == lcs && lks == i
= SBV $ SVal k $ Left $ CV k $ CTuple cs
| True
= error $ "SymVal.mkCVTup: Impossible happened. Malformed tuple received: " ++ show (i, k)
where lks = length ks
lcs = length cs
mkCVTup i k _
= error $ "SymVal.mkCVTup: Impossible happened. Non-tuple received: " ++ show (i, k)
fromCVTup :: Int -> CV -> [CV]
fromCVTup i inp@(CV (KTuple ks) (CTuple cs))
| lks == lcs && lks == i
= zipWith CV ks cs
| True
= error $ "SymVal.fromCTup: Impossible happened. Malformed tuple received: " ++ show (i, inp)
where lks = length ks
lcs = length cs
fromCVTup i inp = error $ "SymVal.fromCVTup: Impossible happened. Non-tuple received: " ++ show (i, inp)
instance (SymVal a, SymVal b) => SymVal (Either a b) where
mkSymVal = genMkSymVar (kindOf (Proxy @(Either a b)))
literal s
| Left a <- s = mk $ Left (toCV a)
| Right b <- s = mk $ Right (toCV b)
where k = kindOf (Proxy @(Either a b))
mk = SBV . SVal k . Left . CV k . CEither
fromCV (CV (KEither k1 _ ) (CEither (Left c))) = Left $ fromCV $ CV k1 c
fromCV (CV (KEither _ k2) (CEither (Right c))) = Right $ fromCV $ CV k2 c
fromCV bad = error $ "SymVal.fromCV (Either): Malformed either received: " ++ show bad
instance SymVal a => SymVal (Maybe a) where
mkSymVal = genMkSymVar (kindOf (Proxy @(Maybe a)))
literal s
| Nothing <- s = mk Nothing
| Just a <- s = mk $ Just (toCV a)
where k = kindOf (Proxy @(Maybe a))
mk = SBV . SVal k . Left . CV k . CMaybe
fromCV (CV (KMaybe _) (CMaybe Nothing)) = Nothing
fromCV (CV (KMaybe k) (CMaybe (Just x))) = Just $ fromCV $ CV k x
fromCV bad = error $ "SymVal.fromCV (Maybe): Malformed sum received: " ++ show bad
instance (Ord a, SymVal a) => SymVal (RCSet a) where
mkSymVal = genMkSymVar (kindOf (Proxy @(RCSet a)))
literal eur = SBV $ SVal k $ Left $ CV k $ CSet $ dir $ Set.map toCV s
where (dir, s) = case eur of
RegularSet x -> (RegularSet, x)
ComplementSet x -> (ComplementSet, x)
k = kindOf (Proxy @(RCSet a))
fromCV (CV (KSet a) (CSet (RegularSet s))) = RegularSet $ Set.map (fromCV . CV a) s
fromCV (CV (KSet a) (CSet (ComplementSet s))) = ComplementSet $ Set.map (fromCV . CV a) s
fromCV bad = error $ "SymVal.fromCV (Set): Malformed set received: " ++ show bad
-- | SymVal for 0-tuple (i.e., unit)
instance SymVal () where
mkSymVal = genMkSymVar (KTuple [])
literal () = mkCVTup 0 (kindOf (Proxy @())) []
fromCV cv = fromCVTup 0 cv `seq` ()
-- | SymVal for 2-tuples
instance (SymVal a, SymVal b) => SymVal (a, b) where
mkSymVal = genMkSymVar (kindOf (Proxy @(a, b)))
literal (v1, v2) = mkCVTup 2 (kindOf (Proxy @(a, b))) [toCV v1, toCV v2]
fromCV cv = let ~[v1, v2] = fromCVTup 2 cv
in (fromCV v1, fromCV v2)
-- | SymVal for 3-tuples
instance (SymVal a, SymVal b, SymVal c) => SymVal (a, b, c) where
mkSymVal = genMkSymVar (kindOf (Proxy @(a, b, c)))
literal (v1, v2, v3) = mkCVTup 3 (kindOf (Proxy @(a, b, c))) [toCV v1, toCV v2, toCV v3]
fromCV cv = let ~[v1, v2, v3] = fromCVTup 3 cv
in (fromCV v1, fromCV v2, fromCV v3)
-- | SymVal for 4-tuples
instance (SymVal a, SymVal b, SymVal c, SymVal d) => SymVal (a, b, c, d) where
mkSymVal = genMkSymVar (kindOf (Proxy @(a, b, c, d)))
literal (v1, v2, v3, v4) = mkCVTup 4 (kindOf (Proxy @(a, b, c, d))) [toCV v1, toCV v2, toCV v3, toCV v4]
fromCV cv = let ~[v1, v2, v3, v4] = fromCVTup 4 cv
in (fromCV v1, fromCV v2, fromCV v3, fromCV v4)
-- | SymVal for 5-tuples
instance (SymVal a, SymVal b, SymVal c, SymVal d, SymVal e) => SymVal (a, b, c, d, e) where
mkSymVal = genMkSymVar (kindOf (Proxy @(a, b, c, d, e)))
literal (v1, v2, v3, v4, v5) = mkCVTup 5 (kindOf (Proxy @(a, b, c, d, e))) [toCV v1, toCV v2, toCV v3, toCV v4, toCV v5]
fromCV cv = let ~[v1, v2, v3, v4, v5] = fromCVTup 5 cv
in (fromCV v1, fromCV v2, fromCV v3, fromCV v4, fromCV v5)
-- | SymVal for 6-tuples
instance (SymVal a, SymVal b, SymVal c, SymVal d, SymVal e, SymVal f) => SymVal (a, b, c, d, e, f) where
mkSymVal = genMkSymVar (kindOf (Proxy @(a, b, c, d, e, f)))
literal (v1, v2, v3, v4, v5, v6) = mkCVTup 6 (kindOf (Proxy @(a, b, c, d, e, f))) [toCV v1, toCV v2, toCV v3, toCV v4, toCV v5, toCV v6]
fromCV cv = let ~[v1, v2, v3, v4, v5, v6] = fromCVTup 6 cv
in (fromCV v1, fromCV v2, fromCV v3, fromCV v4, fromCV v5, fromCV v6)
-- | SymVal for 7-tuples
instance (SymVal a, SymVal b, SymVal c, SymVal d, SymVal e, SymVal f, SymVal g) => SymVal (a, b, c, d, e, f, g) where
mkSymVal = genMkSymVar (kindOf (Proxy @(a, b, c, d, e, f, g)))
literal (v1, v2, v3, v4, v5, v6, v7) = mkCVTup 7 (kindOf (Proxy @(a, b, c, d, e, f, g))) [toCV v1, toCV v2, toCV v3, toCV v4, toCV v5, toCV v6, toCV v7]
fromCV cv = let ~[v1, v2, v3, v4, v5, v6, v7] = fromCVTup 7 cv
in (fromCV v1, fromCV v2, fromCV v3, fromCV v4, fromCV v5, fromCV v6, fromCV v7)
-- | SymVal for 8-tuples
instance (SymVal a, SymVal b, SymVal c, SymVal d, SymVal e, SymVal f, SymVal g, SymVal h) => SymVal (a, b, c, d, e, f, g, h) where
mkSymVal = genMkSymVar (kindOf (Proxy @(a, b, c, d, e, f, g, h)))
literal (v1, v2, v3, v4, v5, v6, v7, v8) = mkCVTup 8 (kindOf (Proxy @(a, b, c, d, e, f, g, h))) [toCV v1, toCV v2, toCV v3, toCV v4, toCV v5, toCV v6, toCV v7, toCV v8]
fromCV cv = let ~[v1, v2, v3, v4, v5, v6, v7, v8] = fromCVTup 8 cv
in (fromCV v1, fromCV v2, fromCV v3, fromCV v4, fromCV v5, fromCV v6, fromCV v7, fromCV v8)
instance IsString SString where
fromString = literal
------------------------------------------------------------------------------------
-- * Smart constructors for creating symbolic values. These are not strictly
-- necessary, as they are mere aliases for 'symbolic' and 'symbolics', but
-- they nonetheless make programming easier.
------------------------------------------------------------------------------------
-- | Generalization of 'Data.SBV.sBool'
sBool :: MonadSymbolic m => String -> m SBool
sBool = symbolic
-- | Generalization of 'Data.SBV.sBool_'
sBool_ :: MonadSymbolic m => m SBool
sBool_ = free_
-- | Generalization of 'Data.SBV.sBools'
sBools :: MonadSymbolic m => [String] -> m [SBool]
sBools = symbolics
-- | Generalization of 'Data.SBV.sWord8'
sWord8 :: MonadSymbolic m => String -> m SWord8
sWord8 = symbolic
-- | Generalization of 'Data.SBV.sWord8_'
sWord8_ :: MonadSymbolic m => m SWord8
sWord8_ = free_
-- | Generalization of 'Data.SBV.sWord8s'
sWord8s :: MonadSymbolic m => [String] -> m [SWord8]
sWord8s = symbolics
-- | Generalization of 'Data.SBV.sWord16'
sWord16 :: MonadSymbolic m => String -> m SWord16
sWord16 = symbolic
-- | Generalization of 'Data.SBV.sWord16_'
sWord16_ :: MonadSymbolic m => m SWord16
sWord16_ = free_
-- | Generalization of 'Data.SBV.sWord16s'
sWord16s :: MonadSymbolic m => [String] -> m [SWord16]
sWord16s = symbolics
-- | Generalization of 'Data.SBV.sWord32'
sWord32 :: MonadSymbolic m => String -> m SWord32
sWord32 = symbolic
-- | Generalization of 'Data.SBV.sWord32_'
sWord32_ :: MonadSymbolic m => m SWord32
sWord32_ = free_
-- | Generalization of 'Data.SBV.sWord32s'
sWord32s :: MonadSymbolic m => [String] -> m [SWord32]
sWord32s = symbolics
-- | Generalization of 'Data.SBV.sWord64'
sWord64 :: MonadSymbolic m => String -> m SWord64
sWord64 = symbolic
-- | Generalization of 'Data.SBV.sWord64_'
sWord64_ :: MonadSymbolic m => m SWord64
sWord64_ = free_
-- | Generalization of 'Data.SBV.sWord64s'
sWord64s :: MonadSymbolic m => [String] -> m [SWord64]
sWord64s = symbolics
-- | Generalization of 'Data.SBV.sInt8'
sInt8 :: MonadSymbolic m => String -> m SInt8
sInt8 = symbolic
-- | Generalization of 'Data.SBV.sInt8_'
sInt8_ :: MonadSymbolic m => m SInt8
sInt8_ = free_
-- | Generalization of 'Data.SBV.sInt8s'
sInt8s :: MonadSymbolic m => [String] -> m [SInt8]
sInt8s = symbolics
-- | Generalization of 'Data.SBV.sInt16'
sInt16 :: MonadSymbolic m => String -> m SInt16
sInt16 = symbolic
-- | Generalization of 'Data.SBV.sInt16_'
sInt16_ :: MonadSymbolic m => m SInt16
sInt16_ = free_
-- | Generalization of 'Data.SBV.sInt16s'
sInt16s :: MonadSymbolic m => [String] -> m [SInt16]
sInt16s = symbolics
-- | Generalization of 'Data.SBV.sInt32'
sInt32 :: MonadSymbolic m => String -> m SInt32
sInt32 = symbolic
-- | Generalization of 'Data.SBV.sInt32_'
sInt32_ :: MonadSymbolic m => m SInt32
sInt32_ = free_
-- | Generalization of 'Data.SBV.sInt32s'
sInt32s :: MonadSymbolic m => [String] -> m [SInt32]
sInt32s = symbolics
-- | Generalization of 'Data.SBV.sInt64'
sInt64 :: MonadSymbolic m => String -> m SInt64
sInt64 = symbolic
-- | Generalization of 'Data.SBV.sInt64_'
sInt64_ :: MonadSymbolic m => m SInt64
sInt64_ = free_
-- | Generalization of 'Data.SBV.sInt64s'
sInt64s :: MonadSymbolic m => [String] -> m [SInt64]
sInt64s = symbolics
-- | Generalization of 'Data.SBV.sInteger'
sInteger:: MonadSymbolic m => String -> m SInteger
sInteger = symbolic
-- | Generalization of 'Data.SBV.sInteger_'
sInteger_:: MonadSymbolic m => m SInteger
sInteger_ = free_
-- | Generalization of 'Data.SBV.sIntegers'
sIntegers :: MonadSymbolic m => [String] -> m [SInteger]
sIntegers = symbolics
-- | Generalization of 'Data.SBV.sReal'
sReal:: MonadSymbolic m => String -> m SReal
sReal = symbolic
-- | Generalization of 'Data.SBV.sReal_'
sReal_:: MonadSymbolic m => m SReal
sReal_ = free_
-- | Generalization of 'Data.SBV.sReals'
sReals :: MonadSymbolic m => [String] -> m [SReal]
sReals = symbolics
-- | Generalization of 'Data.SBV.sFloat'
sFloat :: MonadSymbolic m => String -> m SFloat
sFloat = symbolic
-- | Generalization of 'Data.SBV.sFloat_'
sFloat_ :: MonadSymbolic m => m SFloat
sFloat_ = free_
-- | Generalization of 'Data.SBV.sFloats'
sFloats :: MonadSymbolic m => [String] -> m [SFloat]
sFloats = symbolics
-- | Generalization of 'Data.SBV.sDouble'
sDouble :: MonadSymbolic m => String -> m SDouble
sDouble = symbolic
-- | Generalization of 'Data.SBV.sDouble_'
sDouble_ :: MonadSymbolic m => m SDouble
sDouble_ = free_
-- | Generalization of 'Data.SBV.sDoubles'
sDoubles :: MonadSymbolic m => [String] -> m [SDouble]
sDoubles = symbolics
-- | Generalization of 'Data.SBV.sFPHalf'
sFPHalf :: String -> Symbolic SFPHalf
sFPHalf = symbolic
-- | Generalization of 'Data.SBV.sFPHalf_'
sFPHalf_ :: Symbolic SFPHalf
sFPHalf_ = free_
-- | Generalization of 'Data.SBV.sFPHalfs'
sFPHalfs :: [String] -> Symbolic [SFPHalf]
sFPHalfs = symbolics
-- | Generalization of 'Data.SBV.sFPBFloat'
sFPBFloat :: String -> Symbolic SFPBFloat
sFPBFloat = symbolic
-- | Generalization of 'Data.SBV.sFPBFloat_'
sFPBFloat_ :: Symbolic SFPBFloat
sFPBFloat_ = free_
-- | Generalization of 'Data.SBV.sFPBFloats'
sFPBFloats :: [String] -> Symbolic [SFPBFloat]
sFPBFloats = symbolics
-- | Generalization of 'Data.SBV.sFPSingle'
sFPSingle :: String -> Symbolic SFPSingle
sFPSingle = symbolic
-- | Generalization of 'Data.SBV.sFPSingle_'
sFPSingle_ :: Symbolic SFPSingle
sFPSingle_ = free_
-- | Generalization of 'Data.SBV.sFPSingles'
sFPSingles :: [String] -> Symbolic [SFPSingle]
sFPSingles = symbolics
-- | Generalization of 'Data.SBV.sFPDouble'
sFPDouble :: String -> Symbolic SFPDouble
sFPDouble = symbolic
-- | Generalization of 'Data.SBV.sFPDouble_'
sFPDouble_ :: Symbolic SFPDouble
sFPDouble_ = free_
-- | Generalization of 'Data.SBV.sFPDoubles'
sFPDoubles :: [String] -> Symbolic [SFPDouble]
sFPDoubles = symbolics
-- | Generalization of 'Data.SBV.sFPQuad'
sFPQuad :: String -> Symbolic SFPQuad
sFPQuad = symbolic
-- | Generalization of 'Data.SBV.sFPQuad_'
sFPQuad_ :: Symbolic SFPQuad
sFPQuad_ = free_
-- | Generalization of 'Data.SBV.sFPQuads'
sFPQuads :: [String] -> Symbolic [SFPQuad]
sFPQuads = symbolics
-- | Generalization of 'Data.SBV.sFloatingPoint'
sFloatingPoint :: ValidFloat eb sb => String -> Symbolic (SFloatingPoint eb sb)
sFloatingPoint = symbolic
-- | Generalization of 'Data.SBV.sFloatingPoint_'
sFloatingPoint_ :: ValidFloat eb sb => Symbolic (SFloatingPoint eb sb)
sFloatingPoint_ = free_
-- | Generalization of 'Data.SBV.sFloatingPoints'
sFloatingPoints :: ValidFloat eb sb => [String] -> Symbolic [SFloatingPoint eb sb]
sFloatingPoints = symbolics
-- | Generalization of 'Data.SBV.sChar'
sChar :: MonadSymbolic m => String -> m SChar
sChar = symbolic
-- | Generalization of 'Data.SBV.sChar_'
sChar_ :: MonadSymbolic m => m SChar
sChar_ = free_
-- | Generalization of 'Data.SBV.sChars'
sChars :: MonadSymbolic m => [String] -> m [SChar]
sChars = symbolics
-- | Generalization of 'Data.SBV.sString'
sString :: MonadSymbolic m => String -> m SString
sString = symbolic
-- | Generalization of 'Data.SBV.sString_'
sString_ :: MonadSymbolic m => m SString
sString_ = free_
-- | Generalization of 'Data.SBV.sStrings'
sStrings :: MonadSymbolic m => [String] -> m [SString]
sStrings = symbolics
-- | Generalization of 'Data.SBV.sList'
sList :: (SymVal a, MonadSymbolic m) => String -> m (SList a)
sList = symbolic
-- | Generalization of 'Data.SBV.sList_'
sList_ :: (SymVal a, MonadSymbolic m) => m (SList a)
sList_ = free_
-- | Generalization of 'Data.SBV.sLists'
sLists :: (SymVal a, MonadSymbolic m) => [String] -> m [SList a]
sLists = symbolics
-- | Identify tuple like things. Note that there are no methods, just instances to control type inference
class SymTuple a
instance SymTuple ()
instance SymTuple (a, b)
instance SymTuple (a, b, c)
instance SymTuple (a, b, c, d)
instance SymTuple (a, b, c, d, e)
instance SymTuple (a, b, c, d, e, f)
instance SymTuple (a, b, c, d, e, f, g)
instance SymTuple (a, b, c, d, e, f, g, h)
-- | Generalization of 'Data.SBV.sTuple'
sTuple :: (SymTuple tup, SymVal tup, MonadSymbolic m) => String -> m (SBV tup)
sTuple = symbolic
-- | Generalization of 'Data.SBV.sTuple_'
sTuple_ :: (SymTuple tup, SymVal tup, MonadSymbolic m) => m (SBV tup)
sTuple_ = free_
-- | Generalization of 'Data.SBV.sTuples'
sTuples :: (SymTuple tup, SymVal tup, MonadSymbolic m) => [String] -> m [SBV tup]
sTuples = symbolics
-- | Generalization of 'Data.SBV.sRational'
sRational :: MonadSymbolic m => String -> m SRational
sRational = symbolic
-- | Generalization of 'Data.SBV.sRational_'
sRational_ :: MonadSymbolic m => m SRational
sRational_ = free_
-- | Generalization of 'Data.SBV.sRationals'
sRationals :: MonadSymbolic m => [String] -> m [SRational]
sRationals = symbolics
-- | Generalization of 'Data.SBV.sEither'
sEither :: (SymVal a, SymVal b, MonadSymbolic m) => String -> m (SEither a b)
sEither = symbolic
-- | Generalization of 'Data.SBV.sEither_'
sEither_ :: (SymVal a, SymVal b, MonadSymbolic m) => m (SEither a b)
sEither_ = free_
-- | Generalization of 'Data.SBV.sEithers'
sEithers :: (SymVal a, SymVal b, MonadSymbolic m) => [String] -> m [SEither a b]
sEithers = symbolics
-- | Generalization of 'Data.SBV.sMaybe'
sMaybe :: (SymVal a, MonadSymbolic m) => String -> m (SMaybe a)
sMaybe = symbolic
-- | Generalization of 'Data.SBV.sMaybe_'
sMaybe_ :: (SymVal a, MonadSymbolic m) => m (SMaybe a)
sMaybe_ = free_
-- | Generalization of 'Data.SBV.sMaybes'
sMaybes :: (SymVal a, MonadSymbolic m) => [String] -> m [SMaybe a]
sMaybes = symbolics
-- | Generalization of 'Data.SBV.sSet'
sSet :: (Ord a, SymVal a, MonadSymbolic m) => String -> m (SSet a)
sSet = symbolic
-- | Generalization of 'Data.SBV.sMaybe_'
sSet_ :: (Ord a, SymVal a, MonadSymbolic m) => m (SSet a)
sSet_ = free_
-- | Generalization of 'Data.SBV.sMaybes'
sSets :: (Ord a, SymVal a, MonadSymbolic m) => [String] -> m [SSet a]
sSets = symbolics
-- | Generalization of 'Data.SBV.solve'
solve :: MonadSymbolic m => [SBool] -> m SBool
solve = return . sAnd
-- | Convert an SReal to an SInteger. That is, it computes the
-- largest integer @n@ that satisfies @sIntegerToSReal n <= r@
-- essentially giving us the @floor@.
--
-- For instance, @1.3@ will be @1@, but @-1.3@ will be @-2@.
sRealToSInteger :: SReal -> SInteger
sRealToSInteger x
| Just i <- unliteral x, isExactRational i
= literal $ floor (toRational i)
| True
= SBV (SVal KUnbounded (Right (cache y)))
where y st = do xsv <- sbvToSV st x
newExpr st KUnbounded (SBVApp (KindCast KReal KUnbounded) [xsv])
-- | label: Label the result of an expression. This is essentially a no-op, but useful as it generates a comment in the generated C/SMT-Lib code.
-- Note that if the argument is a constant, then the label is dropped completely, per the usual constant folding strategy. Compare this to 'observe'
-- which is good for printing counter-examples.
label :: SymVal a => String -> SBV a -> SBV a
label m x
| Just _ <- unliteral x = x
| True = SBV $ SVal k $ Right $ cache r
where k = kindOf x
r st = do xsv <- sbvToSV st x
newExpr st k (SBVApp (Label m) [xsv])
-- | Check if an observable name is good.
checkObservableName :: String -> Maybe String
checkObservableName lbl
| null lbl
= Just "SBV.observe: Bad empty name!"
| map toLower lbl `elem` smtLibReservedNames
= Just $ "SBV.observe: The name chosen is reserved, please change it!: " ++ show lbl
| "s" `isPrefixOf` lbl && all isDigit (drop 1 lbl)
= Just $ "SBV.observe: Names of the form sXXX are internal to SBV, please use a different name: " ++ show lbl
| True
= Nothing
-- | Observe the value of an expression, if the given condition holds. Such values are useful in model construction, as they are printed part of a satisfying model, or a
-- counter-example. The same works for quick-check as well. Useful when we want to see intermediate values, or expected/obtained
-- pairs in a particular run. Note that an observed expression is always symbolic, i.e., it won't be constant folded. Compare this to 'label'
-- which is used for putting a label in the generated SMTLib-C code.
observeIf :: SymVal a => (a -> Bool) -> String -> SBV a -> SBV a
observeIf cond m x
| Just bad <- checkObservableName m
= error bad
| True
= SBV $ SVal k $ Right $ cache r
where k = kindOf x
r st = do xsv <- sbvToSV st x
recordObservable st m (cond . fromCV) xsv
return xsv
-- | Observe the value of an expression, unconditionally. See 'observeIf' for a generalized version.
observe :: SymVal a => String -> SBV a -> SBV a
observe = observeIf (const True)
-- | A variant of observe that you can use at the top-level. This is useful with quick-check, for instance.
sObserve :: SymVal a => String -> SBV a -> Symbolic ()
sObserve m x
| Just bad <- checkObservableName m
= error bad
| True
= do st <- symbolicEnv
liftIO $ do xsv <- sbvToSV st x
recordObservable st m (const True) xsv
-- | Symbolic Comparisons. Similar to 'Eq', we cannot implement Haskell's 'Ord' class
-- since there is no way to return an 'Ordering' value from a symbolic comparison.
-- Furthermore, 'OrdSymbolic' requires 'Mergeable' to implement if-then-else, for the
-- benefit of implementing symbolic versions of 'max' and 'min' functions.
infix 4 .<, .<=, .>, .>=
class (Mergeable a, EqSymbolic a) => OrdSymbolic a where
-- | Symbolic less than.
(.<) :: a -> a -> SBool
-- | Symbolic less than or equal to.
(.<=) :: a -> a -> SBool
-- | Symbolic greater than.
(.>) :: a -> a -> SBool
-- | Symbolic greater than or equal to.
(.>=) :: a -> a -> SBool
-- | Symbolic minimum.
smin :: a -> a -> a
-- | Symbolic maximum.
smax :: a -> a -> a
-- | Is the value within the allowed /inclusive/ range?
inRange :: a -> (a, a) -> SBool
{-# MINIMAL (.<) #-}
a .<= b = a .< b .|| a .== b
a .> b = b .< a
a .>= b = b .<= a
a `smin` b = ite (a .<= b) a b
a `smax` b = ite (a .<= b) b a
inRange x (y, z) = x .>= y .&& x .<= z
{- We can't have a generic instance of the form:
instance Eq a => EqSymbolic a where
x .== y = if x == y then true else sFalse
even if we're willing to allow Flexible/undecidable instances..
This is because if we allow this it would imply EqSymbolic (SBV a);
since (SBV a) has to be Eq as it must be a Num. But this wouldn't be
the right choice obviously; as the Eq instance is bogus for SBV
for natural reasons..
-}
-- It is tempting to put in an @Eq a@ superclass here. But doing so
-- is complicated, as it requires all underlying types to have equality,
-- which is at best shaky for algebraic reals and sets. So, leave it out.
instance EqSymbolic (SBV a) where
SBV x .== SBV y = SBV (svEqual x y)
SBV x ./= SBV y = SBV (svNotEqual x y)
SBV x .=== SBV y = SBV (svStrongEqual x y)
-- Custom version of distinct that generates better code for base types
distinct [] = sTrue
distinct [_] = sTrue
distinct xs | all isConc xs = checkDiff xs
| [SBV a, SBV b] <- xs, a `is` svBool True = SBV $ svNot b
| [SBV a, SBV b] <- xs, b `is` svBool True = SBV $ svNot a
| [SBV a, SBV b] <- xs, a `is` svBool False = SBV b
| [SBV a, SBV b] <- xs, b `is` svBool False = SBV a
| length xs > 2 && isBool (head xs) = sFalse
| True = SBV (SVal KBool (Right (cache r)))
where r st = do xsv <- mapM (sbvToSV st) xs
newExpr st KBool (SBVApp NotEqual xsv)
-- We call this in case all are concrete, which will
-- reduce to a constant and generate no code at all!
-- Note that this is essentially the same as the default
-- definition, which unfortunately we can no longer call!
checkDiff [] = sTrue
checkDiff (a:as) = sAll (a ./=) as .&& checkDiff as
-- Sigh, we can't use isConcrete since that requires SymVal
-- constraint that we don't have here. (To support SBools.)
isConc (SBV (SVal _ (Left _))) = True
isConc _ = False
-- Likewise here; need to go lower.
SVal k1 (Left c1) `is` SVal k2 (Left c2) = (k1, c1) == (k2, c2)
_ `is` _ = False
isBool (SBV (SVal KBool _)) = True
isBool _ = False
-- Custom version of distinctExcept that generates better code for base types
-- We essentially keep track of an array and count cardinalities as we walk along.
distinctExcept [] _ = sTrue
distinctExcept [_] _ = sTrue
distinctExcept es ignored
| all isConc (es ++ ignored)
= distinct (filter ignoreConc es)
| True
= SBV (SVal KBool (Right (cache r)))
where ignoreConc x = case x `sElem` ignored of
SBV (SVal KBool (Left cv)) -> cvToBool cv
_ -> error $ "distinctExcept: Impossible happened, concrete sElem failed: " ++ show (es, ignored, x)
ek = case head es of -- Head is safe here as we're guaranteed to have a non-empty es by pattern matching above. (Actually, there'll be at least two elements)
SBV (SVal k _) -> k
r st = do let zero = 0 :: SInteger
arr <- SArray <$> newSArr st (ek, KUnbounded) (\i -> "array_" ++ show i) (Left (Just (unSBV zero)))
let incr x table = ite (x `sElem` ignored) zero (1 + readArray table x)
finalArray = foldl (\table x -> writeArray table x (incr x table)) arr es
sbvToSV st $ sAll (\e -> readArray finalArray e .<= 1) es
-- Sigh, we can't use isConcrete since that requires SymVal
-- constraint that we don't have here. (To support SBools.)
isConc (SBV (SVal _ (Left _))) = True
isConc _ = False
-- | If comparison is over something SMTLib can handle, just translate it. Otherwise desugar.
instance (Ord a, SymVal a) => OrdSymbolic (SBV a) where
a@(SBV x) .< b@(SBV y) | smtComparable "<" a b = SBV (svLessThan x y)
| True = SBV (svStructuralLessThan x y)
a@(SBV x) .<= b@(SBV y) | smtComparable ".<=" a b = SBV (svLessEq x y)
| True = a .< b .|| a .== b
a@(SBV x) .> b@(SBV y) | smtComparable ">" a b = SBV (svGreaterThan x y)
| True = b .< a
a@(SBV x) .>= b@(SBV y) | smtComparable ">=" a b = SBV (svGreaterEq x y)
| True = b .<= a
-- Is this a type that's comparable by underlying translation to SMTLib?
-- Note that we allow concrete versions to go through unless the type is a set, as there's really no reason not to.
smtComparable :: (SymVal a, HasKind a) => String -> SBV a -> SBV a -> Bool
smtComparable op x y
| isConcrete x && isConcrete y && not (isSet k)
= True
| True
= case k of
KBool -> True
KBounded {} -> True
KUnbounded {} -> True
KReal {} -> True
KUserSort {} -> True
KFloat -> True
KDouble -> True
KRational {} -> True
KFP {} -> True
KChar -> True
KString -> True
KList {} -> nope -- Unfortunately, no way for us to desugar this
KSet {} -> nope -- Ditto here..
KTuple {} -> False
KMaybe {} -> False
KEither {} -> False
where k = kindOf x
nope = error $ "Data.SBV.OrdSymbolic: SMTLib does not support " ++ op ++ " for " ++ show k
-- Bool
instance EqSymbolic Bool where
x .== y = fromBool $ x == y
-- Lists
instance EqSymbolic a => EqSymbolic [a] where
[] .== [] = sTrue
(x:xs) .== (y:ys) = x .== y .&& xs .== ys
_ .== _ = sFalse
instance OrdSymbolic a => OrdSymbolic [a] where
[] .< [] = sFalse
[] .< _ = sTrue
_ .< [] = sFalse
(x:xs) .< (y:ys) = x .< y .|| (x .== y .&& xs .< ys)
-- Maybe
instance EqSymbolic a => EqSymbolic (Maybe a) where
Nothing .== Nothing = sTrue
Just a .== Just b = a .== b
_ .== _ = sFalse
instance OrdSymbolic a => OrdSymbolic (Maybe a) where
Nothing .< Nothing = sFalse
Nothing .< _ = sTrue
Just _ .< Nothing = sFalse
Just a .< Just b = a .< b
-- Either
instance (EqSymbolic a, EqSymbolic b) => EqSymbolic (Either a b) where
Left a .== Left b = a .== b
Right a .== Right b = a .== b
_ .== _ = sFalse
instance (OrdSymbolic a, OrdSymbolic b) => OrdSymbolic (Either a b) where
Left a .< Left b = a .< b
Left _ .< Right _ = sTrue
Right _ .< Left _ = sFalse
Right a .< Right b = a .< b
-- 2-Tuple
instance (EqSymbolic a, EqSymbolic b) => EqSymbolic (a, b) where
(a0, b0) .== (a1, b1) = a0 .== a1 .&& b0 .== b1
instance (OrdSymbolic a, OrdSymbolic b) => OrdSymbolic (a, b) where
(a0, b0) .< (a1, b1) = a0 .< a1 .|| (a0 .== a1 .&& b0 .< b1)
-- 3-Tuple
instance (EqSymbolic a, EqSymbolic b, EqSymbolic c) => EqSymbolic (a, b, c) where
(a0, b0, c0) .== (a1, b1, c1) = (a0, b0) .== (a1, b1) .&& c0 .== c1
instance (OrdSymbolic a, OrdSymbolic b, OrdSymbolic c) => OrdSymbolic (a, b, c) where
(a0, b0, c0) .< (a1, b1, c1) = (a0, b0) .< (a1, b1) .|| ((a0, b0) .== (a1, b1) .&& c0 .< c1)
-- 4-Tuple
instance (EqSymbolic a, EqSymbolic b, EqSymbolic c, EqSymbolic d) => EqSymbolic (a, b, c, d) where
(a0, b0, c0, d0) .== (a1, b1, c1, d1) = (a0, b0, c0) .== (a1, b1, c1) .&& d0 .== d1
instance (OrdSymbolic a, OrdSymbolic b, OrdSymbolic c, OrdSymbolic d) => OrdSymbolic (a, b, c, d) where
(a0, b0, c0, d0) .< (a1, b1, c1, d1) = (a0, b0, c0) .< (a1, b1, c1) .|| ((a0, b0, c0) .== (a1, b1, c1) .&& d0 .< d1)
-- 5-Tuple
instance (EqSymbolic a, EqSymbolic b, EqSymbolic c, EqSymbolic d, EqSymbolic e) => EqSymbolic (a, b, c, d, e) where
(a0, b0, c0, d0, e0) .== (a1, b1, c1, d1, e1) = (a0, b0, c0, d0) .== (a1, b1, c1, d1) .&& e0 .== e1
instance (OrdSymbolic a, OrdSymbolic b, OrdSymbolic c, OrdSymbolic d, OrdSymbolic e) => OrdSymbolic (a, b, c, d, e) where
(a0, b0, c0, d0, e0) .< (a1, b1, c1, d1, e1) = (a0, b0, c0, d0) .< (a1, b1, c1, d1) .|| ((a0, b0, c0, d0) .== (a1, b1, c1, d1) .&& e0 .< e1)
-- 6-Tuple
instance (EqSymbolic a, EqSymbolic b, EqSymbolic c, EqSymbolic d, EqSymbolic e, EqSymbolic f) => EqSymbolic (a, b, c, d, e, f) where
(a0, b0, c0, d0, e0, f0) .== (a1, b1, c1, d1, e1, f1) = (a0, b0, c0, d0, e0) .== (a1, b1, c1, d1, e1) .&& f0 .== f1
instance (OrdSymbolic a, OrdSymbolic b, OrdSymbolic c, OrdSymbolic d, OrdSymbolic e, OrdSymbolic f) => OrdSymbolic (a, b, c, d, e, f) where
(a0, b0, c0, d0, e0, f0) .< (a1, b1, c1, d1, e1, f1) = (a0, b0, c0, d0, e0) .< (a1, b1, c1, d1, e1)
.|| ((a0, b0, c0, d0, e0) .== (a1, b1, c1, d1, e1) .&& f0 .< f1)
-- 7-Tuple
instance (EqSymbolic a, EqSymbolic b, EqSymbolic c, EqSymbolic d, EqSymbolic e, EqSymbolic f, EqSymbolic g) => EqSymbolic (a, b, c, d, e, f, g) where
(a0, b0, c0, d0, e0, f0, g0) .== (a1, b1, c1, d1, e1, f1, g1) = (a0, b0, c0, d0, e0, f0) .== (a1, b1, c1, d1, e1, f1) .&& g0 .== g1
instance (OrdSymbolic a, OrdSymbolic b, OrdSymbolic c, OrdSymbolic d, OrdSymbolic e, OrdSymbolic f, OrdSymbolic g) => OrdSymbolic (a, b, c, d, e, f, g) where
(a0, b0, c0, d0, e0, f0, g0) .< (a1, b1, c1, d1, e1, f1, g1) = (a0, b0, c0, d0, e0, f0) .< (a1, b1, c1, d1, e1, f1)
.|| ((a0, b0, c0, d0, e0, f0) .== (a1, b1, c1, d1, e1, f1) .&& g0 .< g1)
-- | Regular expressions can be compared for equality. Note that we diverge here from the equality
-- in the concrete sense; i.e., the Eq instance does not match the symbolic case. This is a bit unfortunate,
-- but unavoidable with the current design of how we "distinguish" operators. Hopefully shouldn't be a big deal,
-- though one should be careful.
instance EqSymbolic RegExp where
r1 .== r2 = SBV $ SVal KBool $ Right $ cache r
where r st = newExpr st KBool $ SBVApp (RegExOp (RegExEq r1 r2)) []
r1 ./= r2 = SBV $ SVal KBool $ Right $ cache r
where r st = newExpr st KBool $ SBVApp (RegExOp (RegExNEq r1 r2)) []
-- | Symbolic Numbers. This is a simple class that simply incorporates all number like
-- base types together, simplifying writing polymorphic type-signatures that work for all
-- symbolic numbers, such as 'SWord8', 'SInt8' etc. For instance, we can write a generic
-- list-minimum function as follows:
--
-- @
-- mm :: SIntegral a => [SBV a] -> SBV a
-- mm = foldr1 (\a b -> ite (a .<= b) a b)
-- @
--
-- It is similar to the standard 'Integral' class, except ranging over symbolic instances.
class (SymVal a, Num a, Bits a, Integral a) => SIntegral a
-- 'SIntegral' Instances, skips Real/Float/Bool
instance SIntegral Word8
instance SIntegral Word16
instance SIntegral Word32
instance SIntegral Word64
instance SIntegral Int8
instance SIntegral Int16
instance SIntegral Int32
instance SIntegral Int64
instance SIntegral Integer
-- | Finite bit-length symbolic values. Essentially the same as 'SIntegral', but further leaves out 'Integer'. Loosely
-- based on Haskell's @FiniteBits@ class, but with more methods defined and structured differently to fit into the
-- symbolic world view. Minimal complete definition: 'sFiniteBitSize'.
class (Ord a, SymVal a, Num a, Bits a) => SFiniteBits a where
-- | Bit size.
sFiniteBitSize :: SBV a -> Int
-- | Least significant bit of a word, always stored at index 0.
lsb :: SBV a -> SBool
-- | Most significant bit of a word, always stored at the last position.
msb :: SBV a -> SBool
-- | Big-endian blasting of a word into its bits.
blastBE :: SBV a -> [SBool]
-- | Little-endian blasting of a word into its bits.
blastLE :: SBV a -> [SBool]
-- | Reconstruct from given bits, given in little-endian.
fromBitsBE :: [SBool] -> SBV a
-- | Reconstruct from given bits, given in little-endian.
fromBitsLE :: [SBool] -> SBV a
-- | Replacement for 'testBit', returning 'SBool' instead of 'Bool'.
sTestBit :: SBV a -> Int -> SBool
-- | Variant of 'sTestBit', where we want to extract multiple bit positions.
sExtractBits :: SBV a -> [Int] -> [SBool]
-- | Variant of 'popCount', returning a symbolic value.
sPopCount :: SBV a -> SWord8
-- | A combo of 'setBit' and 'clearBit', when the bit to be set is symbolic.
setBitTo :: SBV a -> Int -> SBool -> SBV a
-- | Full adder, returns carry-out from the addition. Only for unsigned quantities.
fullAdder :: SBV a -> SBV a -> (SBool, SBV a)
-- | Full multiplier, returns both high and low-order bits. Only for unsigned quantities.
fullMultiplier :: SBV a -> SBV a -> (SBV a, SBV a)
-- | Count leading zeros in a word, big-endian interpretation.
sCountLeadingZeros :: SBV a -> SWord8
-- | Count trailing zeros in a word, big-endian interpretation.
sCountTrailingZeros :: SBV a -> SWord8
{-# MINIMAL sFiniteBitSize #-}
-- Default implementations
lsb (SBV v) = SBV (svTestBit v 0)
msb x = sTestBit x (sFiniteBitSize x - 1)
blastBE = reverse . blastLE
blastLE x = map (sTestBit x) [0 .. intSizeOf x - 1]
fromBitsBE = fromBitsLE . reverse
fromBitsLE bs
| length bs /= w
= error $ "SBV.SFiniteBits.fromBitsLE/BE: Expected: " ++ show w ++ " bits, received: " ++ show (length bs)
| True
= result
where w = sFiniteBitSize result
result = go 0 0 bs
go !acc _ [] = acc
go !acc !i (x:xs) = go (ite x (setBit acc i) acc) (i+1) xs
sTestBit (SBV x) i = SBV (svTestBit x i)
sExtractBits x = map (sTestBit x)
-- NB. 'sPopCount' returns an 'SWord8', which can overflow when used on quantities that have
-- more than 255 bits. For the regular interface, this suffices for all types we support.
-- For the Dynamic interface, if we ever implement this, this will fail for bit-vectors
-- larger than that many bits. The alternative would be to return SInteger here, but that
-- seems a total overkill for most use cases. If such is required, users are encouraged
-- to define their own variants, which is rather easy.
sPopCount x
| Just v <- unliteral x = go 0 v
| True = sum [ite b 1 0 | b <- blastLE x]
where -- concrete case
go !c 0 = c
go !c w = go (c+1) (w .&. (w-1))
setBitTo x i b = ite b (setBit x i) (clearBit x i)
fullAdder a b
| isSigned a = error "fullAdder: only works on unsigned numbers"
| True = (a .> s .|| b .> s, s)
where s = a + b
-- N.B. The higher-order bits are determined using a simple shift-add multiplier,
-- thus involving bit-blasting. It'd be naive to expect SMT solvers to deal efficiently
-- with properties involving this function, at least with the current state of the art.
fullMultiplier a b
| isSigned a = error "fullMultiplier: only works on unsigned numbers"
| True = (go (sFiniteBitSize a) 0 a, a*b)
where go 0 p _ = p
go n p x = let (c, p') = ite (lsb x) (fullAdder p b) (sFalse, p)
(o, p'') = shiftIn c p'
(_, x') = shiftIn o x
in go (n-1) p'' x'
shiftIn k v = (lsb v, mask .|. (v `shiftR` 1))
where mask = ite k (bit (sFiniteBitSize v - 1)) 0
-- See the note for 'sPopCount' for a comment on why we return 'SWord8'
sCountLeadingZeros x = fromIntegral m - go m
where m = sFiniteBitSize x - 1
-- NB. When i is 0 below, which happens when x is 0 as we count all the way down,
-- we return -1, which is equal to 2^n-1, giving us: n-1-(2^n-1) = n-2^n = n, as required, i.e., the bit-size.
go :: Int -> SWord8
go i | i < 0 = i8
| True = ite (sTestBit x i) i8 (go (i-1))
where i8 = literal (fromIntegral i :: Word8)
-- See the note for 'sPopCount' for a comment on why we return 'SWord8'
sCountTrailingZeros x = go 0
where m = sFiniteBitSize x
go :: Int -> SWord8
go i | i >= m = i8
| True = ite (sTestBit x i) i8 (go (i+1))
where i8 = literal (fromIntegral i :: Word8)
-- 'SFiniteBits' Instances, skips Real/Float/Bool/Integer
instance SFiniteBits Word8 where sFiniteBitSize _ = 8
instance SFiniteBits Word16 where sFiniteBitSize _ = 16
instance SFiniteBits Word32 where sFiniteBitSize _ = 32
instance SFiniteBits Word64 where sFiniteBitSize _ = 64
instance SFiniteBits Int8 where sFiniteBitSize _ = 8
instance SFiniteBits Int16 where sFiniteBitSize _ = 16
instance SFiniteBits Int32 where sFiniteBitSize _ = 32
instance SFiniteBits Int64 where sFiniteBitSize _ = 64
-- | Returns 1 if the boolean is 'sTrue', otherwise 0.
oneIf :: (Ord a, Num a, SymVal a) => SBool -> SBV a
oneIf t = ite t 1 0
-- | Lift a pseudo-boolean op, performing checks
liftPB :: String -> PBOp -> [SBool] -> SBool
liftPB w o xs
| Just e <- check o
= error $ "SBV." ++ w ++ ": " ++ e
| True
= result
where check (PB_AtMost k) = pos k
check (PB_AtLeast k) = pos k
check (PB_Exactly k) = pos k
check (PB_Le cs k) = pos k `mplus` match cs
check (PB_Ge cs k) = pos k `mplus` match cs
check (PB_Eq cs k) = pos k `mplus` match cs
pos k
| k < 0 = Just $ "comparison value must be positive, received: " ++ show k
| True = Nothing
match cs
| any (< 0) cs = Just $ "coefficients must be non-negative. Received: " ++ show cs
| lxs /= lcs = Just $ "coefficient length must match number of arguments. Received: " ++ show (lcs, lxs)
| True = Nothing
where lxs = length xs
lcs = length cs
result = SBV (SVal KBool (Right (cache r)))
r st = do xsv <- mapM (sbvToSV st) xs
-- PseudoBoolean's implicitly require support for integers, so make sure to register that kind!
registerKind st KUnbounded
newExpr st KBool (SBVApp (PseudoBoolean o) xsv)
-- | 'sTrue' if at most @k@ of the input arguments are 'sTrue'
pbAtMost :: [SBool] -> Int -> SBool
pbAtMost xs k
| k < 0 = error $ "SBV.pbAtMost: Non-negative value required, received: " ++ show k
| all isConcrete xs = literal $ sum (map (pbToInteger "pbAtMost" 1) xs) <= fromIntegral k
| True = liftPB "pbAtMost" (PB_AtMost k) xs
-- | 'sTrue' if at least @k@ of the input arguments are 'sTrue'
pbAtLeast :: [SBool] -> Int -> SBool
pbAtLeast xs k
| k < 0 = error $ "SBV.pbAtLeast: Non-negative value required, received: " ++ show k
| all isConcrete xs = literal $ sum (map (pbToInteger "pbAtLeast" 1) xs) >= fromIntegral k
| True = liftPB "pbAtLeast" (PB_AtLeast k) xs
-- | 'sTrue' if exactly @k@ of the input arguments are 'sTrue'
pbExactly :: [SBool] -> Int -> SBool
pbExactly xs k
| k < 0 = error $ "SBV.pbExactly: Non-negative value required, received: " ++ show k
| all isConcrete xs = literal $ sum (map (pbToInteger "pbExactly" 1) xs) == fromIntegral k
| True = liftPB "pbExactly" (PB_Exactly k) xs
-- | 'sTrue' if the sum of coefficients for 'sTrue' elements is at most @k@. Generalizes 'pbAtMost'.
pbLe :: [(Int, SBool)] -> Int -> SBool
pbLe xs k
| k < 0 = error $ "SBV.pbLe: Non-negative value required, received: " ++ show k
| all (isConcrete . snd) xs = literal $ sum [pbToInteger "pbLe" c b | (c, b) <- xs] <= fromIntegral k
| True = liftPB "pbLe" (PB_Le (map fst xs) k) (map snd xs)
-- | 'sTrue' if the sum of coefficients for 'sTrue' elements is at least @k@. Generalizes 'pbAtLeast'.
pbGe :: [(Int, SBool)] -> Int -> SBool
pbGe xs k
| k < 0 = error $ "SBV.pbGe: Non-negative value required, received: " ++ show k
| all (isConcrete . snd) xs = literal $ sum [pbToInteger "pbGe" c b | (c, b) <- xs] >= fromIntegral k
| True = liftPB "pbGe" (PB_Ge (map fst xs) k) (map snd xs)
-- | 'sTrue' if the sum of coefficients for 'sTrue' elements is exactly least @k@. Useful for coding
-- /exactly K-of-N/ constraints, and in particular mutex constraints.
pbEq :: [(Int, SBool)] -> Int -> SBool
pbEq xs k
| k < 0 = error $ "SBV.pbEq: Non-negative value required, received: " ++ show k
| all (isConcrete . snd) xs = literal $ sum [pbToInteger "pbEq" c b | (c, b) <- xs] == fromIntegral k
| True = liftPB "pbEq" (PB_Eq (map fst xs) k) (map snd xs)
-- | 'sTrue' if there is at most one set bit
pbMutexed :: [SBool] -> SBool
pbMutexed xs = pbAtMost xs 1
-- | 'sTrue' if there is exactly one set bit
pbStronglyMutexed :: [SBool] -> SBool
pbStronglyMutexed xs = pbExactly xs 1
-- | Convert a concrete pseudo-boolean to given int; converting to integer
pbToInteger :: String -> Int -> SBool -> Integer
pbToInteger w c b
| c < 0 = error $ "SBV." ++ w ++ ": Non-negative coefficient required, received: " ++ show c
| Just v <- unliteral b = if v then fromIntegral c else 0
| True = error $ "SBV.pbToInteger: Received a symbolic boolean: " ++ show (c, b)
-- | Predicate for optimizing word operations like (+) and (*).
isConcreteZero :: SBV a -> Bool
isConcreteZero (SBV (SVal _ (Left (CV _ (CInteger n))))) = n == 0
isConcreteZero (SBV (SVal KReal (Left (CV KReal (CAlgReal v))))) = isExactRational v && v == 0
isConcreteZero _ = False
-- | Predicate for optimizing word operations like (+) and (*).
isConcreteOne :: SBV a -> Bool
isConcreteOne (SBV (SVal _ (Left (CV _ (CInteger 1))))) = True
isConcreteOne (SBV (SVal KReal (Left (CV KReal (CAlgReal v))))) = isExactRational v && v == 1
isConcreteOne _ = False
-- Num instance for symbolic words.
instance (Ord a, Num a, SymVal a) => Num (SBV a) where
fromInteger = literal . fromIntegral
SBV x + SBV y = SBV (svPlus x y)
SBV x * SBV y = SBV (svTimes x y)
SBV x - SBV y = SBV (svMinus x y)
-- Abs is problematic for floating point, due to -0; case, so we carefully shuttle it down
-- to the solver to avoid the can of worms. (Alternative would be to do an if-then-else here.)
abs (SBV x) = SBV (svAbs x)
signum a
-- NB. The following "carefully" tests the number for == 0, as Float/Double's NaN and +/-0
-- cases would cause trouble with explicit equality tests.
| hasSign a = ite (a .> z) i
$ ite (a .< z) (negate i) a
| True = ite (a .> z) i a
where z = genLiteral (kindOf a) (0::Integer)
i = genLiteral (kindOf a) (1::Integer)
-- negate is tricky because on double/float -0 is different than 0; so we cannot
-- just rely on the default definition; which would be 0-0, which is not -0!
negate (SBV x) = SBV (svUNeg x)
-- | Symbolic exponentiation using bit blasting and repeated squaring.
--
-- N.B. The exponent must be unsigned/bounded if symbolic. Signed exponents will be rejected.
(.^) :: (Mergeable b, Num b, SIntegral e) => b -> SBV e -> b
b .^ e
| isConcrete e, Just (x :: Integer) <- unliteral (sFromIntegral e)
= if x >= 0 then let go n v
| n == 0 = 1
| even n = go (n `div` 2) (v * v)
| True = v * go (n `div` 2) (v * v)
in go x b
else error $ "(.^): exponentiation: negative exponent: " ++ show x
| not (isBounded e) || isSigned e
= error $ "(.^): exponentiation only works with unsigned bounded symbolic exponents, kind: " ++ show (kindOf e)
| True
= -- NB. We can't simply use sTestBit and blastLE since they have SFiniteBit requirement
-- but we want to have SIntegral here only.
let SBV expt = e
expBit i = SBV (svTestBit expt i)
blasted = map expBit [0 .. intSizeOf e - 1]
in product $ zipWith (\use n -> ite use n 1)
blasted
(iterate (\x -> x*x) b)
instance (Ord a, SymVal a, Fractional a) => Fractional (SBV a) where
fromRational = literal . fromRational
SBV x / sy@(SBV y) | div0 = ite (sy .== 0) 0 res
| True = res
where res = SBV (svDivide x y)
-- Identify those kinds where we have a div-0 equals 0 exception
div0 = case kindOf sy of
KFloat -> False
KDouble -> False
KFP{} -> False
KReal -> True
KRational -> True
-- Following cases should not happen since these types should *not* be instances of Fractional
k@KBounded{} -> error $ "Unexpected Fractional case for: " ++ show k
k@KUnbounded -> error $ "Unexpected Fractional case for: " ++ show k
k@KBool -> error $ "Unexpected Fractional case for: " ++ show k
k@KString -> error $ "Unexpected Fractional case for: " ++ show k
k@KChar -> error $ "Unexpected Fractional case for: " ++ show k
k@KList{} -> error $ "Unexpected Fractional case for: " ++ show k
k@KSet{} -> error $ "Unexpected Fractional case for: " ++ show k
k@KUserSort{} -> error $ "Unexpected Fractional case for: " ++ show k
k@KTuple{} -> error $ "Unexpected Fractional case for: " ++ show k
k@KMaybe{} -> error $ "Unexpected Fractional case for: " ++ show k
k@KEither{} -> error $ "Unexpected Fractional case for: " ++ show k
-- | Define Floating instance on SBV's; only for base types that are already floating; i.e., 'SFloat', 'SDouble', and 'SReal'.
-- (See the separate definition below for 'SFloatingPoint'.) Note that unless you use delta-sat via 'Data.SBV.Provers.dReal' on 'SReal', most
-- of the fields are "undefined" for symbolic values. We will add methods as they are supported by SMTLib. Currently, the
-- only symbolically available function in this class is 'sqrt' for 'SFloat', 'SDouble' and 'SFloatingPoint'.
instance (Ord a, SymVal a, Fractional a, Floating a) => Floating (SBV a) where
pi = fromRational . toRational $ (pi :: Double)
exp = lift1FNS "exp" exp
log = lift1FNS "log" log
sqrt = lift1F FP_Sqrt sqrt
sin = lift1FNS "sin" sin
cos = lift1FNS "cos" cos
tan = lift1FNS "tan" tan
asin = lift1FNS "asin" asin
acos = lift1FNS "acos" acos
atan = lift1FNS "atan" atan
sinh = lift1FNS "sinh" sinh
cosh = lift1FNS "cosh" cosh
tanh = lift1FNS "tanh" tanh
asinh = lift1FNS "asinh" asinh
acosh = lift1FNS "acosh" acosh
atanh = lift1FNS "atanh" atanh
(**) = lift2FNS "**" (**)
logBase = lift2FNS "logBase" logBase
unsupported :: String -> a
unsupported w = error $ "Data.SBV.FloatingPoint: Unsupported operation: " ++ w ++ ". Please request this as a feature!"
-- | We give a specific instance for 'SFloatingPoint', because the underlying floating-point type doesn't support
-- fromRational directly. The overlap with the above instance is unfortunate.
instance {-# OVERLAPPING #-} ValidFloat eb sb => Floating (SFloatingPoint eb sb) where
-- Try from double; if there's enough precision this'll work, otherwise will bail out.
pi
| ei > 11 || si > 53 = unsupported $ "Floating.SFloatingPoint.pi (not-enough-precision for " ++ show (ei, si) ++ ")"
| True = literal $ FloatingPoint $ fpFromRational ei si (toRational (pi :: Double))
where ei = intOfProxy (Proxy @eb)
si = intOfProxy (Proxy @sb)
-- Likewise, exponentiation is again limited to precision of double
exp i
| ei > 11 || si > 53 = unsupported $ "Floating.SFloatingPoint.exp (not-enough-precision for " ++ show (ei, si) ++ ")"
| True = literal e ** i
where ei = intOfProxy (Proxy @eb)
si = intOfProxy (Proxy @sb)
e = FloatingPoint $ fpFromRational ei si (toRational (exp 1 :: Double))
log = lift1FNS "log" log
sqrt = lift1F FP_Sqrt sqrt
sin = lift1FNS "sin" sin
cos = lift1FNS "cos" cos
tan = lift1FNS "tan" tan
asin = lift1FNS "asin" asin
acos = lift1FNS "acos" acos
atan = lift1FNS "atan" atan
sinh = lift1FNS "sinh" sinh
cosh = lift1FNS "cosh" cosh
tanh = lift1FNS "tanh" tanh
asinh = lift1FNS "asinh" asinh
acosh = lift1FNS "acosh" acosh
atanh = lift1FNS "atanh" atanh
(**) = lift2FNS "**" (**)
logBase = lift2FNS "logBase" logBase
-- | Lift a 1 arg FP-op, using sRNE default
lift1F :: SymVal a => FPOp -> (a -> a) -> SBV a -> SBV a
lift1F w op a
| Just v <- unliteral a
= literal $ op v
| True
= SBV $ SVal k $ Right $ cache r
where k = kindOf a
r st = do swa <- sbvToSV st a
swm <- sbvToSV st sRNE
newExpr st k (SBVApp (IEEEFP w) [swm, swa])
-- | Lift a float/double unary function, only over constants
lift1FNS :: (SymVal a, Floating a) => String -> (a -> a) -> SBV a -> SBV a
lift1FNS nm f sv
| Just v <- unliteral sv = literal $ f v
| True = error $ "SBV." ++ nm ++ ": not supported for symbolic values of type " ++ show (kindOf sv)
-- | Lift a float/double binary function, only over constants
lift2FNS :: (SymVal a, Floating a) => String -> (a -> a -> a) -> SBV a -> SBV a -> SBV a
lift2FNS nm f sv1 sv2
| Just v1 <- unliteral sv1
, Just v2 <- unliteral sv2 = literal $ f v1 v2
| True = error $ "SBV." ++ nm ++ ": not supported for symbolic values of type " ++ show (kindOf sv1)
-- | SReal Floating instance, used in conjunction with the dReal solver for delta-satisfiability. Note that
-- we do not constant fold these values (except for pi), as Haskell doesn't really have any means of computing
-- them for arbitrary rationals.
instance {-# OVERLAPPING #-} Floating SReal where
pi = fromRational . toRational $ (pi :: Double) -- Perhaps not good enough?
exp = lift1SReal NR_Exp
log = lift1SReal NR_Log
sqrt = lift1SReal NR_Sqrt
sin = lift1SReal NR_Sin
cos = lift1SReal NR_Cos
tan = lift1SReal NR_Tan
asin = lift1SReal NR_ASin
acos = lift1SReal NR_ACos
atan = lift1SReal NR_ATan
sinh = lift1SReal NR_Sinh
cosh = lift1SReal NR_Cosh
tanh = lift1SReal NR_Tanh
asinh = error "Data.SBV.SReal: asinh is currently not supported. Please request this as a feature!"
acosh = error "Data.SBV.SReal: acosh is currently not supported. Please request this as a feature!"
atanh = error "Data.SBV.SReal: atanh is currently not supported. Please request this as a feature!"
(**) = lift2SReal NR_Pow
logBase x y = log y / log x
-- | Lift an sreal unary function
lift1SReal :: NROp -> SReal -> SReal
lift1SReal w a = SBV $ SVal k $ Right $ cache r
where k = kindOf a
r st = do swa <- sbvToSV st a
newExpr st k (SBVApp (NonLinear w) [swa])
-- | Lift an sreal binary function
lift2SReal :: NROp -> SReal -> SReal -> SReal
lift2SReal w a b = SBV $ SVal k $ Right $ cache r
where k = kindOf a
r st = do swa <- sbvToSV st a
swb <- sbvToSV st b
newExpr st k (SBVApp (NonLinear w) [swa, swb])
-- NB. In the optimizations below, use of -1 is valid as
-- -1 has all bits set to True for both signed and unsigned values
-- | Using 'popCount' or 'testBit' on non-concrete values will result in an
-- error. Use 'sPopCount' or 'sTestBit' instead.
instance (Ord a, Num a, Bits a, SymVal a) => Bits (SBV a) where
SBV x .&. SBV y = SBV (svAnd x y)
SBV x .|. SBV y = SBV (svOr x y)
SBV x `xor` SBV y = SBV (svXOr x y)
complement (SBV x) = SBV (svNot x)
bitSize x = intSizeOf x
bitSizeMaybe x = Just $ intSizeOf x
isSigned x = hasSign x
bit i = 1 `shiftL` i
setBit x i = x .|. genLiteral (kindOf x) (bit i :: Integer)
clearBit x i = x .&. genLiteral (kindOf x) (complement (bit i) :: Integer)
complementBit x i = x `xor` genLiteral (kindOf x) (bit i :: Integer)
shiftL (SBV x) i = SBV (svShl x i)
shiftR (SBV x) i = SBV (svShr x i)
rotateL (SBV x) i = SBV (svRol x i)
rotateR (SBV x) i = SBV (svRor x i)
-- NB. testBit is *not* implementable on non-concrete symbolic words
x `testBit` i
| SBV (SVal _ (Left (CV _ (CInteger n)))) <- x
= testBit n i
| True
= error $ "SBV.testBit: Called on symbolic value: " ++ show x ++ ". Use sTestBit instead."
-- NB. popCount is *not* implementable on non-concrete symbolic words
popCount x
| SBV (SVal _ (Left (CV (KBounded _ w) (CInteger n)))) <- x
= popCount (n .&. (bit w - 1))
| True
= error $ "SBV.popCount: Called on symbolic value: " ++ show x ++ ". Use sPopCount instead."
-- | Conversion between integral-symbolic values, akin to Haskell's `fromIntegral`
sFromIntegral :: forall a b. (Integral a, HasKind a, Num a, SymVal a, HasKind b, Num b, SymVal b) => SBV a -> SBV b
sFromIntegral x
| kFrom == kTo
= SBV (unSBV x)
| isReal x
= error "SBV.sFromIntegral: Called on a real value" -- can't really happen due to types, but being overcautious
| Just v <- unliteral x
= literal (fromIntegral v)
| True
= result
where result = SBV (SVal kTo (Right (cache y)))
kFrom = kindOf x
kTo = kindOf (Proxy @b)
y st = do xsv <- sbvToSV st x
newExpr st kTo (SBVApp (KindCast kFrom kTo) [xsv])
-- | Lift a binary operation thru it's dynamic counterpart. Note that
-- we still want the actual functions here as differ in their type
-- compared to their dynamic counterparts, but the implementations
-- are the same.
liftViaSVal :: (SVal -> SVal -> SVal) -> SBV a -> SBV b -> SBV c
liftViaSVal f (SBV a) (SBV b) = SBV $ f a b
-- | Generalization of 'shiftL', when the shift-amount is symbolic. Since Haskell's
-- 'shiftL' only takes an 'Int' as the shift amount, it cannot be used when we have
-- a symbolic amount to shift with.
sShiftLeft :: (SIntegral a, SIntegral b) => SBV a -> SBV b -> SBV a
sShiftLeft = liftViaSVal svShiftLeft
-- | Generalization of 'shiftR', when the shift-amount is symbolic. Since Haskell's
-- 'shiftR' only takes an 'Int' as the shift amount, it cannot be used when we have
-- a symbolic amount to shift with.
--
-- NB. If the shiftee is signed, then this is an arithmetic shift; otherwise it's logical,
-- following the usual Haskell convention. See 'sSignedShiftArithRight' for a variant
-- that explicitly uses the msb as the sign bit, even for unsigned underlying types.
sShiftRight :: (SIntegral a, SIntegral b) => SBV a -> SBV b -> SBV a
sShiftRight = liftViaSVal svShiftRight
-- | Arithmetic shift-right with a symbolic unsigned shift amount. This is equivalent
-- to 'sShiftRight' when the argument is signed. However, if the argument is unsigned,
-- then it explicitly treats its msb as a sign-bit, and uses it as the bit that
-- gets shifted in. Useful when using the underlying unsigned bit representation to implement
-- custom signed operations. Note that there is no direct Haskell analogue of this function.
sSignedShiftArithRight:: (SFiniteBits a, SIntegral b) => SBV a -> SBV b -> SBV a
sSignedShiftArithRight x i
| isSigned i = error "sSignedShiftArithRight: shift amount should be unsigned"
| isSigned x = ssa x i
| True = ite (msb x)
(complement (ssa (complement x) i))
(ssa x i)
where ssa = liftViaSVal svShiftRight
-- | Generalization of 'rotateL', when the shift-amount is symbolic. Since Haskell's
-- 'rotateL' only takes an 'Int' as the shift amount, it cannot be used when we have
-- a symbolic amount to shift with. The first argument should be a bounded quantity.
sRotateLeft :: (SIntegral a, SIntegral b) => SBV a -> SBV b -> SBV a
sRotateLeft = liftViaSVal svRotateLeft
-- | An implementation of rotate-left, using a barrel shifter like design. Only works when both
-- arguments are finite bitvectors, and furthermore when the second argument is unsigned.
-- The first condition is enforced by the type, but the second is dynamically checked.
-- We provide this implementation as an alternative to `sRotateLeft` since SMTLib logic
-- does not support variable argument rotates (as opposed to shifts), and thus this
-- implementation can produce better code for verification compared to `sRotateLeft`.
sBarrelRotateLeft :: (SFiniteBits a, SFiniteBits b) => SBV a -> SBV b -> SBV a
sBarrelRotateLeft = liftViaSVal svBarrelRotateLeft
-- | Generalization of 'rotateR', when the shift-amount is symbolic. Since Haskell's
-- 'rotateR' only takes an 'Int' as the shift amount, it cannot be used when we have
-- a symbolic amount to shift with. The first argument should be a bounded quantity.
sRotateRight :: (SIntegral a, SIntegral b) => SBV a -> SBV b -> SBV a
sRotateRight = liftViaSVal svRotateRight
-- | An implementation of rotate-right, using a barrel shifter like design. See comments
-- for `sBarrelRotateLeft` for details.
sBarrelRotateRight :: (SFiniteBits a, SFiniteBits b) => SBV a -> SBV b -> SBV a
sBarrelRotateRight = liftViaSVal svBarrelRotateRight
-- Enum instance. These instances are suitable for use with concrete values,
-- and will be less useful for symbolic values around. Note that `fromEnum` requires
-- a concrete argument for obvious reasons. Other variants (succ, pred, [x..]) etc are similarly
-- limited. While symbolic variants can be defined for many of these, they will just diverge
-- as final sizes cannot be determined statically.
instance (Show a, Bounded a, Integral a, Num a, SymVal a) => Enum (SBV a) where
succ x
| v == (maxBound :: a) = error $ "Enum.succ{" ++ showType x ++ "}: tried to take `succ' of maxBound"
| True = fromIntegral $ v + 1
where v = enumCvt "succ" x
pred x
| v == (minBound :: a) = error $ "Enum.pred{" ++ showType x ++ "}: tried to take `pred' of minBound"
| True = fromIntegral $ v - 1
where v = enumCvt "pred" x
toEnum x
| xi < fromIntegral (minBound :: a) || xi > fromIntegral (maxBound :: a)
= error $ "Enum.toEnum{" ++ showType r ++ "}: " ++ show x ++ " is out-of-bounds " ++ show (minBound :: a, maxBound :: a)
| True
= r
where xi :: Integer
xi = fromIntegral x
r :: SBV a
r = fromIntegral x
fromEnum x
| r < fromIntegral (minBound :: Int) || r > fromIntegral (maxBound :: Int)
= error $ "Enum.fromEnum{" ++ showType x ++ "}: value " ++ show r ++ " is outside of Int's bounds " ++ show (minBound :: Int, maxBound :: Int)
| True
= fromIntegral r
where r :: Integer
r = enumCvt "fromEnum" x
enumFrom x = map fromIntegral [xi .. fromIntegral (maxBound :: a)]
where xi :: Integer
xi = enumCvt "enumFrom" x
enumFromThen x y
| yi >= xi = map fromIntegral [xi, yi .. fromIntegral (maxBound :: a)]
| True = map fromIntegral [xi, yi .. fromIntegral (minBound :: a)]
where xi, yi :: Integer
xi = enumCvt "enumFromThen.x" x
yi = enumCvt "enumFromThen.y" y
enumFromThenTo x y z = map fromIntegral [xi, yi .. zi]
where xi, yi, zi :: Integer
xi = enumCvt "enumFromThenTo.x" x
yi = enumCvt "enumFromThenTo.y" y
zi = enumCvt "enumFromThenTo.z" z
-- | Helper function for use in enum operations
enumCvt :: (SymVal a, Integral a, Num b) => String -> SBV a -> b
enumCvt w x = case unliteral x of
Nothing -> error $ "Enum." ++ w ++ "{" ++ showType x ++ "}: Called on symbolic value " ++ show x
Just v -> fromIntegral v
-- | The 'SDivisible' class captures the essence of division.
-- Unfortunately we cannot use Haskell's 'Integral' class since the 'Real'
-- and 'Enum' superclasses are not implementable for symbolic bit-vectors.
-- However, 'quotRem' and 'divMod' both make perfect sense, and the 'SDivisible' class captures
-- this operation. One issue is how division by 0 behaves. The verification
-- technology requires total functions, and there are several design choices
-- here. We follow Isabelle/HOL approach of assigning the value 0 for division
-- by 0. Therefore, we impose the following pair of laws:
--
-- @
-- x `sQuotRem` 0 = (0, x)
-- x `sDivMod` 0 = (0, x)
-- @
--
-- Note that our instances implement this law even when @x@ is @0@ itself.
--
-- NB. 'quot' truncates toward zero, while 'div' truncates toward negative infinity.
--
-- === C code generation of division operations
--
-- In the case of division or modulo of a minimal signed value (e.g. @-128@ for
-- 'SInt8') by @-1@, SMTLIB and Haskell agree on what the result should be.
-- Unfortunately the result in C code depends on CPU architecture and compiler
-- settings, as this is undefined behaviour in C. **SBV does not guarantee**
-- what will happen in generated C code in this corner case.
class SDivisible a where
sQuotRem :: a -> a -> (a, a)
sDivMod :: a -> a -> (a, a)
sQuot :: a -> a -> a
sRem :: a -> a -> a
sDiv :: a -> a -> a
sMod :: a -> a -> a
{-# MINIMAL sQuotRem, sDivMod #-}
x `sQuot` y = fst $ x `sQuotRem` y
x `sRem` y = snd $ x `sQuotRem` y
x `sDiv` y = fst $ x `sDivMod` y
x `sMod` y = snd $ x `sDivMod` y
instance SDivisible Word64 where
sQuotRem x 0 = (0, x)
sQuotRem x y = x `quotRem` y
sDivMod x 0 = (0, x)
sDivMod x y = x `divMod` y
instance SDivisible Int64 where
sQuotRem x 0 = (0, x)
sQuotRem x y = x `quotRem` y
sDivMod x 0 = (0, x)
sDivMod x y = x `divMod` y
instance SDivisible Word32 where
sQuotRem x 0 = (0, x)
sQuotRem x y = x `quotRem` y
sDivMod x 0 = (0, x)
sDivMod x y = x `divMod` y
instance SDivisible Int32 where
sQuotRem x 0 = (0, x)
sQuotRem x y = x `quotRem` y
sDivMod x 0 = (0, x)
sDivMod x y = x `divMod` y
instance SDivisible Word16 where
sQuotRem x 0 = (0, x)
sQuotRem x y = x `quotRem` y
sDivMod x 0 = (0, x)
sDivMod x y = x `divMod` y
instance SDivisible Int16 where
sQuotRem x 0 = (0, x)
sQuotRem x y = x `quotRem` y
sDivMod x 0 = (0, x)
sDivMod x y = x `divMod` y
instance SDivisible Word8 where
sQuotRem x 0 = (0, x)
sQuotRem x y = x `quotRem` y
sDivMod x 0 = (0, x)
sDivMod x y = x `divMod` y
instance SDivisible Int8 where
sQuotRem x 0 = (0, x)
sQuotRem x y = x `quotRem` y
sDivMod x 0 = (0, x)
sDivMod x y = x `divMod` y
instance SDivisible Integer where
sQuotRem x 0 = (0, x)
sQuotRem x y = x `quotRem` y
sDivMod x 0 = (0, x)
sDivMod x y = x `divMod` y
instance SDivisible CV where
sQuotRem a b
| CInteger x <- cvVal a, CInteger y <- cvVal b
= let (r1, r2) = sQuotRem x y in (normCV a{ cvVal = CInteger r1 }, normCV b{ cvVal = CInteger r2 })
sQuotRem a b = error $ "SBV.sQuotRem: impossible, unexpected args received: " ++ show (a, b)
sDivMod a b
| CInteger x <- cvVal a, CInteger y <- cvVal b
= let (r1, r2) = sDivMod x y in (normCV a{ cvVal = CInteger r1 }, normCV b{ cvVal = CInteger r2 })
sDivMod a b = error $ "SBV.sDivMod: impossible, unexpected args received: " ++ show (a, b)
instance SDivisible SWord64 where
sQuotRem = liftQRem
sDivMod = liftDMod
instance SDivisible SInt64 where
sQuotRem = liftQRem
sDivMod = liftDMod
instance SDivisible SWord32 where
sQuotRem = liftQRem
sDivMod = liftDMod
instance SDivisible SInt32 where
sQuotRem = liftQRem
sDivMod = liftDMod
instance SDivisible SWord16 where
sQuotRem = liftQRem
sDivMod = liftDMod
instance SDivisible SInt16 where
sQuotRem = liftQRem
sDivMod = liftDMod
instance SDivisible SWord8 where
sQuotRem = liftQRem
sDivMod = liftDMod
instance SDivisible SInt8 where
sQuotRem = liftQRem
sDivMod = liftDMod
-- | Lift 'quotRem' to symbolic words. Division by 0 is defined s.t. @x/0 = 0@; which
-- holds even when @x@ is @0@ itself.
liftQRem :: (Eq a, SymVal a) => SBV a -> SBV a -> (SBV a, SBV a)
liftQRem x y
| isConcreteZero x
= (x, x)
| isConcreteOne y
= (x, z)
{-------------------------------
- N.B. The seemingly innocuous variant when y == -1 only holds if the type is signed;
- and also is problematic around the minBound.. So, we refrain from that optimization
| isConcreteOnes y
= (-x, z)
--------------------------------}
| True
= ite (y .== z) (z, x) (qr x y)
where qr (SBV (SVal sgnsz (Left a))) (SBV (SVal _ (Left b))) = let (q, r) = sQuotRem a b in (SBV (SVal sgnsz (Left q)), SBV (SVal sgnsz (Left r)))
qr a@(SBV (SVal sgnsz _)) b = (SBV (SVal sgnsz (Right (cache (mk Quot)))), SBV (SVal sgnsz (Right (cache (mk Rem)))))
where mk o st = do sw1 <- sbvToSV st a
sw2 <- sbvToSV st b
mkSymOp o st sgnsz sw1 sw2
z = genLiteral (kindOf x) (0::Integer)
-- | Lift 'divMod' to symbolic words. Division by 0 is defined s.t. @x/0 = 0@; which
-- holds even when @x@ is @0@ itself. Essentially, this is conversion from quotRem
-- (truncate to 0) to divMod (truncate towards negative infinity)
liftDMod :: (Ord a, SymVal a, Num a, SDivisible (SBV a)) => SBV a -> SBV a -> (SBV a, SBV a)
liftDMod x y
| isConcreteZero x
= (x, x)
| isConcreteOne y
= (x, z)
{-------------------------------
- N.B. The seemingly innocuous variant when y == -1 only holds if the type is signed;
- and also is problematic around the minBound.. So, we refrain from that optimization
| isConcreteOnes y
= (-x, z)
--------------------------------}
| True
= ite (y .== z) (z, x) $ ite (signum r .== negate (signum y)) (q-i, r+y) qr
where qr@(q, r) = x `sQuotRem` y
z = genLiteral (kindOf x) (0::Integer)
i = genLiteral (kindOf x) (1::Integer)
-- SInteger instance for quotRem/divMod are tricky!
-- SMT-Lib only has Euclidean operations, but Haskell
-- uses "truncate to 0" for quotRem, and "truncate to negative infinity" for divMod.
-- So, we cannot just use the above liftings directly.
instance SDivisible SInteger where
sDivMod = liftDMod
sQuotRem x y
| not (isSymbolic x || isSymbolic y)
= liftQRem x y
| True
= ite (y .== 0) (0, x) (qE+i, rE-i*y)
where (qE, rE) = liftQRem x y -- for integers, this is euclidean due to SMTLib semantics
i = ite (x .>= 0 .|| rE .== 0) 0
$ ite (y .> 0) 1 (-1)
-- | Euclidian division and modulus.
sEDivMod :: SInteger -> SInteger -> (SInteger, SInteger)
sEDivMod a b = (a `sEDiv` b, a `sEMod` b)
-- | Euclidian division.
sEDiv :: SInteger -> SInteger -> SInteger
sEDiv (SBV a) (SBV b) = SBV $ a `svQuot` b
-- | Euclidian modulus.
sEMod :: SInteger -> SInteger -> SInteger
sEMod (SBV a) (SBV b) = SBV $ a `svRem` b
-- Quickcheck interface
instance (SymVal a, Arbitrary a) => Arbitrary (SBV a) where
arbitrary = literal `fmap` arbitrary
-- | Symbolic conditionals are modeled by the 'Mergeable' class, describing
-- how to merge the results of an if-then-else call with a symbolic test. SBV
-- provides all basic types as instances of this class, so users only need
-- to declare instances for custom data-types of their programs as needed.
--
-- A 'Mergeable' instance may be automatically derived for a custom data-type
-- with a single constructor where the type of each field is an instance of
-- 'Mergeable', such as a record of symbolic values. Users only need to add
-- 'G.Generic' and 'Mergeable' to the @deriving@ clause for the data-type. See
-- 'Documentation.SBV.Examples.Puzzles.U2Bridge.Status' for an example and an
-- illustration of what the instance would look like if written by hand.
--
-- The function 'select' is a total-indexing function out of a list of choices
-- with a default value, simulating array/list indexing. It's an n-way generalization
-- of the 'ite' function.
--
-- Minimal complete definition: None, if the type is instance of @Generic@. Otherwise
-- 'symbolicMerge'. Note that most types subject to merging are likely to be
-- trivial instances of @Generic@.
class Mergeable a where
-- | Merge two values based on the condition. The first argument states
-- whether we force the then-and-else branches before the merging, at the
-- word level. This is an efficiency concern; one that we'd rather not
-- make but unfortunately necessary for getting symbolic simulation
-- working efficiently.
symbolicMerge :: Bool -> SBool -> a -> a -> a
-- | Total indexing operation. @select xs default index@ is intuitively
-- the same as @xs !! index@, except it evaluates to @default@ if @index@
-- underflows/overflows.
select :: (Ord b, SymVal b, Num b) => [a] -> a -> SBV b -> a
-- NB. Earlier implementation of select used the binary-search trick
-- on the index to chop down the search space. While that is a good trick
-- in general, it doesn't work for SBV since we do not have any notion of
-- "concrete" subwords: If an index is symbolic, then all its bits are
-- symbolic as well. So, the binary search only pays off only if the indexed
-- list is really humongous, which is not very common in general. (Also,
-- for the case when the list is bit-vectors, we use SMT tables anyhow.)
select xs err ind
| isReal ind = bad "real"
| isFloat ind = bad "float"
| isDouble ind = bad "double"
| hasSign ind = ite (ind .< 0) err (walk xs ind err)
| True = walk xs ind err
where bad w = error $ "SBV.select: unsupported " ++ w ++ " valued select/index expression"
walk [] _ acc = acc
walk (e:es) i acc = walk es (i-1) (ite (i .== 0) e acc)
-- Default implementation for 'symbolicMerge' if the type is 'Generic'
default symbolicMerge :: (G.Generic a, GMergeable (G.Rep a)) => Bool -> SBool -> a -> a -> a
symbolicMerge = symbolicMergeDefault
-- | If-then-else. This is by definition 'symbolicMerge' with both
-- branches forced. This is typically the desired behavior, but also
-- see 'iteLazy' should you need more laziness.
ite :: Mergeable a => SBool -> a -> a -> a
ite t a b
| Just r <- unliteral t = if r then a else b
| True = symbolicMerge True t a b
-- | A Lazy version of ite, which does not force its arguments. This might
-- cause issues for symbolic simulation with large thunks around, so use with
-- care.
iteLazy :: Mergeable a => SBool -> a -> a -> a
iteLazy t a b
| Just r <- unliteral t = if r then a else b
| True = symbolicMerge False t a b
-- | Symbolic assert. Check that the given boolean condition is always 'sTrue' in the given path. The
-- optional first argument can be used to provide call-stack info via GHC's location facilities.
sAssert :: HasKind a => Maybe CallStack -> String -> SBool -> SBV a -> SBV a
sAssert cs msg cond x
| Just mustHold <- unliteral cond
= if mustHold
then x
else error $ show $ SafeResult ((locInfo . getCallStack) `fmap` cs, msg, Satisfiable defaultSMTCfg (SMTModel [] Nothing [] []))
| True
= SBV $ SVal k $ Right $ cache r
where k = kindOf x
r st = do xsv <- sbvToSV st x
let pc = getPathCondition st
-- We're checking if there are any cases where the path-condition holds, but not the condition
-- Any violations of this, should be signaled, i.e., whenever the following formula is satisfiable
mustNeverHappen = pc .&& sNot cond
cnd <- sbvToSV st mustNeverHappen
addAssertion st cs msg cnd
return xsv
locInfo ps = intercalate ",\n " (map loc ps)
where loc (f, sl) = concat [srcLocFile sl, ":", show (srcLocStartLine sl), ":", show (srcLocStartCol sl), ":", f]
-- | Merge two symbolic values, at kind @k@, possibly @force@'ing the branches to make
-- sure they do not evaluate to the same result. This should only be used for internal purposes;
-- as default definitions provided should suffice in many cases. (i.e., End users should
-- only need to define 'symbolicMerge' when needed; which should be rare to start with.)
symbolicMergeWithKind :: Kind -> Bool -> SBool -> SBV a -> SBV a -> SBV a
symbolicMergeWithKind k force (SBV t) (SBV a) (SBV b) = SBV (svSymbolicMerge k force t a b)
instance SymVal a => Mergeable (SBV a) where
symbolicMerge force t x y
-- Carefully use the kindOf instance to avoid strictness issues.
| force = symbolicMergeWithKind (kindOf x) True t x y
| True = symbolicMergeWithKind (kindOf (Proxy @a)) False t x y
-- Custom version of select that translates to SMT-Lib tables at the base type of words
select xs err ind
| SBV (SVal _ (Left c)) <- ind = case cvVal c of
CInteger i -> if i < 0 || i >= genericLength xs
then err
else xs `genericIndex` i
_ -> error $ "SBV.select: unsupported " ++ show (kindOf ind) ++ " valued select/index expression"
select xsOrig err ind = xs `seq` SBV (SVal kElt (Right (cache r)))
where kInd = kindOf ind
kElt = kindOf err
-- Based on the index size, we need to limit the elements. For instance if the index is 8 bits, but there
-- are 257 elements, that last element will never be used and we can chop it of..
xs = case kindOf ind of
KBounded False i -> genericTake ((2::Integer) ^ (fromIntegral i :: Integer)) xsOrig
KBounded True i -> genericTake ((2::Integer) ^ (fromIntegral (i-1) :: Integer)) xsOrig
KUnbounded -> xsOrig
_ -> error $ "SBV.select: unsupported " ++ show (kindOf ind) ++ " valued select/index expression"
r st = do sws <- mapM (sbvToSV st) xs
swe <- sbvToSV st err
if all (== swe) sws -- off-chance that all elts are the same. Note that this also correctly covers the case when list is empty.
then return swe
else do idx <- getTableIndex st kInd kElt sws
swi <- sbvToSV st ind
let len = length xs
-- NB. No need to worry here that the index might be < 0; as the SMTLib translation takes care of that automatically
newExpr st kElt (SBVApp (LkUp (idx, kInd, kElt, len) swi swe) [])
-- | Construct a useful error message if we hit an unmergeable case.
cannotMerge :: String -> String -> String -> a
cannotMerge typ why hint = error $ unlines [ ""
, "*** Data.SBV.Mergeable: Cannot merge instances of " ++ typ ++ "."
, "*** While trying to do a symbolic if-then-else with incompatible branch results."
, "***"
, "*** " ++ why
, "*** "
, "*** Hint: " ++ hint
]
-- | Merge concrete values that can be checked for equality
concreteMerge :: Show a => String -> String -> (a -> a -> Bool) -> a -> a -> a
concreteMerge t st eq x y
| x `eq` y = x
| True = cannotMerge t
("Concrete values can only be merged when equal. Got: " ++ show x ++ " vs. " ++ show y)
("Use an " ++ st ++ " field if the values can differ.")
-- Mergeable instances for List/Maybe/Either/Array are useful, but can
-- throw exceptions if there is no structural matching of the results
-- It's a question whether we should really keep them..
-- Lists
instance Mergeable a => Mergeable [a] where
symbolicMerge f t xs ys
| lxs == lys = zipWith (symbolicMerge f t) xs ys
| True = cannotMerge "lists"
("Branches produce different sizes: " ++ show lxs ++ " vs " ++ show lys ++ ". Must have the same length.")
"Use the 'SList' type (and Data.SBV.List routines) to model fully symbolic lists."
where (lxs, lys) = (length xs, length ys)
-- ZipList
instance Mergeable a => Mergeable (ZipList a) where
symbolicMerge force test (ZipList xs) (ZipList ys)
= ZipList (symbolicMerge force test xs ys)
-- Maybe
instance Mergeable a => Mergeable (Maybe a) where
symbolicMerge _ _ Nothing Nothing = Nothing
symbolicMerge f t (Just a) (Just b) = Just $ symbolicMerge f t a b
symbolicMerge _ _ a b = cannotMerge "'Maybe' values"
("Branches produce different constructors: " ++ show (k a, k b))
"Instead of an option type, try using a valid bit to indicate when a result is valid."
where k Nothing = "Nothing"
k _ = "Just"
-- Either
instance (Mergeable a, Mergeable b) => Mergeable (Either a b) where
symbolicMerge f t (Left a) (Left b) = Left $ symbolicMerge f t a b
symbolicMerge f t (Right a) (Right b) = Right $ symbolicMerge f t a b
symbolicMerge _ _ a b = cannotMerge "'Either' values"
("Branches produce different constructors: " ++ show (k a, k b))
"Consider using a product type by a tag instead."
where k (Left _) = "Left"
k (Right _) = "Right"
-- Arrays
instance (Ix a, Mergeable b) => Mergeable (Array a b) where
symbolicMerge f t a b
| ba == bb = listArray ba (zipWith (symbolicMerge f t) (elems a) (elems b))
| True = cannotMerge "'Array' values"
("Branches produce different ranges: " ++ show (k ba, k bb))
"Consider using SBV's native 'SArray' abstraction."
where [ba, bb] = map bounds [a, b]
k = rangeSize
-- Functions
instance Mergeable b => Mergeable (a -> b) where
symbolicMerge f t g h x = symbolicMerge f t (g x) (h x)
{- Following definition, while correct, is utterly inefficient. Since the
application is delayed, this hangs on to the inner list and all the
impending merges, even when ind is concrete. Thus, it's much better to
simply use the default definition for the function case.
-}
-- select xs err ind = \x -> select (map ($ x) xs) (err x) ind
-- 2-Tuple
instance (Mergeable a, Mergeable b) => Mergeable (a, b) where
symbolicMerge f t (i0, i1) (j0, j1) = ( symbolicMerge f t i0 j0
, symbolicMerge f t i1 j1
)
select xs (err1, err2) ind = ( select as err1 ind
, select bs err2 ind
)
where (as, bs) = unzip xs
-- 3-Tuple
instance (Mergeable a, Mergeable b, Mergeable c) => Mergeable (a, b, c) where
symbolicMerge f t (i0, i1, i2) (j0, j1, j2) = ( symbolicMerge f t i0 j0
, symbolicMerge f t i1 j1
, symbolicMerge f t i2 j2
)
select xs (err1, err2, err3) ind = ( select as err1 ind
, select bs err2 ind
, select cs err3 ind
)
where (as, bs, cs) = unzip3 xs
-- 4-Tuple
instance (Mergeable a, Mergeable b, Mergeable c, Mergeable d) => Mergeable (a, b, c, d) where
symbolicMerge f t (i0, i1, i2, i3) (j0, j1, j2, j3) = ( symbolicMerge f t i0 j0
, symbolicMerge f t i1 j1
, symbolicMerge f t i2 j2
, symbolicMerge f t i3 j3
)
select xs (err1, err2, err3, err4) ind = ( select as err1 ind
, select bs err2 ind
, select cs err3 ind
, select ds err4 ind
)
where (as, bs, cs, ds) = unzip4 xs
-- 5-Tuple
instance (Mergeable a, Mergeable b, Mergeable c, Mergeable d, Mergeable e) => Mergeable (a, b, c, d, e) where
symbolicMerge f t (i0, i1, i2, i3, i4) (j0, j1, j2, j3, j4) = ( symbolicMerge f t i0 j0
, symbolicMerge f t i1 j1
, symbolicMerge f t i2 j2
, symbolicMerge f t i3 j3
, symbolicMerge f t i4 j4
)
select xs (err1, err2, err3, err4, err5) ind = ( select as err1 ind
, select bs err2 ind
, select cs err3 ind
, select ds err4 ind
, select es err5 ind
)
where (as, bs, cs, ds, es) = unzip5 xs
-- 6-Tuple
instance (Mergeable a, Mergeable b, Mergeable c, Mergeable d, Mergeable e, Mergeable f) => Mergeable (a, b, c, d, e, f) where
symbolicMerge f t (i0, i1, i2, i3, i4, i5) (j0, j1, j2, j3, j4, j5) = ( symbolicMerge f t i0 j0
, symbolicMerge f t i1 j1
, symbolicMerge f t i2 j2
, symbolicMerge f t i3 j3
, symbolicMerge f t i4 j4
, symbolicMerge f t i5 j5
)
select xs (err1, err2, err3, err4, err5, err6) ind = ( select as err1 ind
, select bs err2 ind
, select cs err3 ind
, select ds err4 ind
, select es err5 ind
, select fs err6 ind
)
where (as, bs, cs, ds, es, fs) = unzip6 xs
-- 7-Tuple
instance (Mergeable a, Mergeable b, Mergeable c, Mergeable d, Mergeable e, Mergeable f, Mergeable g) => Mergeable (a, b, c, d, e, f, g) where
symbolicMerge f t (i0, i1, i2, i3, i4, i5, i6) (j0, j1, j2, j3, j4, j5, j6) = ( symbolicMerge f t i0 j0
, symbolicMerge f t i1 j1
, symbolicMerge f t i2 j2
, symbolicMerge f t i3 j3
, symbolicMerge f t i4 j4
, symbolicMerge f t i5 j5
, symbolicMerge f t i6 j6
)
select xs (err1, err2, err3, err4, err5, err6, err7) ind = ( select as err1 ind
, select bs err2 ind
, select cs err3 ind
, select ds err4 ind
, select es err5 ind
, select fs err6 ind
, select gs err7 ind
)
where (as, bs, cs, ds, es, fs, gs) = unzip7 xs
-- Base types are mergeable so long as they are equal
instance Mergeable () where symbolicMerge _ _ = concreteMerge "()" "()" (==)
instance Mergeable Integer where symbolicMerge _ _ = concreteMerge "Integer" "SInteger" (==)
instance Mergeable Bool where symbolicMerge _ _ = concreteMerge "Bool" "SBool" (==)
instance Mergeable Char where symbolicMerge _ _ = concreteMerge "Char" "SChar" (==)
instance Mergeable Float where symbolicMerge _ _ = concreteMerge "Float" "SFloat" fpIsEqualObjectH
instance Mergeable Double where symbolicMerge _ _ = concreteMerge "Double" "SDouble" fpIsEqualObjectH
instance Mergeable Word8 where symbolicMerge _ _ = concreteMerge "Word8" "SWord8" (==)
instance Mergeable Word16 where symbolicMerge _ _ = concreteMerge "Word16" "SWord16" (==)
instance Mergeable Word32 where symbolicMerge _ _ = concreteMerge "Word32" "SWord32" (==)
instance Mergeable Word64 where symbolicMerge _ _ = concreteMerge "Word64" "SWord64" (==)
instance Mergeable Int8 where symbolicMerge _ _ = concreteMerge "Int8" "SInt8" (==)
instance Mergeable Int16 where symbolicMerge _ _ = concreteMerge "Int16" "SInt16" (==)
instance Mergeable Int32 where symbolicMerge _ _ = concreteMerge "Int32" "SInt32" (==)
instance Mergeable Int64 where symbolicMerge _ _ = concreteMerge "Int64" "SInt64" (==)
-- Arbitrary product types, using GHC.Generics
--
-- NB: Because of the way GHC.Generics works, the implementation of
-- symbolicMerge' is recursive. The derived instance for @data T a = T a a a a@
-- resembles that for (a, (a, (a, a))), not the flat 4-tuple (a, a, a, a). This
-- difference should have no effect in practice. Note also that, unlike the
-- hand-rolled tuple instances, the generic instance does not provide a custom
-- 'select' implementation, and so does not benefit from the SMT-table
-- implementation in the 'SBV a' instance.
-- | Not exported. Symbolic merge using the generic representation provided by
-- 'G.Generics'.
symbolicMergeDefault :: (G.Generic a, GMergeable (G.Rep a)) => Bool -> SBool -> a -> a -> a
symbolicMergeDefault force t x y = G.to $ symbolicMerge' force t (G.from x) (G.from y)
-- | Not exported. Used only in 'symbolicMergeDefault'. Instances are provided for
-- the generic representations of product types where each element is Mergeable.
class GMergeable f where
symbolicMerge' :: Bool -> SBool -> f a -> f a -> f a
{-
- N.B. A V1 instance like the below would be wrong!
- Why? Because inSBV, we use empty data to mean "uninterpreted" sort; not
- something that has no constructors. Perhaps that was a bad design
- decision. So, do not allow merging of such values!
instance GMergeable V1 where
symbolicMerge' _ _ x _ = x
-}
instance GMergeable U1 where
symbolicMerge' _ _ _ _ = U1
instance (Mergeable c) => GMergeable (K1 i c) where
symbolicMerge' force t (K1 x) (K1 y) = K1 $ symbolicMerge force t x y
instance (GMergeable f) => GMergeable (M1 i c f) where
symbolicMerge' force t (M1 x) (M1 y) = M1 $ symbolicMerge' force t x y
instance (GMergeable f, GMergeable g) => GMergeable (f :*: g) where
symbolicMerge' force t (x1 :*: y1) (x2 :*: y2) = symbolicMerge' force t x1 x2 :*: symbolicMerge' force t y1 y2
{- A mergeable instance for sum-types isn't possible. Why? It would something like:
instance (GMergeable f, GMergeable g) => GMergeable (f :+: g) where
symbolicMerge' force t (L1 x) (L1 y) = L1 $ symbolicMerge' force t x y
symbolicMerge' force t (R1 x) (R1 y) = R1 $ symbolicMerge' force t x y
symbolicMerge' force t l r
| Just tv <- unliteral t = if tv then l else r
| True = ????
There's really no good code to put in ????. We have no way to ask the SMT solver to merge composite values that
have different constructors. Calling "error" here would pass the type-checker, but that simply postpones the problem
to run-time. If you need mergeable on sum-types, you better write one yourself, possibly using the SEither type yourself.
As we have it, you'll get a type-error; which can be hard to read, but is preferable.
NB. This isn't a problem with the generic version of symbolic equality; since we can simply return sFalse if we
see different constructors. Such isn't the case when merging.
-}
-- Bounded instances
instance (SymVal a, Bounded a) => Bounded (SBV a) where
minBound = literal minBound
maxBound = literal maxBound
-- Arrays
-- SArrays are both "EqSymbolic" and "Mergeable"
instance EqSymbolic (SArray a b) where
SArray a .== SArray b = SBV (a `eqSArr` b)
-- When merging arrays; we'll ignore the force argument. This is arguably
-- the right thing to do as we've too many things and likely we want to keep it efficient.
instance SymVal b => Mergeable (SArray a b) where
symbolicMerge _ = mergeArrays
-- | SMT definable constants and functions, which can also be uninterpeted.
-- This class captures functions that we can generate standalone-code for
-- in the SMT solver. Note that we also allow uninterpreted constants and
-- functions too. An uninterpreted constant is a value that is indexed by its name. The only
-- property the prover assumes -- about these values are that they are equivalent to themselves; i.e., (for
-- functions) they return the same results when applied to same arguments.
-- We support uninterpreted-functions as a general means of black-box'ing
-- operations that are /irrelevant/ for the purposes of the proof; i.e., when
-- the proofs can be performed without any knowledge about the function itself.
--
-- Minimal complete definition: 'sbvDefineValue'. However, most instances in
-- practice are already provided by SBV, so end-users should not need to define their
-- own instances.
class SMTDefinable a where
-- | Generate the code for this value as an SMTLib function, instead of
-- the usual unrolling semantics. This is useful for generating sub-functions
-- in generated SMTLib problem, or handling recursive (and mutually-recursive)
-- definitions that wouldn't terminate in an unrolling symbolic simulation context.
--
-- __IMPORTANT NOTE__ The string argument names this function. Note that SBV will identify
-- this function with that name, i.e., if you use this function twice (or use it recursively),
-- it will simply assume this name uniquely identifies the function being defined. Hence,
-- the user has to assure that this string is unique amongst all the functions you use.
-- Furthermore, if the call to 'smtFunction' happens in the scope of a parameter, you
-- must make sure the string is chosen to keep it unique per parameter value. For instance,
-- if you have:
--
-- @
-- bar :: SInteger -> SInteger -> SInteger
-- bar k = smtFunction "bar" (\x -> x+k) -- Note the capture of k!
-- @
--
-- and you call @bar 2@ and @bar 3@, you *will* get the same SMTLib function. Obviously
-- this is unsound. The reason is that the parameter value isn't captured by the name. In general,
-- you should simply not do this, but if you must, have a concrete argument to make sure you can
-- create a unique name. Something like:
--
-- @
-- bar :: String -> SInteger -> SInteger -> SInteger
-- bar tag k = smtFunction ("bar_" ++ tag) (\x -> x+k) -- Tag should make the name unique!
-- @
--
-- Then, make sure you use @bar "two" 2@ and @bar "three" 3@ etc. to preserve the invariant.
--
-- Note that this is a design choice, to keep function creation as easy to use as possible. SBV
-- could've made 'smtFunction' a monadic call and generated the name itself to avoid all these issues.
-- But the ergonomics of that is worse, and doesn't fit with the general design philosophy. If you
-- can think of a solution (perhaps using some nifty GHC tricks?) to avoid this issue without making
-- 'smtFunction' return a monadic result, please get in touch!
smtFunction :: Lambda Symbolic a => String -> a -> a
-- | Uninterpret a value, i.e., add this value as a completely undefined value/function that
-- the solver is free to instantiate to satisfy other constraints.
uninterpret :: String -> a
-- | Uninterpret a value, only for the purposes of code-generation. For execution
-- and verification the value is used as is. For code-generation, the alternate
-- definition is used. This is useful when we want to take advantage of native
-- libraries on the target languages.
cgUninterpret :: String -> [String] -> a -> a
-- | Most generalized form of uninterpretation, this function should not be needed
-- by end-user-code, but is rather useful for the library development.
sbvDefineValue :: String -> UIKind a -> a
-- | A synonym for 'uninterpret'. Allows us to create variables without
-- having to call 'free' explicitly, i.e., without being in the symbolic monad.
sym :: String -> a
{-# MINIMAL sbvDefineValue #-}
-- defaults:
uninterpret nm = sbvDefineValue nm UIFree
smtFunction nm v = sbvDefineValue nm $ UIFun (v, \st fk -> namedLambda st nm fk v)
cgUninterpret nm code v = sbvDefineValue nm $ UICodeC (v, code)
sym = uninterpret
-- | Kind of uninterpretation
data UIKind a = UIFree -- ^ completely uninterpreted
| UIFun (a, State -> Kind -> IO SMTDef) -- ^ has code for SMTLib, with final type of kind (note this is the result
-- , not the arguments), which can be generated by calling the function on the state.
| UICodeC (a, [String]) -- ^ has code for code-generation, i.e., C
deriving Functor
-- Get the code associated with the UI, unless we've already did this once. (To support recursive defs.)
retrieveUICode :: String -> State -> Kind -> UIKind a -> IO UICodeKind
retrieveUICode _ _ _ UIFree = pure UINone
retrieveUICode nm st fk (UIFun (_, f)) = do userFuncs <- readIORef (rUserFuncs st)
if nm `Set.member` userFuncs
then pure UINone
else do modifyState st rUserFuncs (Set.insert nm) (pure ())
UISMT <$> f st fk
retrieveUICode _ _ _ (UICodeC (_, c)) = pure $ UICgC c
-- Get the constant value associated with the UI
retrieveConstCode :: UIKind a -> Maybe a
retrieveConstCode UIFree = Nothing
retrieveConstCode (UIFun (v, _)) = Just v
retrieveConstCode (UICodeC (v, _)) = Just v
-- Plain constants
instance HasKind a => SMTDefinable (SBV a) where
sbvDefineValue nm uiKind
| Just v <- retrieveConstCode uiKind
= v
| True
= SBV $ SVal ka $ Right $ cache result
where ka = kindOf (Proxy @a)
result st = do isSMT <- inSMTMode st
case (isSMT, uiKind) of
(True, UICodeC (v, _)) -> sbvToSV st v
_ -> do newUninterpreted st (nm, Nothing) (SBVType [ka]) =<< retrieveUICode nm st ka uiKind
newExpr st ka $ SBVApp (Uninterpreted nm) []
-- Functions of one argument
instance (SymVal b, HasKind a) => SMTDefinable (SBV b -> SBV a) where
sbvDefineValue nm uiKind = f
where f arg0
| Just v <- retrieveConstCode uiKind, isConcrete arg0
= v arg0
| True
= SBV $ SVal ka $ Right $ cache result
where ka = kindOf (Proxy @a)
kb = kindOf (Proxy @b)
result st = do isSMT <- inSMTMode st
case (isSMT, uiKind) of
(True, UICodeC (v, _)) -> sbvToSV st (v arg0)
_ -> do newUninterpreted st (nm, Nothing) (SBVType [kb, ka]) =<< retrieveUICode nm st ka uiKind
sw0 <- sbvToSV st arg0
mapM_ forceSVArg [sw0]
newExpr st ka $ SBVApp (Uninterpreted nm) [sw0]
-- Functions of two arguments
instance (SymVal c, SymVal b, HasKind a) => SMTDefinable (SBV c -> SBV b -> SBV a) where
sbvDefineValue nm uiKind = f
where f arg0 arg1
| Just v <- retrieveConstCode uiKind, isConcrete arg0, isConcrete arg1
= v arg0 arg1
| True
= SBV $ SVal ka $ Right $ cache result
where ka = kindOf (Proxy @a)
kb = kindOf (Proxy @b)
kc = kindOf (Proxy @c)
result st = do isSMT <- inSMTMode st
case (isSMT, uiKind) of
(True, UICodeC (v, _)) -> sbvToSV st (v arg0 arg1)
_ -> do newUninterpreted st (nm, Nothing) (SBVType [kc, kb, ka]) =<< retrieveUICode nm st ka uiKind
sw0 <- sbvToSV st arg0
sw1 <- sbvToSV st arg1
mapM_ forceSVArg [sw0, sw1]
newExpr st ka $ SBVApp (Uninterpreted nm) [sw0, sw1]
-- Functions of three arguments
instance (SymVal d, SymVal c, SymVal b, HasKind a) => SMTDefinable (SBV d -> SBV c -> SBV b -> SBV a) where
sbvDefineValue nm uiKind = f
where f arg0 arg1 arg2
| Just v <- retrieveConstCode uiKind, isConcrete arg0, isConcrete arg1, isConcrete arg2
= v arg0 arg1 arg2
| True
= SBV $ SVal ka $ Right $ cache result
where ka = kindOf (Proxy @a)
kb = kindOf (Proxy @b)
kc = kindOf (Proxy @c)
kd = kindOf (Proxy @d)
result st = do isSMT <- inSMTMode st
case (isSMT, uiKind) of
(True, UICodeC (v, _)) -> sbvToSV st (v arg0 arg1 arg2)
_ -> do newUninterpreted st (nm, Nothing) (SBVType [kd, kc, kb, ka]) =<< retrieveUICode nm st ka uiKind
sw0 <- sbvToSV st arg0
sw1 <- sbvToSV st arg1
sw2 <- sbvToSV st arg2
mapM_ forceSVArg [sw0, sw1, sw2]
newExpr st ka $ SBVApp (Uninterpreted nm) [sw0, sw1, sw2]
-- Functions of four arguments
instance (SymVal e, SymVal d, SymVal c, SymVal b, HasKind a) => SMTDefinable (SBV e -> SBV d -> SBV c -> SBV b -> SBV a) where
sbvDefineValue nm uiKind = f
where f arg0 arg1 arg2 arg3
| Just v <- retrieveConstCode uiKind, isConcrete arg0, isConcrete arg1, isConcrete arg2, isConcrete arg3
= v arg0 arg1 arg2 arg3
| True
= SBV $ SVal ka $ Right $ cache result
where ka = kindOf (Proxy @a)
kb = kindOf (Proxy @b)
kc = kindOf (Proxy @c)
kd = kindOf (Proxy @d)
ke = kindOf (Proxy @e)
result st = do isSMT <- inSMTMode st
case (isSMT, uiKind) of
(True, UICodeC (v, _)) -> sbvToSV st (v arg0 arg1 arg2 arg3)
_ -> do newUninterpreted st (nm, Nothing) (SBVType [ke, kd, kc, kb, ka]) =<< retrieveUICode nm st ka uiKind
sw0 <- sbvToSV st arg0
sw1 <- sbvToSV st arg1
sw2 <- sbvToSV st arg2
sw3 <- sbvToSV st arg3
mapM_ forceSVArg [sw0, sw1, sw2, sw3]
newExpr st ka $ SBVApp (Uninterpreted nm) [sw0, sw1, sw2, sw3]
-- Functions of five arguments
instance (SymVal f, SymVal e, SymVal d, SymVal c, SymVal b, HasKind a) => SMTDefinable (SBV f -> SBV e -> SBV d -> SBV c -> SBV b -> SBV a) where
sbvDefineValue nm uiKind = f
where f arg0 arg1 arg2 arg3 arg4
| Just v <- retrieveConstCode uiKind, isConcrete arg0, isConcrete arg1, isConcrete arg2, isConcrete arg3, isConcrete arg4
= v arg0 arg1 arg2 arg3 arg4
| True
= SBV $ SVal ka $ Right $ cache result
where ka = kindOf (Proxy @a)
kb = kindOf (Proxy @b)
kc = kindOf (Proxy @c)
kd = kindOf (Proxy @d)
ke = kindOf (Proxy @e)
kf = kindOf (Proxy @f)
result st = do isSMT <- inSMTMode st
case (isSMT, uiKind) of
(True, UICodeC (v, _)) -> sbvToSV st (v arg0 arg1 arg2 arg3 arg4)
_ -> do newUninterpreted st (nm, Nothing) (SBVType [kf, ke, kd, kc, kb, ka]) =<< retrieveUICode nm st ka uiKind
sw0 <- sbvToSV st arg0
sw1 <- sbvToSV st arg1
sw2 <- sbvToSV st arg2
sw3 <- sbvToSV st arg3
sw4 <- sbvToSV st arg4
mapM_ forceSVArg [sw0, sw1, sw2, sw3, sw4]
newExpr st ka $ SBVApp (Uninterpreted nm) [sw0, sw1, sw2, sw3, sw4]
-- Functions of six arguments
instance (SymVal g, SymVal f, SymVal e, SymVal d, SymVal c, SymVal b, HasKind a) => SMTDefinable (SBV g -> SBV f -> SBV e -> SBV d -> SBV c -> SBV b -> SBV a) where
sbvDefineValue nm uiKind = f
where f arg0 arg1 arg2 arg3 arg4 arg5
| Just v <- retrieveConstCode uiKind, isConcrete arg0, isConcrete arg1, isConcrete arg2, isConcrete arg3, isConcrete arg4, isConcrete arg5
= v arg0 arg1 arg2 arg3 arg4 arg5
| True
= SBV $ SVal ka $ Right $ cache result
where ka = kindOf (Proxy @a)
kb = kindOf (Proxy @b)
kc = kindOf (Proxy @c)
kd = kindOf (Proxy @d)
ke = kindOf (Proxy @e)
kf = kindOf (Proxy @f)
kg = kindOf (Proxy @g)
result st = do isSMT <- inSMTMode st
case (isSMT, uiKind) of
(True, UICodeC (v, _)) -> sbvToSV st (v arg0 arg1 arg2 arg3 arg4 arg5)
_ -> do newUninterpreted st (nm, Nothing) (SBVType [kg, kf, ke, kd, kc, kb, ka]) =<< retrieveUICode nm st ka uiKind
sw0 <- sbvToSV st arg0
sw1 <- sbvToSV st arg1
sw2 <- sbvToSV st arg2
sw3 <- sbvToSV st arg3
sw4 <- sbvToSV st arg4
sw5 <- sbvToSV st arg5
mapM_ forceSVArg [sw0, sw1, sw2, sw3, sw4, sw5]
newExpr st ka $ SBVApp (Uninterpreted nm) [sw0, sw1, sw2, sw3, sw4, sw5]
-- Functions of seven arguments
instance (SymVal h, SymVal g, SymVal f, SymVal e, SymVal d, SymVal c, SymVal b, HasKind a)
=> SMTDefinable (SBV h -> SBV g -> SBV f -> SBV e -> SBV d -> SBV c -> SBV b -> SBV a) where
sbvDefineValue nm uiKind = f
where f arg0 arg1 arg2 arg3 arg4 arg5 arg6
| Just v <- retrieveConstCode uiKind, isConcrete arg0, isConcrete arg1, isConcrete arg2, isConcrete arg3, isConcrete arg4, isConcrete arg5, isConcrete arg6
= v arg0 arg1 arg2 arg3 arg4 arg5 arg6
| True
= SBV $ SVal ka $ Right $ cache result
where ka = kindOf (Proxy @a)
kb = kindOf (Proxy @b)
kc = kindOf (Proxy @c)
kd = kindOf (Proxy @d)
ke = kindOf (Proxy @e)
kf = kindOf (Proxy @f)
kg = kindOf (Proxy @g)
kh = kindOf (Proxy @h)
result st = do isSMT <- inSMTMode st
case (isSMT, uiKind) of
(True, UICodeC (v, _)) -> sbvToSV st (v arg0 arg1 arg2 arg3 arg4 arg5 arg6)
_ -> do newUninterpreted st (nm, Nothing) (SBVType [kh, kg, kf, ke, kd, kc, kb, ka]) =<< retrieveUICode nm st ka uiKind
sw0 <- sbvToSV st arg0
sw1 <- sbvToSV st arg1
sw2 <- sbvToSV st arg2
sw3 <- sbvToSV st arg3
sw4 <- sbvToSV st arg4
sw5 <- sbvToSV st arg5
sw6 <- sbvToSV st arg6
mapM_ forceSVArg [sw0, sw1, sw2, sw3, sw4, sw5, sw6]
newExpr st ka $ SBVApp (Uninterpreted nm) [sw0, sw1, sw2, sw3, sw4, sw5, sw6]
-- Uncurried functions of two arguments
instance (SymVal c, SymVal b, HasKind a) => SMTDefinable ((SBV c, SBV b) -> SBV a) where
sbvDefineValue nm uiKind = let f = sbvDefineValue nm (curry <$> uiKind) in uncurry f
-- Uncurried functions of three arguments
instance (SymVal d, SymVal c, SymVal b, HasKind a) => SMTDefinable ((SBV d, SBV c, SBV b) -> SBV a) where
sbvDefineValue nm uiKind = let f = sbvDefineValue nm (uc3 <$> uiKind) in \(arg0, arg1, arg2) -> f arg0 arg1 arg2
where uc3 fn a b c = fn (a, b, c)
-- Uncurried functions of four arguments
instance (SymVal e, SymVal d, SymVal c, SymVal b, HasKind a)
=> SMTDefinable ((SBV e, SBV d, SBV c, SBV b) -> SBV a) where
sbvDefineValue nm uiKind = let f = sbvDefineValue nm (uc4 <$> uiKind) in \(arg0, arg1, arg2, arg3) -> f arg0 arg1 arg2 arg3
where uc4 fn a b c d = fn (a, b, c, d)
-- Uncurried functions of five arguments
instance (SymVal f, SymVal e, SymVal d, SymVal c, SymVal b, HasKind a)
=> SMTDefinable ((SBV f, SBV e, SBV d, SBV c, SBV b) -> SBV a) where
sbvDefineValue nm uiKind = let f = sbvDefineValue nm (uc5 <$> uiKind) in \(arg0, arg1, arg2, arg3, arg4) -> f arg0 arg1 arg2 arg3 arg4
where uc5 fn a b c d e = fn (a, b, c, d, e)
-- Uncurried functions of six arguments
instance (SymVal g, SymVal f, SymVal e, SymVal d, SymVal c, SymVal b, HasKind a)
=> SMTDefinable ((SBV g, SBV f, SBV e, SBV d, SBV c, SBV b) -> SBV a) where
sbvDefineValue nm uiKind = let f = sbvDefineValue nm (uc6 <$> uiKind) in \(arg0, arg1, arg2, arg3, arg4, arg5) -> f arg0 arg1 arg2 arg3 arg4 arg5
where uc6 fn a b c d e f = fn (a, b, c, d, e, f)
-- Uncurried functions of seven arguments
instance (SymVal h, SymVal g, SymVal f, SymVal e, SymVal d, SymVal c, SymVal b, HasKind a)
=> SMTDefinable ((SBV h, SBV g, SBV f, SBV e, SBV d, SBV c, SBV b) -> SBV a) where
sbvDefineValue nm uiKind = let f = sbvDefineValue nm (uc7 <$> uiKind) in \(arg0, arg1, arg2, arg3, arg4, arg5, arg6) -> f arg0 arg1 arg2 arg3 arg4 arg5 arg6
where uc7 fn a b c d e f g = fn (a, b, c, d, e, f, g)
-- | Symbolic computations provide a context for writing symbolic programs.
instance MonadIO m => SolverContext (SymbolicT m) where
constrain = imposeConstraint False [] . unSBV . quantifiedBool
softConstrain = imposeConstraint True [] . unSBV . quantifiedBool
namedConstraint nm = imposeConstraint False [(":named", nm)] . unSBV . quantifiedBool
constrainWithAttribute atts = imposeConstraint False atts . unSBV . quantifiedBool
contextState = symbolicEnv
setOption o = addNewSMTOption o
-- | Generalization of 'Data.SBV.assertWithPenalty'
assertWithPenalty :: MonadSymbolic m => String -> SBool -> Penalty -> m ()
assertWithPenalty nm o p = addSValOptGoal $ unSBV `fmap` AssertWithPenalty nm o p
-- | Class of metrics we can optimize for. Currently, booleans,
-- bounded signed/unsigned bit-vectors, unbounded integers,
-- algebraic reals and floats can be optimized. You can add
-- your instances, but bewared that the 'MetricSpace' should
-- map your type to something the backend solver understands, which
-- are limited to unsigned bit-vectors, reals, and unbounded integers
-- for z3.
--
-- A good reference on these features is given in the following paper:
-- <http://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/nbjorner-scss2014.pdf>.
--
-- Minimal completion: None. However, if @MetricSpace@ is not identical to the type, you want
-- to define 'toMetricSpace' and possibly 'minimize'/'maximize' to add extra constraints as necessary.
class Metric a where
-- | The metric space we optimize the goal over. Usually the same as the type itself, but not always!
-- For instance, signed bit-vectors are optimized over their unsigned counterparts, floats are
-- optimized over their 'Word32' comparable counterparts, etc.
type MetricSpace a :: Type
type MetricSpace a = a
-- | Compute the metric value to optimize.
toMetricSpace :: SBV a -> SBV (MetricSpace a)
-- | Compute the value itself from the metric corresponding to it.
fromMetricSpace :: SBV (MetricSpace a) -> SBV a
-- | Minimizing a metric space
msMinimize :: (MonadSymbolic m, SolverContext m) => String -> SBV a -> m ()
msMinimize nm o = addSValOptGoal $ unSBV `fmap` Minimize nm (toMetricSpace o)
-- | Maximizing a metric space
msMaximize :: (MonadSymbolic m, SolverContext m) => String -> SBV a -> m ()
msMaximize nm o = addSValOptGoal $ unSBV `fmap` Maximize nm (toMetricSpace o)
-- if MetricSpace is the same, we can give a default definition
default toMetricSpace :: (a ~ MetricSpace a) => SBV a -> SBV (MetricSpace a)
toMetricSpace = id
default fromMetricSpace :: (a ~ MetricSpace a) => SBV (MetricSpace a) -> SBV a
fromMetricSpace = id
-- Booleans assume True is greater than False
instance Metric Bool where
type MetricSpace Bool = Word8
toMetricSpace t = ite t 1 0
fromMetricSpace w = w ./= 0
-- | Generalization of 'Data.SBV.minimize'
minimize :: (Metric a, MonadSymbolic m, SolverContext m) => String -> SBV a -> m ()
minimize = msMinimize
-- | Generalization of 'Data.SBV.maximize'
maximize :: (Metric a, MonadSymbolic m, SolverContext m) => String -> SBV a -> m ()
maximize = msMaximize
-- Unsigned types, integers, and reals directly optimize
instance Metric Word8
instance Metric Word16
instance Metric Word32
instance Metric Word64
instance Metric Integer
instance Metric AlgReal
-- To optimize signed bounded values, we have to adjust to the range
instance Metric Int8 where
type MetricSpace Int8 = Word8
toMetricSpace x = sFromIntegral x + 128 -- 2^7
fromMetricSpace x = sFromIntegral x - 128
instance Metric Int16 where
type MetricSpace Int16 = Word16
toMetricSpace x = sFromIntegral x + 32768 -- 2^15
fromMetricSpace x = sFromIntegral x - 32768
instance Metric Int32 where
type MetricSpace Int32 = Word32
toMetricSpace x = sFromIntegral x + 2147483648 -- 2^31
fromMetricSpace x = sFromIntegral x - 2147483648
instance Metric Int64 where
type MetricSpace Int64 = Word64
toMetricSpace x = sFromIntegral x + 9223372036854775808 -- 2^63
fromMetricSpace x = sFromIntegral x - 9223372036854775808
-- Quickcheck interface on symbolic-booleans..
instance Testable SBool where
property (SBV (SVal _ (Left b))) = property (cvToBool b)
property _ = cantQuickCheck
instance Testable (Symbolic SBool) where
property prop = QC.monadicIO $ do (cond, r, modelVals) <- QC.run test
QC.pre cond
unless (r || null modelVals) $ QC.monitor (QC.counterexample (complain modelVals))
QC.assert r
where test = do (r, Result{resTraces=tvals, resObservables=ovals, resConsts=(_, cs), resConstraints=cstrs, resUIConsts=unints}) <- runSymbolic defaultSMTCfg (Concrete Nothing) prop
let cval = fromMaybe cantQuickCheck . (`lookup` cs)
cond = -- Only pick-up "hard" constraints, as indicated by False in the fist component
and [cvToBool (cval v) | (False, _, v) <- F.toList cstrs]
getObservable (nm, f, v) = case v `lookup` cs of
Just cv -> if f cv then Just (nm, cv) else Nothing
Nothing -> cantQuickCheck
case map fst unints of
[] -> case unliteral r of
Nothing -> cantQuickCheck
Just b -> return (cond, b, tvals ++ mapMaybe getObservable ovals)
_ -> cantQuickCheck
complain qcInfo = showModel defaultSMTCfg (SMTModel [] Nothing qcInfo [])
-- Complain if what we got isn't something we can quick-check
cantQuickCheck :: a
cantQuickCheck = error $ unlines [ "*** Data.SBV: Cannot quickcheck the given property."
, "***"
, "*** Certain SBV properties cannot be quick-checked. In particular,"
, "*** SBV can't quick-check in the presence of:"
, "***"
, "*** - Uninterpreted constants."
, "*** - Floating point operations with rounding modes other than RNE."
, "*** - Floating point FMA operation, regardless of rounding mode."
, "*** - Quantified booleans, i.e., uses of Forall/Exists/ExistsUnique."
, "*** - Calls to 'observe' (use 'sObserve' instead)"
, "***"
, "*** If you can't avoid the above features or run into an issue with"
, "*** quickcheck even though you haven't used these features, please report this as a bug!"
]
-- | Quick check an SBV property. Note that a regular @quickCheck@ call will work just as
-- well. Use this variant if you want to receive the boolean result.
sbvQuickCheck :: Symbolic SBool -> IO Bool
sbvQuickCheck prop = QC.isSuccess `fmap` QC.quickCheckResult prop
-- Quickcheck interface on dynamically-typed values. A run-time check
-- ensures that the value has boolean type.
instance Testable (Symbolic SVal) where
property m = property $ do s <- m
when (kindOf s /= KBool) $ error "Cannot quickcheck non-boolean value"
return (SBV s :: SBool)
-- | Explicit sharing combinator. The SBV library has internal caching/hash-consing mechanisms
-- built in, based on Andy Gill's type-safe observable sharing technique (see: <http://ku-fpg.github.io/files/Gill-09-TypeSafeReification.pdf>).
-- However, there might be times where being explicit on the sharing can help, especially in experimental code. The 'slet' combinator
-- ensures that its first argument is computed once and passed on to its continuation, explicitly indicating the intent of sharing. Most
-- use cases of the SBV library should simply use Haskell's @let@ construct for this purpose.
slet :: forall a b. (HasKind a, HasKind b) => SBV a -> (SBV a -> SBV b) -> SBV b
slet x f = SBV $ SVal k $ Right $ cache r
where k = kindOf (Proxy @b)
r st = do xsv <- sbvToSV st x
let xsbv = SBV $ SVal (kindOf x) (Right (cache (const (return xsv))))
res = f xsbv
sbvToSV st res
-- | Equality as a proof method. Allows for
-- very concise construction of equivalence proofs, which is very typical in
-- bit-precise proofs.
infix 4 ===
class Equality a where
(===) :: a -> a -> IO ThmResult
instance {-# OVERLAPPABLE #-} (SymVal a, EqSymbolic z) => Equality (SBV a -> z) where
k === l = prove $ \a -> k a .== l a
instance {-# OVERLAPPABLE #-} (SymVal a, SymVal b, EqSymbolic z) => Equality (SBV a -> SBV b -> z) where
k === l = prove $ \a b -> k a b .== l a b
instance {-# OVERLAPPABLE #-} (SymVal a, SymVal b, EqSymbolic z) => Equality ((SBV a, SBV b) -> z) where
k === l = prove $ \a b -> k (a, b) .== l (a, b)
instance {-# OVERLAPPABLE #-} (SymVal a, SymVal b, SymVal c, EqSymbolic z) => Equality (SBV a -> SBV b -> SBV c -> z) where
k === l = prove $ \a b c -> k a b c .== l a b c
instance {-# OVERLAPPABLE #-} (SymVal a, SymVal b, SymVal c, EqSymbolic z) => Equality ((SBV a, SBV b, SBV c) -> z) where
k === l = prove $ \a b c -> k (a, b, c) .== l (a, b, c)
instance {-# OVERLAPPABLE #-} (SymVal a, SymVal b, SymVal c, SymVal d, EqSymbolic z) => Equality (SBV a -> SBV b -> SBV c -> SBV d -> z) where
k === l = prove $ \a b c d -> k a b c d .== l a b c d
instance {-# OVERLAPPABLE #-} (SymVal a, SymVal b, SymVal c, SymVal d, EqSymbolic z) => Equality ((SBV a, SBV b, SBV c, SBV d) -> z) where
k === l = prove $ \a b c d -> k (a, b, c, d) .== l (a, b, c, d)
instance {-# OVERLAPPABLE #-} (SymVal a, SymVal b, SymVal c, SymVal d, SymVal e, EqSymbolic z) => Equality (SBV a -> SBV b -> SBV c -> SBV d -> SBV e -> z) where
k === l = prove $ \a b c d e -> k a b c d e .== l a b c d e
instance {-# OVERLAPPABLE #-} (SymVal a, SymVal b, SymVal c, SymVal d, SymVal e, EqSymbolic z) => Equality ((SBV a, SBV b, SBV c, SBV d, SBV e) -> z) where
k === l = prove $ \a b c d e -> k (a, b, c, d, e) .== l (a, b, c, d, e)
instance {-# OVERLAPPABLE #-} (SymVal a, SymVal b, SymVal c, SymVal d, SymVal e, SymVal f, EqSymbolic z) => Equality (SBV a -> SBV b -> SBV c -> SBV d -> SBV e -> SBV f -> z) where
k === l = prove $ \a b c d e f -> k a b c d e f .== l a b c d e f
instance {-# OVERLAPPABLE #-}
(SymVal a, SymVal b, SymVal c, SymVal d, SymVal e, SymVal f, EqSymbolic z) => Equality ((SBV a, SBV b, SBV c, SBV d, SBV e, SBV f) -> z) where
k === l = prove $ \a b c d e f -> k (a, b, c, d, e, f) .== l (a, b, c, d, e, f)
instance {-# OVERLAPPABLE #-}
(SymVal a, SymVal b, SymVal c, SymVal d, SymVal e, SymVal f, SymVal g, EqSymbolic z) => Equality (SBV a -> SBV b -> SBV c -> SBV d -> SBV e -> SBV f -> SBV g -> z) where
k === l = prove $ \a b c d e f g -> k a b c d e f g .== l a b c d e f g
instance {-# OVERLAPPABLE #-} (SymVal a, SymVal b, SymVal c, SymVal d, SymVal e, SymVal f, SymVal g, EqSymbolic z) => Equality ((SBV a, SBV b, SBV c, SBV d, SBV e, SBV f, SBV g) -> z) where
k === l = prove $ \a b c d e f g -> k (a, b, c, d, e, f, g) .== l (a, b, c, d, e, f, g)
-- | Using a lambda as an array
lambdaAsArray :: forall a b. (SymVal a, HasKind b) => (SBV a -> SBV b) -> SArray a b
lambdaAsArray f = SArray $ SArr (kindOf (Proxy @a), kindOf (Proxy @b)) $ cache g
where g st = do def <- lambdaStr st (kindOf (Proxy @b)) f
let extract :: SArray a b -> IO ArrayIndex
extract (SArray (SArr _ ci)) = uncacheAI ci st
extract =<< newArrayInState Nothing (Right def) st
{- HLint ignore module "Reduce duplication" -}
{- HLint ignore module "Eta reduce" -}
|