File: Operations.hs

package info (click to toggle)
haskell-sbv 10.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 8,148 kB
  • sloc: haskell: 31,176; makefile: 4
file content (1458 lines) | stat: -rw-r--r-- 68,967 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
-----------------------------------------------------------------------------
-- |
-- Module    : Data.SBV.Core.Operations
-- Copyright : (c) Levent Erkok
-- License   : BSD3
-- Maintainer: erkokl@gmail.com
-- Stability : experimental
--
-- Constructors and basic operations on symbolic values
-----------------------------------------------------------------------------

{-# LANGUAGE BangPatterns #-}

{-# OPTIONS_GHC -Wall -Werror #-}

module Data.SBV.Core.Operations
  (
  -- ** Basic constructors
    svTrue, svFalse, svBool
  , svInteger, svFloat, svDouble, svFloatingPoint, svReal, svEnumFromThenTo, svString, svChar
  -- ** Basic destructors
  , svAsBool, svAsInteger, svNumerator, svDenominator
  -- ** Basic operations
  , svPlus, svTimes, svMinus, svUNeg, svAbs
  , svDivide, svQuot, svRem, svQuotRem
  , svEqual, svNotEqual, svStrongEqual, svImplies, svSetEqual
  , svLessThan, svGreaterThan, svLessEq, svGreaterEq, svStructuralLessThan
  , svAnd, svOr, svXOr, svNot
  , svShl, svShr, svRol, svRor
  , svExtract, svJoin, svZeroExtend, svSignExtend
  , svIte, svLazyIte, svSymbolicMerge
  , svSelect
  , svSign, svUnsign, svSetBit, svWordFromBE, svWordFromLE
  , svExp, svFromIntegral
  -- ** Overflows
  , svMkOverflow
  -- ** Derived operations
  , svToWord1, svFromWord1, svTestBit
  , svShiftLeft, svShiftRight
  , svRotateLeft, svRotateRight
  , svBarrelRotateLeft, svBarrelRotateRight
  , svBlastLE, svBlastBE
  , svAddConstant, svIncrement, svDecrement
  , svFloatAsSWord32, svDoubleAsSWord64, svFloatingPointAsSWord
  -- ** Basic array operations
  , SArr(..), readSArr, writeSArr, mergeSArr, newSArr, eqSArr
  -- Utils
  , mkSymOp
  )
  where

import Prelude hiding (Foldable(..))
import Data.Bits (Bits(..))
import Data.List (genericIndex, genericLength, genericTake, foldr, length, foldl')

import qualified Data.IORef         as R    (readIORef)
import qualified Data.IntMap.Strict as IMap (size, insert)

import Data.SBV.Core.AlgReals
import Data.SBV.Core.Kind
import Data.SBV.Core.Concrete
import Data.SBV.Core.Symbolic
import Data.SBV.Core.SizedFloats

import Data.Ratio

import Data.SBV.Utils.Numeric (fpIsEqualObjectH, floatToWord, doubleToWord)

import LibBF

--------------------------------------------------------------------------------
-- Basic constructors

-- | Boolean True.
svTrue :: SVal
svTrue = SVal KBool (Left trueCV)

-- | Boolean False.
svFalse :: SVal
svFalse = SVal KBool (Left falseCV)

-- | Convert from a Boolean.
svBool :: Bool -> SVal
svBool b = if b then svTrue else svFalse

-- | Convert from an Integer.
svInteger :: Kind -> Integer -> SVal
svInteger k n = SVal k (Left $! mkConstCV k n)

-- | Convert from a Float
svFloat :: Float -> SVal
svFloat f = SVal KFloat (Left $! CV KFloat (CFloat f))

-- | Convert from a Double
svDouble :: Double -> SVal
svDouble d = SVal KDouble (Left $! CV KDouble (CDouble d))

-- | Convert from a generalized floating point
svFloatingPoint :: FP -> SVal
svFloatingPoint f@(FP eb sb _) = SVal k (Left $! CV k (CFP f))
  where k  = KFP eb sb

-- | Convert from a String
svString :: String -> SVal
svString s = SVal KString (Left $! CV KString (CString s))

-- | Convert from a Char
svChar :: Char -> SVal
svChar c = SVal KChar (Left $! CV KChar (CChar c))

-- | Convert from a Rational
svReal :: Rational -> SVal
svReal d = SVal KReal (Left $! CV KReal (CAlgReal (fromRational d)))

--------------------------------------------------------------------------------
-- Basic destructors

-- | Extract a bool, by properly interpreting the integer stored.
svAsBool :: SVal -> Maybe Bool
svAsBool (SVal _ (Left cv)) = Just (cvToBool cv)
svAsBool _                  = Nothing

-- | Extract an integer from a concrete value.
svAsInteger :: SVal -> Maybe Integer
svAsInteger (SVal _ (Left (CV _ (CInteger n)))) = Just n
svAsInteger _                                   = Nothing

-- | Grab the numerator of an SReal, if available
svNumerator :: SVal -> Maybe Integer
svNumerator (SVal KReal (Left (CV KReal (CAlgReal (AlgRational True r))))) = Just $ numerator r
svNumerator _                                                              = Nothing

-- | Grab the denominator of an SReal, if available
svDenominator :: SVal -> Maybe Integer
svDenominator (SVal KReal (Left (CV KReal (CAlgReal (AlgRational True r))))) = Just $ denominator r
svDenominator _                                                              = Nothing

-------------------------------------------------------------------------------------
-- | Constructing [x, y, .. z] and [x .. y]. Only works when all arguments are concrete and integral and the result is guaranteed finite
-- Note that the it isn't "obviously" clear why the following works; after all we're doing the construction over Integer's and mapping
-- it back to other types such as SIntN/SWordN. The reason is that the values we receive are guaranteed to be in their domains; and thus
-- the lifting to Integers preserves the bounds; and then going back is just fine. So, things like @[1, 5 .. 200] :: [SInt8]@ work just
-- fine (end evaluate to empty list), since we see @[1, 5 .. -56]@ in the @Integer@ domain. Also note the explicit check for @s /= f@
-- below to make sure we don't stutter and produce an infinite list.
svEnumFromThenTo :: SVal -> Maybe SVal -> SVal -> Maybe [SVal]
svEnumFromThenTo bf mbs bt
  | Just bs <- mbs, Just f <- svAsInteger bf, Just s <- svAsInteger bs, Just t <- svAsInteger bt, s /= f = Just $ map (svInteger (kindOf bf)) [f, s .. t]
  | Nothing <- mbs, Just f <- svAsInteger bf,                           Just t <- svAsInteger bt         = Just $ map (svInteger (kindOf bf)) [f    .. t]
  | True                                                                                                 = Nothing

-------------------------------------------------------------------------------------
-- Basic operations

-- | Addition.
svPlus :: SVal -> SVal -> SVal
svPlus x y
  | isConcreteZero x = y
  | isConcreteZero y = x
  | True             = liftSym2 (mkSymOp Plus) [rationalCheck] (+) (+) (+) (+) (+) (+) x y

-- | Multiplication.
svTimes :: SVal -> SVal -> SVal
svTimes x y
  | isConcreteZero x = x
  | isConcreteZero y = y
  | isConcreteOne x  = y
  | isConcreteOne y  = x
  | True             = liftSym2 (mkSymOp Times) [rationalCheck] (*) (*) (*) (*) (*) (*) x y

-- | Subtraction.
svMinus :: SVal -> SVal -> SVal
svMinus x y
  | isConcreteZero y = x
  | True             = liftSym2 (mkSymOp Minus) [rationalCheck] (-) (-) (-) (-) (-) (-) x y

-- | Unary minus. We handle arbitrary-FP's specially here, just for the negated literals.
svUNeg :: SVal -> SVal
svUNeg = liftSym1 (mkSymOp1 UNeg) negate negate negate negate negate negate

-- | Absolute value.
svAbs :: SVal -> SVal
svAbs = liftSym1 (mkSymOp1 Abs) abs abs abs abs abs abs

-- | Division.
svDivide :: SVal -> SVal -> SVal
svDivide = liftSym2 (mkSymOp Quot) [rationalCheck] (/) idiv (/) (/) (/) (/)
   where idiv x 0 = x
         idiv x y = x `div` y

-- | Exponentiation.
svExp :: SVal -> SVal -> SVal
svExp b e
  | Just x <- svAsInteger e
  = if x >= 0 then let go n v
                        | n == 0 = one
                        | even n =             go (n `div` 2) (svTimes v v)
                        | True   = svTimes v $ go (n `div` 2) (svTimes v v)
                   in  go x b
              else error $ "svExp: exponentiation: negative exponent: " ++ show x
  | not (isBounded e) || hasSign e
  = error $ "svExp: exponentiation only works with unsigned bounded symbolic exponents, kind: " ++ show (kindOf e)
  | True
  = prod $ zipWith (\use n -> svIte use n one)
                   (svBlastLE e)
                   (iterate (\x -> svTimes x x) b)
  where prod = foldr svTimes one
        one  = svInteger (kindOf b) 1

-- | Bit-blast: Little-endian. Assumes the input is a bit-vector or a floating point type.
svBlastLE :: SVal -> [SVal]
svBlastLE x = map (svTestBit x) [0 .. intSizeOf x - 1]

-- | Set a given bit at index
svSetBit :: SVal -> Int -> SVal
svSetBit x i = x `svOr` svInteger (kindOf x) (bit i :: Integer)

-- | Bit-blast: Big-endian. Assumes the input is a bit-vector or a floating point type.
svBlastBE :: SVal -> [SVal]
svBlastBE = reverse . svBlastLE

-- | Un-bit-blast from big-endian representation to a word of the right size.
-- The input is assumed to be unsigned.
svWordFromLE :: [SVal] -> SVal
svWordFromLE bs = go zero 0 bs
  where zero = svInteger (KBounded False (length bs)) 0
        go !acc _  []     = acc
        go !acc !i (x:xs) = go (svIte x (svSetBit acc i) acc) (i+1) xs

-- | Un-bit-blast from little-endian representation to a word of the right size.
-- The input is assumed to be unsigned.
svWordFromBE :: [SVal] -> SVal
svWordFromBE = svWordFromLE . reverse

-- | Add a constant value:
svAddConstant :: Integral a => SVal -> a -> SVal
svAddConstant x i = x `svPlus` svInteger (kindOf x) (fromIntegral i)

-- | Increment:
svIncrement :: SVal -> SVal
svIncrement x = svAddConstant x (1::Integer)

-- | Decrement:
svDecrement :: SVal -> SVal
svDecrement x = svAddConstant x (-1 :: Integer)

-- | Quotient: Overloaded operation whose meaning depends on the kind at which
-- it is used: For unbounded integers, it corresponds to the SMT-Lib
-- "div" operator ("Euclidean" division, which always has a
-- non-negative remainder). For unsigned bitvectors, it is "bvudiv";
-- and for signed bitvectors it is "bvsdiv", which rounds toward zero.
-- Division by 0 is defined s.t. @x/0 = 0@, which holds even when @x@ itself is @0@.
svQuot :: SVal -> SVal -> SVal
svQuot x y
  | isConcreteZero x = x
  | isConcreteZero y = svInteger (kindOf x) 0
  | isConcreteOne  y = x
  | True             = liftSym2 (mkSymOp Quot) [nonzeroCheck]
                                (noReal "quot") quot' (noFloat "quot") (noDouble "quot") (noFP "quot") (noRat "quot") x y
  where
    quot' a b | kindOf x == KUnbounded = div a (abs b) * signum b
              | otherwise              = quot a b

-- | Remainder: Overloaded operation whose meaning depends on the kind at which
-- it is used: For unbounded integers, it corresponds to the SMT-Lib
-- "mod" operator (always non-negative). For unsigned bitvectors, it
-- is "bvurem"; and for signed bitvectors it is "bvsrem", which rounds
-- toward zero (sign of remainder matches that of @x@). Division by 0 is
-- defined s.t. @x/0 = 0@, which holds even when @x@ itself is @0@.
svRem :: SVal -> SVal -> SVal
svRem x y
  | isConcreteZero x = x
  | isConcreteZero y = x
  | isConcreteOne  y = svInteger (kindOf x) 0
  | True             = liftSym2 (mkSymOp Rem) [nonzeroCheck]
                                (noReal "rem") rem' (noFloat "rem") (noDouble "rem") (noFP "rem") (noRat "rem") x y
  where
    rem' a b | kindOf x == KUnbounded = mod a (abs b)
             | otherwise              = rem a b

-- | Combination of quot and rem
svQuotRem :: SVal -> SVal -> (SVal, SVal)
svQuotRem x y = (x `svQuot` y, x `svRem` y)

-- | Optimize away x == true and x /= false to x; otherwise just do eqOpt
eqOptBool :: Op -> SV -> SV -> SV -> Maybe SV
eqOptBool op w x y
  | k == KBool && op == Equal    && x == trueSV  = Just y         -- true  .== y     --> y
  | k == KBool && op == Equal    && y == trueSV  = Just x         -- x     .== true  --> x
  | k == KBool && op == NotEqual && x == falseSV = Just y         -- false ./= y     --> y
  | k == KBool && op == NotEqual && y == falseSV = Just x         -- x     ./= false --> x
  | True                                         = eqOpt w x y    -- fallback
  where k = swKind x

-- | Equality.
svEqual :: SVal -> SVal -> SVal
svEqual a b
  | isSet a && isSet b
  = svSetEqual a b
  | True
  = liftSym2B (mkSymOpSC (eqOptBool Equal trueSV) Equal) rationalCheck (==) (==) (==) (==) (==) (==) (==) (==) (==) (==) (==) (==) (==) a b

-- | Implication. Only for booleans.
svImplies :: SVal -> SVal -> SVal
svImplies a b
  |    isConcreteZero a -- false implies everything
    || isConcreteOne  b -- true is implied by everything
  = svTrue
  | any (\x -> kindOf x /= KBool) [a, b]
  = bad
  | True
  = liftSym2B (mkSymOpSC (eqOpt trueSV) Implies) rationalCheck bad imp bad bad bad bad bad bad bad bad bad bad bad a b
  where bad = error $ "Data.SBV.svImplies: Unexpected arguments: " ++ show (a, kindOf a, b, kindOf b)
        imp :: Integer -> Integer -> Bool
        imp 0 0 = True
        imp 0 1 = True
        imp 1 0 = False
        imp 1 1 = True
        imp x y = error $ "Data.SBV.svImplies: Called on unreduced arguments: " ++ show (x, y, a, kindOf a, b, kindOf b)

-- | Inequality.
svNotEqual :: SVal -> SVal -> SVal
svNotEqual a b
  | isSet a && isSet b
  = svNot $ svEqual a b
  | True
  = liftSym2B (mkSymOpSC (eqOptBool NotEqual falseSV) NotEqual) rationalCheck (/=) (/=) (/=) (/=) (/=) (/=) (/=) (/=) (/=) (/=) (/=) (/=) (/=) a b

-- | Set equality. Note that we only do constant folding if we get both a regular or both a
-- complement set. Otherwise we get a symbolic value even if they might be completely concrete.
svSetEqual :: SVal -> SVal -> SVal
svSetEqual sa sb
  | not (isSet sa && isSet sb && kindOf sa == kindOf sb)
  = error $ "Data.SBV.svSetEqual: Called on ill-typed args: " ++ show (kindOf sa, kindOf sb)
  | Just (RegularSet a)    <- getSet sa, Just (RegularSet b)    <- getSet sb
  = svBool (a == b)
  | Just (ComplementSet a) <- getSet sa, Just (ComplementSet b) <- getSet sb
  = svBool (a == b)
  | True
  = SVal KBool $ Right $ cache r
  where getSet (SVal _ (Left (CV _ (CSet s)))) = Just s
        getSet _                               = Nothing

        r st = do sva <- svToSV st sa
                  svb <- svToSV st sb
                  newExpr st KBool $ SBVApp (SetOp SetEqual) [sva, svb]

-- | Strong equality. Only matters on floats, where it says @NaN@ equals @NaN@ and @+0@ and @-0@ are different.
-- Otherwise equivalent to `svEqual`.
svStrongEqual :: SVal -> SVal -> SVal
svStrongEqual x y | isFloat x,  Just f1 <- getF x,  Just f2 <- getF y  = svBool $ f1 `fpIsEqualObjectH` f2
                  | isDouble x, Just f1 <- getD x,  Just f2 <- getD y  = svBool $ f1 `fpIsEqualObjectH` f2
                  | isFP x,     Just f1 <- getFP x, Just f2 <- getFP y = svBool $ f1 `fpIsEqualObjectH` f2
                  | isFloat x || isDouble x || isFP x                  = SVal KBool $ Right $ cache r
                  | True                                               = svEqual x y
  where getF (SVal _ (Left (CV _ (CFloat f)))) = Just f
        getF _                                 = Nothing

        getD (SVal _ (Left (CV _ (CDouble d)))) = Just d
        getD _                                  = Nothing

        getFP (SVal _ (Left (CV _ (CFP f))))    = Just f
        getFP _                                 = Nothing

        r st = do sx <- svToSV st x
                  sy <- svToSV st y
                  newExpr st KBool (SBVApp (IEEEFP FP_ObjEqual) [sx, sy])

-- | Less than.
svLessThan :: SVal -> SVal -> SVal
svLessThan x y
  | isConcreteMax x = svFalse
  | isConcreteMin y = svFalse
  | True            = liftSym2B (mkSymOpSC (eqOpt falseSV) LessThan) rationalCheck (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (uiLift "<" (<)) x y

-- | Greater than.
svGreaterThan :: SVal -> SVal -> SVal
svGreaterThan x y
  | isConcreteMin x = svFalse
  | isConcreteMax y = svFalse
  | True            = liftSym2B (mkSymOpSC (eqOpt falseSV) GreaterThan) rationalCheck (>) (>) (>) (>) (>) (>) (>) (>) (>) (>) (>) (>) (uiLift ">"  (>)) x y

-- | Less than or equal to.
svLessEq :: SVal -> SVal -> SVal
svLessEq x y
  | isConcreteMin x = svTrue
  | isConcreteMax y = svTrue
  | True            = liftSym2B (mkSymOpSC (eqOpt trueSV) LessEq) rationalCheck (<=) (<=) (<=) (<=) (<=) (<=) (<=) (<=) (<=) (<=) (<=) (<=) (uiLift "<=" (<=)) x y

-- | Greater than or equal to.
svGreaterEq :: SVal -> SVal -> SVal
svGreaterEq x y
  | isConcreteMax x = svTrue
  | isConcreteMin y = svTrue
  | True            = liftSym2B (mkSymOpSC (eqOpt trueSV) GreaterEq) rationalCheck (>=) (>=) (>=) (>=) (>=) (>=) (>=) (>=) (>=) (>=) (>=) (>=) (uiLift ">=" (>=)) x y

-- | Bitwise and.
svAnd :: SVal -> SVal -> SVal
svAnd x y
  | isConcreteZero x = x
  | isConcreteOnes x = y
  | isConcreteZero y = y
  | isConcreteOnes y = x
  | True             = liftSym2 (mkSymOpSC opt And) [] (noReal ".&.") (.&.) (noFloat ".&.") (noDouble ".&.") (noFP ".&.") (noRat ".&") x y
  where opt a b
          | a == falseSV || b == falseSV = Just falseSV
          | a == trueSV                  = Just b
          | b == trueSV                  = Just a
          | True                         = Nothing

-- | Bitwise or.
svOr :: SVal -> SVal -> SVal
svOr x y
  | isConcreteZero x = y
  | isConcreteOnes x = x
  | isConcreteZero y = x
  | isConcreteOnes y = y
  | True             = liftSym2 (mkSymOpSC opt Or) []
                       (noReal ".|.") (.|.) (noFloat ".|.") (noDouble ".|.") (noFP ".|.") (noRat ".|.") x y
  where opt a b
          | a == trueSV || b == trueSV = Just trueSV
          | a == falseSV               = Just b
          | b == falseSV               = Just a
          | True                       = Nothing

-- | Bitwise xor.
svXOr :: SVal -> SVal -> SVal
svXOr x y
  | isConcreteZero x = y
  | isConcreteOnes x = svNot y
  | isConcreteZero y = x
  | isConcreteOnes y = svNot x
  | True             = liftSym2 (mkSymOpSC opt XOr) []
                       (noReal "xor") xor (noFloat "xor") (noDouble "xor") (noFP "xor") (noRat "xor") x y
  where opt a b
          | a == b && swKind a == KBool = Just falseSV
          | a == falseSV                = Just b
          | b == falseSV                = Just a
          | True                        = Nothing

-- | Bitwise complement.
svNot :: SVal -> SVal
svNot = liftSym1 (mkSymOp1SC opt Not)
                 (noRealUnary "complement") complement
                 (noFloatUnary "complement") (noDoubleUnary "complement") (noFPUnary "complement") (noRatUnary "complement")
  where opt a
          | a == falseSV = Just trueSV
          | a == trueSV  = Just falseSV
          | True         = Nothing

-- | Shift left by a constant amount. Translates to the "bvshl"
-- operation in SMT-Lib.
--
-- NB. Haskell spec says the behavior is undefined if the shift amount
-- is negative. We arbitrarily return the value unchanged if this is the case.
svShl :: SVal -> Int -> SVal
svShl x i
  | i <= 0
  = x
  | isBounded x, i >= intSizeOf x
  = svInteger k 0
  | True
  = x `svShiftLeft` svInteger k (fromIntegral i)
  where k = kindOf x

-- | Shift right by a constant amount. Translates to either "bvlshr"
-- (logical shift right) or "bvashr" (arithmetic shift right) in
-- SMT-Lib, depending on whether @x@ is a signed bitvector.
--
-- NB. Haskell spec says the behavior is undefined if the shift amount
-- is negative. We arbitrarily return the value unchanged if this is the case.
svShr :: SVal -> Int -> SVal
svShr x i
  | i <= 0
  = x
  | isBounded x, i >= intSizeOf x
  = if not (hasSign x)
       then z
       else svIte (x `svLessThan` z) neg1 z
  | True
  = x `svShiftRight` svInteger k (fromIntegral i)
  where k    = kindOf x
        z    = svInteger k 0
        neg1 = svInteger k (-1)

-- | Rotate-left, by a constant.
--
-- NB. Haskell spec says the behavior is undefined if the shift amount
-- is negative. We arbitrarily return the value unchanged if this is the case.
svRol :: SVal -> Int -> SVal
svRol x i
  | i <= 0
  = x
  | True
  = case kindOf x of
           KBounded _ sz -> liftSym1 (mkSymOp1 (Rol (i `mod` sz)))
                                     (noRealUnary "rotateL") (rot True sz i)
                                     (noFloatUnary "rotateL") (noDoubleUnary "rotateL") (noFPUnary "rotateL") (noRatUnary "rotateL") x
           _ -> svShl x i   -- for unbounded Integers, rotateL is the same as shiftL in Haskell

-- | Rotate-right, by a constant.
--
-- NB. Haskell spec says the behavior is undefined if the shift amount
-- is negative. We arbitrarily return the value unchanged if this is the case.
svRor :: SVal -> Int -> SVal
svRor x i
  | i <= 0
  = x
  | True
  = case kindOf x of
      KBounded _ sz -> liftSym1 (mkSymOp1 (Ror (i `mod` sz)))
                                (noRealUnary "rotateR") (rot False sz i)
                                (noFloatUnary "rotateR") (noDoubleUnary "rotateR") (noFPUnary "rotateR") (noRatUnary "rotateR") x
      _ -> svShr x i   -- for unbounded integers, rotateR is the same as shiftR in Haskell

-- | Generic rotation. Since the underlying representation is just Integers, rotations has to be
-- careful on the bit-size.
rot :: Bool -> Int -> Int -> Integer -> Integer
rot toLeft sz amt x
  | sz < 2 = x
  | True   = norm x y' `shiftL` y  .|. norm (x `shiftR` y') y
  where (y, y') | toLeft = (amt `mod` sz, sz - y)
                | True   = (sz - y', amt `mod` sz)
        norm v s = v .&. ((1 `shiftL` s) - 1)

-- | Extract bit-sequences.
svExtract :: Int -> Int -> SVal -> SVal
svExtract i j x@(SVal (KBounded s _) _)
  | i < j
  = SVal k (Left $! CV k (CInteger 0))
  | SVal _ (Left (CV _ (CInteger v))) <- x
  = SVal k (Left $! normCV (CV k (CInteger (v `shiftR` j))))
  | True
  = SVal k (Right (cache y))
  where k = KBounded s (i - j + 1)
        y st = do sv <- svToSV st x
                  newExpr st k (SBVApp (Extract i j) [sv])
svExtract i j v@(SVal KFloat _)  = svExtract i j (svFloatAsSWord32  v)
svExtract i j v@(SVal KDouble _) = svExtract i j (svDoubleAsSWord64 v)
svExtract i j v@(SVal KFP{} _)   = svExtract i j (svFloatingPointAsSWord v)
svExtract _ _ _ = error "extract: non-bitvector/float type"

-- | Join two words, by concatenating
svJoin :: SVal -> SVal -> SVal
svJoin x@(SVal (KBounded s i) a) y@(SVal (KBounded s' j) b)
  | s /= s'
  = error $ "svJoin: received differently signed values: " ++ show (x, y)
  | i == 0 = y
  | j == 0 = x
  | Left (CV _ (CInteger m)) <- a, Left (CV _ (CInteger n)) <- b
  = let val
         | s -- signed, arithmetic doesn't work; blast and come back
         = let xbits = [m `testBit` xi | xi <- [0 .. i-1]]
               ybits = [n `testBit` yi | yi <- [0 .. j-1]]
               rbits = zip [0..] (ybits ++ xbits)
           in foldl' (\acc (idx, set) -> if set then setBit acc idx else acc) 0 rbits
         | True -- unsigned, go fast
         = m `shiftL` j .|. n
    in SVal k (Left $! normCV (CV k (CInteger val)))
  | True
  = SVal k (Right (cache z))
  where
    k = KBounded s (i + j)
    z st = do xsw <- svToSV st x
              ysw <- svToSV st y
              newExpr st k (SBVApp Join [xsw, ysw])
svJoin _ _ = error "svJoin: non-bitvector type"

-- | Zero-extend by given number of bits.
svZeroExtend :: Int -> SVal -> SVal
svZeroExtend = svExtend True ZeroExtend

-- | Sign-extend by given number of bits.
svSignExtend :: Int -> SVal -> SVal
svSignExtend = svExtend False SignExtend

svExtend :: Bool -> (Int -> Op) -> Int -> SVal -> SVal
svExtend isZeroExtend extender i x@(SVal (KBounded s sz) a)
  | i < 0
  = error $ "svExtend: Received negative extension amount: " ++ show i
  | i == 0
  = x
  | Left (CV _ (CInteger cv)) <- a
  = SVal k' (Left (normCV (CV k' (CInteger (replBit (not isZeroExtend && (cv `testBit` (sz-1))) cv)))))
  | True
  = SVal k' (Right (cache z))
  where k' = KBounded s (sz+i)
        z st = do xsw <- svToSV st x
                  newExpr st k' (SBVApp (extender i) [xsw])

        replBit :: Bool -> Integer -> Integer
        replBit b = go sz
          where stop = sz + i
                go k v | k == stop = v
                       | b         = go (k+1) (v `setBit`   k)
                       | True      = go (k+1) (v `clearBit` k)

svExtend _ _ _ _ = error "svExtend: non-bitvector type"

-- | If-then-else. This one will force branches.
svIte :: SVal -> SVal -> SVal -> SVal
svIte t a b = svSymbolicMerge (kindOf a) True t a b

-- | Lazy If-then-else. This one will delay forcing the branches unless it's really necessary.
svLazyIte :: Kind -> SVal -> SVal -> SVal -> SVal
svLazyIte k t a b = svSymbolicMerge k False t a b

-- | Merge two symbolic values, at kind @k@, possibly @force@'ing the branches to make
-- sure they do not evaluate to the same result.
svSymbolicMerge :: Kind -> Bool -> SVal -> SVal -> SVal -> SVal
svSymbolicMerge k force t a b
  | Just r <- svAsBool t
  = if r then a else b
  | force, rationalSBVCheck a b, sameResult a b
  = a
  | True
  = SVal k $ Right $ cache c
  where sameResult (SVal _ (Left c1)) (SVal _ (Left c2)) = c1 == c2
        sameResult _                  _                  = False

        c st = do swt <- svToSV st t
                  case () of
                    () | swt == trueSV  -> svToSV st a       -- these two cases should never be needed as we expect symbolicMerge to be
                    () | swt == falseSV -> svToSV st b       -- called with symbolic tests, but just in case..
                    () -> do {- It is tempting to record the choice of the test expression here as we branch down to the 'then' and 'else' branches. That is,
                                when we evaluate 'a', we can make use of the fact that the test expression is True, and similarly we can use the fact that it
                                is False when b is evaluated. In certain cases this can cut down on symbolic simulation significantly, for instance if
                                repetitive decisions are made in a recursive loop. Unfortunately, the implementation of this idea is quite tricky, due to
                                our sharing based implementation. As the 'then' branch is evaluated, we will create many expressions that are likely going
                                to be "reused" when the 'else' branch is executed. But, it would be *dead wrong* to share those values, as they were "cached"
                                under the incorrect assumptions. To wit, consider the following:

                                   foo x y = ite (y .== 0) k (k+1)
                                     where k = ite (y .== 0) x (x+1)

                                When we reduce the 'then' branch of the first ite, we'd record the assumption that y is 0. But while reducing the 'then' branch, we'd
                                like to share @k@, which would evaluate (correctly) to @x@ under the given assumption. When we backtrack and evaluate the 'else'
                                branch of the first ite, we'd see @k@ is needed again, and we'd look it up from our sharing map to find (incorrectly) that its value
                                is @x@, which was stored there under the assumption that y was 0, which no longer holds. Clearly, this is unsound.

                                A sound implementation would have to precisely track which assumptions were active at the time expressions get shared. That is,
                                in the above example, we should record that the value of @k@ was cached under the assumption that @y@ is 0. While sound, this
                                approach unfortunately leads to significant loss of valid sharing when the value itself had nothing to do with the assumption itself.
                                To wit, consider:

                                   foo x y = ite (y .== 0) k (k+1)
                                     where k = x+5

                                If we tracked the assumptions, we would recompute @k@ twice, since the branch assumptions would differ. Clearly, there is no need to
                                re-compute @k@ in this case since its value is independent of @y@. Note that the whole SBV performance story is based on aggressive sharing,
                                and losing that would have other significant ramifications.

                                The "proper" solution would be to track, with each shared computation, precisely which assumptions it actually *depends* on, rather
                                than blindly recording all the assumptions present at that time. SBV's symbolic simulation engine clearly has all the info needed to do this
                                properly, but the implementation is not straightforward at all. For each subexpression, we would need to chase down its dependencies
                                transitively, which can require a lot of scanning of the generated program causing major slow-down; thus potentially defeating the
                                whole purpose of sharing in the first place.

                                Design choice: Keep it simple, and simply do not track the assumption at all. This will maximize sharing, at the cost of evaluating
                                unreachable branches. I think the simplicity is more important at this point than efficiency.

                                Also note that the user can avoid most such issues by properly combining if-then-else's with common conditions together. That is, the
                                first program above should be written like this:

                                  foo x y = ite (y .== 0) x (x+2)

                                In general, the following transformations should be done whenever possible:

                                  ite e1 (ite e1 e2 e3) e4  --> ite e1 e2 e4
                                  ite e1 e2 (ite e1 e3 e4)  --> ite e1 e2 e4

                                This is in accordance with the general rule-of-thumb stating conditionals should be avoided as much as possible. However, we might prefer
                                the following:

                                  ite e1 (f e2 e4) (f e3 e5) --> f (ite e1 e2 e3) (ite e1 e4 e5)

                                especially if this expression happens to be inside 'f's body itself (i.e., when f is recursive), since it reduces the number of
                                recursive calls. Clearly, programming with symbolic simulation in mind is another kind of beast altogether.
                             -}
                             let sta = st `extendSValPathCondition` svAnd t
                             let stb = st `extendSValPathCondition` svAnd (svNot t)
                             swa <- svToSV sta a -- evaluate 'then' branch
                             swb <- svToSV stb b -- evaluate 'else' branch

                             -- merge, but simplify for certain boolean cases:
                             case () of
                               () | swa == swb                      -> return swa                                     -- if t then a      else a     ==> a
                               () | swa == trueSV && swb == falseSV -> return swt                                     -- if t then true   else false ==> t
                               () | swa == falseSV && swb == trueSV -> newExpr st k (SBVApp Not [swt])                -- if t then false  else true  ==> not t
                               () | swa == trueSV                   -> newExpr st k (SBVApp Or  [swt, swb])           -- if t then true   else b     ==> t OR b
                               () | swa == falseSV                  -> do swt' <- newExpr st KBool (SBVApp Not [swt])
                                                                          newExpr st k (SBVApp And [swt', swb])       -- if t then false  else b     ==> t' AND b
                               () | swb == trueSV                   -> do swt' <- newExpr st KBool (SBVApp Not [swt])
                                                                          newExpr st k (SBVApp Or [swt', swa])        -- if t then a      else true  ==> t' OR a
                               () | swb == falseSV                  -> newExpr st k (SBVApp And [swt, swa])           -- if t then a      else false ==> t AND a
                               ()                                   -> newExpr st k (SBVApp Ite [swt, swa, swb])

-- | Total indexing operation. @svSelect xs default index@ is
-- intuitively the same as @xs !! index@, except it evaluates to
-- @default@ if @index@ overflows. Translates to SMT-Lib tables.
svSelect :: [SVal] -> SVal -> SVal -> SVal
svSelect xs err ind
  | SVal _ (Left c) <- ind =
    case cvVal c of
      CInteger i -> if i < 0 || i >= genericLength xs
                    then err
                    else xs `genericIndex` i
      _          -> error $ "SBV.select: unsupported " ++ show (kindOf ind) ++ " valued select/index expression"
svSelect xsOrig err ind = xs `seq` SVal kElt (Right (cache r))
  where
    kInd = kindOf ind
    kElt = kindOf err
    -- Based on the index size, we need to limit the elements. For
    -- instance if the index is 8 bits, but there are 257 elements,
    -- that last element will never be used and we can chop it off.
    xs = case kInd of
           KBounded False i -> genericTake ((2::Integer) ^ i) xsOrig
           KBounded True  i -> genericTake ((2::Integer) ^ (i-1)) xsOrig
           KUnbounded       -> xsOrig
           _                -> error $ "SBV.select: unsupported " ++ show kInd ++ " valued select/index expression"
    r st = do sws <- mapM (svToSV st) xs
              swe <- svToSV st err
              if all (== swe) sws  -- off-chance that all elts are the same
                 then return swe
                 else do idx <- getTableIndex st kInd kElt sws
                         swi <- svToSV st ind
                         let len = length xs
                         -- NB. No need to worry here that the index
                         -- might be < 0; as the SMTLib translation
                         -- takes care of that automatically
                         newExpr st kElt (SBVApp (LkUp (idx, kInd, kElt, len) swi swe) [])

-- Change the sign of a bit-vector quantity. Fails if passed a non-bv
svChangeSign :: Bool -> SVal -> SVal
svChangeSign s x
  | not (isBounded x)       = error $ "Data.SBV." ++ nm ++ ": Received non bit-vector kind: " ++ show (kindOf x)
  | Just n <- svAsInteger x = svInteger k n
  | True                    = SVal k (Right (cache y))
  where
    nm = if s then "svSign" else "svUnsign"

    k = KBounded s (intSizeOf x)
    y st = do xsw <- svToSV st x
              newExpr st k (SBVApp (Extract (intSizeOf x - 1) 0) [xsw])

-- | Convert a symbolic bitvector from unsigned to signed.
svSign :: SVal -> SVal
svSign = svChangeSign True

-- | Convert a symbolic bitvector from signed to unsigned.
svUnsign :: SVal -> SVal
svUnsign = svChangeSign False

-- | Convert a symbolic bitvector from one integral kind to another.
svFromIntegral :: Kind -> SVal -> SVal
svFromIntegral kTo x
  | Just v <- svAsInteger x
  = svInteger kTo v
  | True
  = result
  where result = SVal kTo (Right (cache y))
        kFrom  = kindOf x
        y st   = do xsw <- svToSV st x
                    newExpr st kTo (SBVApp (KindCast kFrom kTo) [xsw])

--------------------------------------------------------------------------------
-- Derived operations

-- | Convert an SVal from kind Bool to an unsigned bitvector of size 1.
svToWord1 :: SVal -> SVal
svToWord1 b = svSymbolicMerge k True b (svInteger k 1) (svInteger k 0)
  where k = KBounded False 1

-- | Convert an SVal from a bitvector of size 1 (signed or unsigned) to kind Bool.
svFromWord1 :: SVal -> SVal
svFromWord1 x = svNotEqual x (svInteger k 0)
  where k = kindOf x

-- | Test the value of a bit. Note that we do an extract here
-- as opposed to masking and checking against zero, as we found
-- extraction to be much faster with large bit-vectors.
svTestBit :: SVal -> Int -> SVal
svTestBit x i
  | i < intSizeOf x = svFromWord1 (svExtract i i x)
  | True            = svFalse

-- | Generalization of 'svShl', where the shift-amount is symbolic.
svShiftLeft :: SVal -> SVal -> SVal
svShiftLeft = svShift True

-- | Generalization of 'svShr', where the shift-amount is symbolic.
--
-- NB. If the shiftee is signed, then this is an arithmetic shift;
-- otherwise it's logical.
svShiftRight :: SVal -> SVal -> SVal
svShiftRight = svShift False

-- | Generic shifting of bounded quantities. The shift amount must be non-negative and within the bounds of the argument
-- for bit vectors. For negative shift amounts, the result is returned unchanged. For overshifts, left-shift produces 0,
-- right shift produces 0 or -1 depending on the result being signed.
svShift :: Bool -> SVal -> SVal -> SVal
svShift toLeft x i
  | Just r <- constFoldValue
  = r
  | cannotOverShift
  = svIte (i `svLessThan` svInteger ki 0)                                         -- Negative shift, no change
          x
          regularShiftValue
  | True
  = svIte (i `svLessThan` svInteger ki 0)                                         -- Negative shift, no change
          x
          $ svIte (i `svGreaterEq` svInteger ki (fromIntegral (intSizeOf x)))     -- Overshift, by at least the bit-width of x
                  overShiftValue
                  regularShiftValue

  where nm | toLeft = "shiftLeft"
           | True   = "shiftRight"

        kx = kindOf x
        ki = kindOf i

        -- Constant fold the result if possible. If either quantity is unbounded, then we only support constants
        -- as there's no easy/meaningful way to map this combo to SMTLib. Should be rarely needed, if ever!
        -- We also perform basic sanity check here so that if we go past here, we know we have bitvectors only.
        constFoldValue
          | Just iv <- getConst i, iv == 0
          = Just x

          | Just xv <- getConst x, xv == 0
          = Just x

          | Just xv <- getConst x, Just iv <- getConst i
          = Just $ SVal kx . Left $! normCV $ CV kx (CInteger (xv `opC` shiftAmount iv))

          | isUnbounded x || isUnbounded i
          = bailOut $ "Not yet implemented unbounded/non-constants shifts for " ++ show (kx, ki) ++ ", please file a request!"

          | not (isBounded x && isBounded i)
          = bailOut $ "Unexpected kinds: " ++ show (kx, ki)

          | True
          = Nothing

          where bailOut m = error $ "SBV." ++ nm ++ ": " ++ m

                getConst (SVal _ (Left (CV _ (CInteger val)))) = Just val
                getConst _                                     = Nothing

                opC | toLeft = shiftL
                    | True   = shiftR

                -- like fromIntegral, but more paranoid
                shiftAmount :: Integer -> Int
                shiftAmount iv
                  | iv <= 0                                            = 0
                  | isUnbounded i, iv > fromIntegral (maxBound :: Int) = bailOut $ "Unsupported constant unbounded shift with amount: " ++ show iv
                  | isUnbounded x                                      = fromIntegral iv
                  | iv >= fromIntegral ub                              = ub
                  | not (isBounded x && isBounded i)                   = bailOut $ "Unsupported kinds: " ++ show (kx, ki)
                  | True                                               = fromIntegral iv
                 where ub = intSizeOf x

        -- Overshift is not possible if the bit-size of x won't even fit into the bit-vector size
        -- of i. Note that this is a *necessary* check, Consider for instance if we're shifting a
        -- 32-bit value using a 1-bit shift amount (which can happen if the value is 1 with minimal
        -- shift widths). We would compare 1 >= 32, but stuffing 32 into bit-vector of size 1 would
        -- overflow. See http://github.com/LeventErkok/sbv/issues/323 for this case. Thus, we
        -- make sure that the bit-vector would fit as a value.
        cannotOverShift = maxRepresentable <= fromIntegral (intSizeOf x)
          where maxRepresentable :: Integer
                maxRepresentable
                  | hasSign i = bit (intSizeOf i - 1) - 1
                  | True      = bit (intSizeOf i    ) - 1

        -- An overshift occurs if we're shifting by more than or equal to the bit-width of x
        --     For shift-left: this value is always 0
        --     For shift-right:
        --        If x is unsigned: 0
        --        If x is signed and is less than 0, then -1 else 0
        overShiftValue | toLeft    = zx
                       | hasSign x = svIte (x `svLessThan` zx) neg1 zx
                       | True      = zx
          where zx   = svInteger kx 0
                neg1 = svInteger kx (-1)

        -- Regular shift, we know that the shift value fits into the bit-width of x, since it's between 0 and sizeOf x. So, we can just
        -- turn it into a properly sized argument and ship it to SMTLib
        regularShiftValue = SVal kx $ Right $ cache result
           where result st = do sw1 <- svToSV st x
                                sw2 <- svToSV st i

                                let op | toLeft = Shl
                                       | True   = Shr

                                adjustedShift <- if kx == ki
                                                 then return sw2
                                                 else newExpr st kx (SBVApp (KindCast ki kx) [sw2])

                                newExpr st kx (SBVApp op [sw1, adjustedShift])

-- | Generalization of 'svRol', where the rotation amount is symbolic.
-- If the first argument is not bounded, then the this is the same as shift.
svRotateLeft :: SVal -> SVal -> SVal
svRotateLeft x i
  | not (isBounded x)
  = svShiftLeft x i
  | isBounded i && bit si <= toInteger sx            -- wrap-around not possible
  = svIte (svLessThan i zi)
          (svSelect [x `svRor` k | k <- [0 .. bit si - 1]] z (svUNeg i))
          (svSelect [x `svRol` k | k <- [0 .. bit si - 1]] z         i)
  | True
  = svIte (svLessThan i zi)
          (svSelect [x `svRor` k | k <- [0 .. sx     - 1]] z (svUNeg i `svRem` n))
          (svSelect [x `svRol` k | k <- [0 .. sx     - 1]] z (       i `svRem` n))
    where sx = intSizeOf x
          si = intSizeOf i
          z  = svInteger (kindOf x) 0
          zi = svInteger (kindOf i) 0
          n  = svInteger (kindOf i) (toInteger sx)

-- | A variant of 'svRotateLeft' that uses a barrel-rotate design, which can lead to
-- better verification code. Only works when both arguments are finite and the second
-- argument is unsigned.
svBarrelRotateLeft :: SVal -> SVal -> SVal
svBarrelRotateLeft x i
  | not (isBounded x && isBounded i && not (hasSign i))
  = error $ "Data.SBV.Dynamic.svBarrelRotateLeft: Arguments must be bounded with second argument unsigned. Received: " ++ show (x, i)
  | Just iv <- svAsInteger i
  = svRol x $ fromIntegral (iv `rem` fromIntegral (intSizeOf x))
  | True
  = barrelRotate svRol x i

-- | A variant of 'svRotateLeft' that uses a barrel-rotate design, which can lead to
-- better verification code. Only works when both arguments are finite and the second
-- argument is unsigned.
svBarrelRotateRight :: SVal -> SVal -> SVal
svBarrelRotateRight x i
  | not (isBounded x && isBounded i && not (hasSign i))
  = error $ "Data.SBV.Dynamic.svBarrelRotateRight: Arguments must be bounded with second argument unsigned. Received: " ++ show (x, i)
  | Just iv <- svAsInteger i
  = svRor x $ fromIntegral (iv `rem` fromIntegral (intSizeOf x))
  | True
  = barrelRotate svRor x i

-- Barrel rotation, by bit-blasting the argument:
barrelRotate :: (SVal -> Int -> SVal) -> SVal -> SVal -> SVal
barrelRotate f a c = loop blasted a
  where loop :: [(SVal, Integer)] -> SVal -> SVal
        loop []              acc = acc
        loop ((b, v) : rest) acc = loop rest (svIte b (f acc (fromInteger v)) acc)

        sa = toInteger $ intSizeOf a
        n  = svInteger (kindOf c) sa

        -- Reduce by the modulus amount, we need not care about the
        -- any part larger than the value of the bit-size of the
        -- argument as it is identity for rotations
        reducedC = c `svRem` n

        -- blast little-endian, and zip with bit-position
        blasted = takeWhile significant $ zip (svBlastLE reducedC) [2^i | i <- [(0::Integer)..]]

        -- Any term whose bit-position is larger than our input size
        -- is insignificant, since the reduction would've put 0's in those
        -- bits. For instance, if a is 32 bits, and c is 5 bits, then we
        -- need not look at any position i s.t. 2^i > 32
        significant (_, pos) = pos < sa

-- | Generalization of 'svRor', where the rotation amount is symbolic.
-- If the first argument is not bounded, then the this is the same as shift.
svRotateRight :: SVal -> SVal -> SVal
svRotateRight x i
  | not (isBounded x)
  = svShiftRight x i
  | isBounded i && bit si <= toInteger sx                   -- wrap-around not possible
  = svIte (svLessThan i zi)
          (svSelect [x `svRol` k | k <- [0 .. bit si - 1]] z (svUNeg i))
          (svSelect [x `svRor` k | k <- [0 .. bit si - 1]] z         i)
  | True
  = svIte (svLessThan i zi)
          (svSelect [x `svRol` k | k <- [0 .. sx     - 1]] z (svUNeg i `svRem` n))
          (svSelect [x `svRor` k | k <- [0 .. sx     - 1]] z (       i `svRem` n))
    where sx = intSizeOf x
          si = intSizeOf i
          z  = svInteger (kindOf x) 0
          zi = svInteger (kindOf i) 0
          n  = svInteger (kindOf i) (toInteger sx)

--------------------------------------------------------------------------------
-- | Overflow detection.
svMkOverflow :: OvOp -> SVal -> SVal -> SVal
svMkOverflow o x y = SVal KBool (Right (cache r))
    where r st = do sx <- svToSV st x
                    sy <- svToSV st y
                    newExpr st KBool $ SBVApp (OverflowOp o) [sx, sy]

---------------------------------------------------------------------------------
-- * Symbolic Arrays
---------------------------------------------------------------------------------

-- | Arrays in terms of SMT-Lib arrays
data SArr = SArr (Kind, Kind) (Cached ArrayIndex)

-- | Read the array element at @a@
readSArr :: SArr -> SVal -> SVal
readSArr (SArr (_, bk) f) a = SVal bk $ Right $ cache r
  where r st = do arr <- uncacheAI f st
                  i   <- svToSV st a
                  newExpr st bk (SBVApp (ArrRead arr) [i])

-- | Update the element at @a@ to be @b@
writeSArr :: SArr -> SVal -> SVal -> SArr
writeSArr (SArr ainfo f) a b = SArr ainfo $ cache g
  where g st = do arr  <- uncacheAI f st
                  addr <- svToSV st a
                  val  <- svToSV st b
                  amap <- R.readIORef (rArrayMap st)

                  let j   = ArrayIndex $ IMap.size amap
                      upd = IMap.insert (unArrayIndex j) ("array_" ++ show j, ainfo, ArrayMutate arr addr val)

                  j `seq` modifyState st rArrayMap upd $ modifyIncState st rNewArrs upd
                  return j

-- | Merge two given arrays on the symbolic condition
-- Intuitively: @mergeArrays cond a b = if cond then a else b@.
-- Merging pushes the if-then-else choice down on to elements
mergeSArr :: SVal -> SArr -> SArr -> SArr
mergeSArr t (SArr ainfo a) (SArr _ b) = SArr ainfo $ cache h
  where h st = do ai <- uncacheAI a st
                  bi <- uncacheAI b st
                  ts <- svToSV st t
                  amap <- R.readIORef (rArrayMap st)

                  let k   = ArrayIndex $ IMap.size amap
                      upd = IMap.insert (unArrayIndex k) ("array_" ++ show k, ainfo, ArrayMerge ts ai bi)

                  k `seq` modifyState st rArrayMap upd $ modifyIncState st rNewArrs upd
                  return k

-- | Create a named new array
newSArr :: State -> (Kind, Kind) -> (Int -> String) -> Either (Maybe SVal) String -> IO SArr
newSArr st ainfo mkNm mbVal = do
    amap <- R.readIORef $ rArrayMap st

    mbSWDef <- case mbVal of
                 Left mbSV -> case mbSV of
                                Nothing -> pure (Left Nothing)
                                Just sv -> Left . Just <$> svToSV st sv
                 Right lam -> pure (Right lam)

    let i   = ArrayIndex $ IMap.size amap
        nm  = mkNm (unArrayIndex i)
        upd = IMap.insert (unArrayIndex i) (nm, ainfo, ArrayFree mbSWDef)

    registerLabel "SArray declaration" st nm

    modifyState st rArrayMap upd $ modifyIncState st rNewArrs upd
    return $ SArr ainfo $ cache $ const $ return i

-- | Compare two arrays for equality
eqSArr :: SArr -> SArr -> SVal
eqSArr (SArr _ a) (SArr _ b) = SVal KBool $ Right $ cache c
  where c st = do ai <- uncacheAI a st
                  bi <- uncacheAI b st
                  newExpr st KBool (SBVApp (ArrEq ai bi) [])

--------------------------------------------------------------------------------
-- Utility functions

noUnint  :: (Maybe Int, String) -> a
noUnint x = error $ "Unexpected operation called on uninterpreted/enumerated value: " ++ show x

noUnint2 :: (Maybe Int, String) -> (Maybe Int, String) -> a
noUnint2 x y = error $ "Unexpected binary operation called on uninterpreted/enumerated values: " ++ show (x, y)

noCharLift :: Char -> a
noCharLift x = error $ "Unexpected operation called on char: " ++ show x

noStringLift :: String -> a
noStringLift x = error $ "Unexpected operation called on string: " ++ show x

noCharLift2 :: Char -> Char -> a
noCharLift2 x y = error $ "Unexpected binary operation called on chars: " ++ show (x, y)

noStringLift2 :: String -> String -> a
noStringLift2 x y = error $ "Unexpected binary operation called on strings: " ++ show (x, y)

liftSym1 :: (State -> Kind -> SV -> IO SV) -> (AlgReal -> AlgReal) -> (Integer -> Integer) -> (Float -> Float) -> (Double -> Double) -> (FP -> FP) ->(Rational -> Rational) -> SVal -> SVal
liftSym1 _   opCR opCI opCF opCD opFP opRA   (SVal k (Left a)) = SVal k . Left  $! mapCV opCR opCI opCF opCD opFP opRA noCharLift noStringLift noUnint a
liftSym1 opS _    _    _    _    _    _    a@(SVal k _)        = SVal k $ Right $ cache c
   where c st = do sva <- svToSV st a
                   opS st k sva

{- A note on constant folding.

There are cases where we miss out on certain constant foldings. On May 8 2018, Matt Peddie pointed this
out, as the C code he was getting had redundancies. I was aware that could be missing constant foldings
due to missed out optimizations, or some other code snafu, but till Matt pointed it out I haven't realized
that we could be hiding constants inside an if-then-else. The example is:

     proveWith z3{verbose=True} $ \x -> 0 .< ite (x .== (x::SWord8)) 1 (2::SWord8)

If you try this, you'll see that it generates (shortened):

    (define-fun s1 () (_ BitVec 8) #x00)
    (define-fun s2 () (_ BitVec 8) #x01)
    (define-fun s3 () Bool (bvult s1 s2))

But clearly we have all the info for s3 to be computed! The issue here is that the reduction of @x .== x@ to @true@
happens after we start computing the if-then-else, hence we are already committed to an SV at that point. The call
to ite eventually recognizes this, but at that point it picks up the now constants from SV's, missing the constant
folding opportunity.

We can fix this, by looking up the constants table in liftSV2, along the lines of:


    liftSV2 :: (CV -> CV -> Bool) -> (CV -> CV -> CV) -> (State -> Kind -> SV -> SV -> IO SV) -> Kind -> SVal -> SVal -> Cached SV
    liftSV2 okCV opCV opS k a b = cache c
      where c st = do sw1 <- svToSV st a
                      sw2 <- svToSV st b
                      cmap <- readIORef (rconstMap st)
                      let cv1  = [cv | ((_, cv), sv) <- M.toList cmap, sv == sv1]
                          cv2  = [cv | ((_, cv), sv) <- M.toList cmap, sv == sv2]
                      case (cv1, cv2) of
                        ([x], [y]) | okCV x y -> newConst st $ opCV x y
                        _                     -> opS st k sv1 sv2

(with obvious modifications to call sites to get the proper arguments.)

But this means that we have to grab the constant list for every symbolically lifted operation, also do the
same for other places, etc.; for the rare opportunity of catching a @x .== x@ optimization. Even then, the
constants for the branches would still be generated. (i.e., in the above example we would still generate
@s1@ and @s2@, but would skip @s3@.)

It seems to me that the price to pay is rather high, as this is hardly the most common case; so we're opting
here to ignore these cases.

See http://github.com/LeventErkok/sbv/issues/379 for some further discussion.
-}
liftSV2 :: (State -> Kind -> SV -> SV -> IO SV) -> Kind -> SVal -> SVal -> Cached SV
liftSV2 opS k a b = cache c
  where c st = do sw1 <- svToSV st a
                  sw2 <- svToSV st b
                  opS st k sw1 sw2

liftSym2 :: (State -> Kind -> SV -> SV -> IO SV)
         -> [CV       -> CV      -> Bool]
         -> (AlgReal  -> AlgReal -> AlgReal)
         -> (Integer  -> Integer -> Integer)
         -> (Float    -> Float   -> Float)
         -> (Double   -> Double  -> Double)
         -> (FP       -> FP      -> FP)
         -> (Rational -> Rational-> Rational)
         -> SVal      -> SVal    -> SVal
liftSym2 _   okCV opCR opCI opCF opCD opFP opRA (SVal k (Left a)) (SVal _ (Left b)) | and [f a b | f <- okCV] = SVal k . Left  $! mapCV2 opCR opCI opCF opCD opFP opRA noCharLift2 noStringLift2 noUnint2 a b
liftSym2 opS _    _    _    _    _    _  _      a@(SVal k _)      b                                           = SVal k $ Right $  liftSV2 opS k a b

liftSym2B :: (State -> Kind -> SV -> SV -> IO SV)
          -> (CV                  -> CV                  -> Bool)
          -> (AlgReal             -> AlgReal             -> Bool)
          -> (Integer             -> Integer             -> Bool)
          -> (Float               -> Float               -> Bool)
          -> (Double              -> Double              -> Bool)
          -> (FP                  -> FP                  -> Bool)
          -> (Rational            -> Rational            -> Bool)
          -> (Char                -> Char                -> Bool)
          -> (String              -> String              -> Bool)
          -> ([CVal]              -> [CVal]              -> Bool)
          -> ([CVal]              -> [CVal]              -> Bool)
          -> (Maybe  CVal         -> Maybe  CVal         -> Bool)
          -> (Either CVal CVal    -> Either CVal CVal    -> Bool)
          -> ((Maybe Int, String) -> (Maybe Int, String) -> Bool)
          -> SVal                 -> SVal                -> SVal
liftSym2B _   okCV opCR opCI opCF opCD opAF opAR opCC opCS opCSeq opCTup opCMaybe opCEither opUI (SVal _ (Left a)) (SVal _ (Left b)) | okCV a b = svBool (liftCV2 opCR opCI opCF opCD opAF opAR opCC opCS opCSeq opCTup opCMaybe opCEither opUI a b)
liftSym2B opS _    _    _    _    _    _    _    _    _    _      _      _        _         _    a                 b                            = SVal KBool $ Right $ liftSV2 opS KBool a b

-- | Create a symbolic two argument operation; with shortcut optimizations
mkSymOpSC :: (SV -> SV -> Maybe SV) -> Op -> State -> Kind -> SV -> SV -> IO SV
mkSymOpSC shortCut op st k a b = maybe (newExpr st k (SBVApp op [a, b])) return (shortCut a b)

-- | Create a symbolic two argument operation; no shortcut optimizations
mkSymOp :: Op -> State -> Kind -> SV -> SV -> IO SV
mkSymOp = mkSymOpSC (const (const Nothing))

mkSymOp1SC :: (SV -> Maybe SV) -> Op -> State -> Kind -> SV -> IO SV
mkSymOp1SC shortCut op st k a = maybe (newExpr st k (SBVApp op [a])) return (shortCut a)

mkSymOp1 :: Op -> State -> Kind -> SV -> IO SV
mkSymOp1 = mkSymOp1SC (const Nothing)

-- | eqOpt says the references are to the same SV, thus we can optimize. Note that
-- we explicitly disallow KFloat/KDouble/KFloat here. Why? Because it's *NOT* true that
-- NaN == NaN, NaN >= NaN, and so-forth. So, we have to make sure we don't optimize
-- floats and doubles, in case the argument turns out to be NaN.
eqOpt :: SV -> SV -> SV -> Maybe SV
eqOpt w x y = case swKind x of
                KFloat  -> Nothing
                KDouble -> Nothing
                KFP{}   -> Nothing
                _       -> if x == y then Just w else Nothing

-- For uninterpreted/enumerated values, we carefully lift through the constructor index for comparisons:
uiLift :: String -> (Int -> Int -> Bool) -> (Maybe Int, String) -> (Maybe Int, String) -> Bool
uiLift _ cmp (Just i, _) (Just j, _) = i `cmp` j
uiLift w _   a           b           = error $ "Data.SBV.Core.Operations: Impossible happened while trying to lift " ++ w ++ " over " ++ show (a, b)

-- | Predicate to check if a value is concrete
isConcrete :: SVal -> Bool
isConcrete (SVal _ Left{}) = True
isConcrete _               = False

-- | Predicate for optimizing word operations like (+) and (*).
-- NB. We specifically do *not* match for Double/Float; because
-- FP-arithmetic doesn't obey traditional rules. For instance,
-- 0 * x = 0 fails if x happens to be NaN or +/- Infinity. So,
-- we merely return False when given a floating-point value here.
isConcreteZero :: SVal -> Bool
isConcreteZero (SVal _     (Left (CV _     (CInteger n)))) = n == 0
isConcreteZero (SVal KReal (Left (CV KReal (CAlgReal v)))) = isExactRational v && v == 0
isConcreteZero _                                           = False

-- | Predicate for optimizing word operations like (+) and (*).
-- NB. See comment on 'isConcreteZero' for why we don't match
-- for Float/Double values here.
isConcreteOne :: SVal -> Bool
isConcreteOne (SVal _     (Left (CV _     (CInteger 1)))) = True
isConcreteOne (SVal KReal (Left (CV KReal (CAlgReal v)))) = isExactRational v && v == 1
isConcreteOne _                                           = False

-- | Predicate for optimizing bitwise operations. The unbounded integer case of checking
-- against -1 might look dubious, but that's how Haskell treats 'Integer' as a member
-- of the Bits class, try @(-1 :: Integer) `testBit` i@ for any @i@ and you'll get 'True'.
isConcreteOnes :: SVal -> Bool
isConcreteOnes (SVal _ (Left (CV (KBounded b w) (CInteger n)))) = n == if b then -1 else bit w - 1
isConcreteOnes (SVal _ (Left (CV KUnbounded     (CInteger n)))) = n == -1  -- see comment above
isConcreteOnes (SVal _ (Left (CV KBool          (CInteger n)))) = n == 1
isConcreteOnes _                                                = False

-- | Predicate for optimizing comparisons.
isConcreteMax :: SVal -> Bool
isConcreteMax (SVal _ (Left (CV (KBounded False w) (CInteger n)))) = n == bit w - 1
isConcreteMax (SVal _ (Left (CV (KBounded True  w) (CInteger n)))) = n == bit (w - 1) - 1
isConcreteMax (SVal _ (Left (CV KBool              (CInteger n)))) = n == 1
isConcreteMax _                                                    = False

-- | Predicate for optimizing comparisons.
isConcreteMin :: SVal -> Bool
isConcreteMin (SVal _ (Left (CV (KBounded False _) (CInteger n)))) = n == 0
isConcreteMin (SVal _ (Left (CV (KBounded True  w) (CInteger n)))) = n == - bit (w - 1)
isConcreteMin (SVal _ (Left (CV KBool              (CInteger n)))) = n == 0
isConcreteMin _                                                    = False

-- | Most operations on concrete rationals require a compatibility check to avoid faulting
-- on algebraic reals.
rationalCheck :: CV -> CV -> Bool
rationalCheck a b = case (cvVal a, cvVal b) of
                     (CAlgReal x, CAlgReal y) -> isExactRational x && isExactRational y
                     _                        -> True

-- | Quot/Rem operations require a nonzero check on the divisor.
nonzeroCheck :: CV -> CV -> Bool
nonzeroCheck _ b = cvVal b /= CInteger 0

-- | Same as rationalCheck, except for SBV's
rationalSBVCheck :: SVal -> SVal -> Bool
rationalSBVCheck (SVal KReal (Left a)) (SVal KReal (Left b)) = rationalCheck a b
rationalSBVCheck _                     _                     = True

noReal :: String -> AlgReal -> AlgReal -> AlgReal
noReal o a b = error $ "SBV.AlgReal." ++ o ++ ": Unexpected arguments: " ++ show (a, b)

noFloat :: String -> Float -> Float -> Float
noFloat o a b = error $ "SBV.Float." ++ o ++ ": Unexpected arguments: " ++ show (a, b)

noDouble :: String -> Double -> Double -> Double
noDouble o a b = error $ "SBV.Double." ++ o ++ ": Unexpected arguments: " ++ show (a, b)

noFP :: String -> FP -> FP -> FP
noFP o a b = error $ "SBV.FPR." ++ o ++ ": Unexpected arguments: " ++ show (a, b)

noRat:: String -> Rational -> Rational -> Rational
noRat o a b = error $ "SBV.Rational." ++ o ++ ": Unexpected arguments: " ++ show (a, b)

noRealUnary :: String -> AlgReal -> AlgReal
noRealUnary o a = error $ "SBV.AlgReal." ++ o ++ ": Unexpected argument: " ++ show a

noFloatUnary :: String -> Float -> Float
noFloatUnary o a = error $ "SBV.Float." ++ o ++ ": Unexpected argument: " ++ show a

noDoubleUnary :: String -> Double -> Double
noDoubleUnary o a = error $ "SBV.Double." ++ o ++ ": Unexpected argument: " ++ show a

noFPUnary :: String -> FP -> FP
noFPUnary o a = error $ "SBV.FPR." ++ o ++ ": Unexpected argument: " ++ show a

noRatUnary :: String -> Rational -> Rational
noRatUnary o a = error $ "SBV.Rational." ++ o ++ ": Unexpected argument: " ++ show a

-- | Given a composite structure, figure out how to compare for less than
svStructuralLessThan :: SVal -> SVal -> SVal
svStructuralLessThan x y
   | isConcrete x && isConcrete y
   = x `svLessThan` y
   | KTuple{} <- kx
   = tupleLT x y
   | KMaybe{}  <- kx
   = maybeLT x y
   | KEither{} <- kx
   = eitherLT x y
   | True
   = x `svLessThan` y
   where kx = kindOf x

-- | Structural less-than for tuples
tupleLT :: SVal -> SVal -> SVal
tupleLT x y = SVal KBool $ Right $ cache res
  where ks = case kindOf x of
               KTuple xs -> xs
               k         -> error $ "Data.SBV: Impossible happened, tupleLT called with: " ++ show (k, x, y)

        n = length ks

        res st = do sx <- svToSV st x
                    sy <- svToSV st y

                    let chkElt i ek = let xi = SVal ek $ Right $ cache $ \_ -> newExpr st ek $ SBVApp (TupleAccess i n) [sx]
                                          yi = SVal ek $ Right $ cache $ \_ -> newExpr st ek $ SBVApp (TupleAccess i n) [sy]
                                          lt = xi `svStructuralLessThan` yi
                                          eq = xi `svEqual`              yi
                                       in (lt, eq)

                        walk []                  = svFalse
                        walk [(lti, _)]          = lti
                        walk ((lti, eqi) : rest) = lti `svOr` (eqi `svAnd` walk rest)

                    svToSV st $ walk $ zipWith chkElt [1..] ks

-- | Structural less-than for maybes
maybeLT :: SVal -> SVal -> SVal
maybeLT x y = sMaybeCase (       sMaybeCase svFalse (const svTrue)    y)
                         (\jx -> sMaybeCase svFalse (jx `svStructuralLessThan`) y)
                         x
  where ka = case kindOf x of
               KMaybe k' -> k'
               k         -> error $ "Data.SBV: Impossible happened, maybeLT called with: " ++ show (k, x, y)

        sMaybeCase brNothing brJust s = SVal KBool $ Right $ cache res
           where res st = do sv <- svToSV st s

                             let justVal = SVal ka $ Right $ cache $ \_ -> newExpr st ka $ SBVApp MaybeAccess [sv]
                                 justRes = brJust justVal

                             br1 <- svToSV st brNothing
                             br2 <- svToSV st justRes

                             -- Do we have a value?
                             noVal <- newExpr st KBool $ SBVApp (MaybeIs ka False) [sv]
                             newExpr st KBool $ SBVApp Ite [noVal, br1, br2]

-- | Structural less-than for either
eitherLT :: SVal -> SVal -> SVal
eitherLT x y = sEitherCase (\lx -> sEitherCase (lx `svStructuralLessThan`) (const svTrue)              y)
                           (\rx -> sEitherCase (const svFalse)             (rx `svStructuralLessThan`) y)
                           x
  where (ka, kb) = case kindOf x of
                     KEither k1 k2 -> (k1, k2)
                     k             -> error $ "Data.SBV: Impossible happened, eitherLT called with: " ++ show (k, x, y)

        sEitherCase brA brB sab = SVal KBool $ Right $ cache res
          where res st = do abv <- svToSV st sab

                            let leftVal  = SVal ka $ Right $ cache $ \_ -> newExpr st ka $ SBVApp (EitherAccess False) [abv]
                                rightVal = SVal kb $ Right $ cache $ \_ -> newExpr st kb $ SBVApp (EitherAccess True)  [abv]

                                leftRes  = brA leftVal
                                rightRes = brB rightVal

                            br1 <- svToSV st leftRes
                            br2 <- svToSV st rightRes

                            --  Which branch are we in? Return the appropriate value:
                            onLeft <- newExpr st KBool $ SBVApp (EitherIs ka kb False) [abv]
                            newExpr st KBool $ SBVApp Ite [onLeft, br1, br2]

-- | Convert an 'Data.SBV.SFloat' to an 'Data.SBV.SWord32', preserving the bit-correspondence. Note that since the
-- representation for @NaN@s are not unique, this function will return a symbolic value when given a
-- concrete @NaN@.
--
-- Implementation note: Since there's no corresponding function in SMTLib for conversion to
-- bit-representation due to partiality, we use a translation trick by allocating a new word variable,
-- converting it to float, and requiring it to be equivalent to the input. In code-generation mode, we simply map
-- it to a simple conversion.
svFloatAsSWord32 :: SVal -> SVal
svFloatAsSWord32 (SVal KFloat (Left (CV KFloat (CFloat f))))
   | not (isNaN f)
   = let w32 = KBounded False 32
     in SVal w32 $ Left $ CV w32 $ CInteger (fromIntegral (floatToWord f))
svFloatAsSWord32 fVal@(SVal KFloat _)
  = SVal w32 (Right (cache y))
  where w32  = KBounded False 32
        y st = do cg <- isCodeGenMode st
                  if cg
                     then do f <- svToSV st fVal
                             newExpr st w32 (SBVApp (IEEEFP (FP_Reinterpret KFloat w32)) [f])
                     else do n   <- internalVariable st w32
                             ysw <- newExpr st KFloat (SBVApp (IEEEFP (FP_Reinterpret w32 KFloat)) [n])
                             internalConstraint st False [] $ fVal `svStrongEqual` SVal KFloat (Right (cache (\_ -> return ysw)))
                             return n
svFloatAsSWord32 (SVal k _) = error $ "svFloatAsSWord32: non-float type: " ++ show k

-- | Convert an 'Data.SBV.SDouble' to an 'Data.SBV.SWord64', preserving the bit-correspondence. Note that since the
-- representation for @NaN@s are not unique, this function will return a symbolic value when given a
-- concrete @NaN@.
--
-- Implementation note: Since there's no corresponding function in SMTLib for conversion to
-- bit-representation due to partiality, we use a translation trick by allocating a new word variable,
-- converting it to float, and requiring it to be equivalent to the input. In code-generation mode, we simply map
-- it to a simple conversion.
svDoubleAsSWord64 :: SVal -> SVal
svDoubleAsSWord64 (SVal KDouble (Left (CV KDouble (CDouble f))))
   | not (isNaN f)
   = let w64 = KBounded False 64
     in SVal w64 $ Left $ CV w64 $ CInteger (fromIntegral (doubleToWord f))
svDoubleAsSWord64 fVal@(SVal KDouble _)
  = SVal w64 (Right (cache y))
  where w64  = KBounded False 64
        y st = do cg <- isCodeGenMode st
                  if cg
                     then do f <- svToSV st fVal
                             newExpr st w64 (SBVApp (IEEEFP (FP_Reinterpret KDouble w64)) [f])
                     else do n   <- internalVariable st w64
                             ysw <- newExpr st KDouble (SBVApp (IEEEFP (FP_Reinterpret w64 KDouble)) [n])
                             internalConstraint st False [] $ fVal `svStrongEqual` SVal KDouble (Right (cache (\_ -> return ysw)))
                             return n
svDoubleAsSWord64 (SVal k _) = error $ "svDoubleAsSWord64: non-float type: " ++ show k

-- | Convert a float to the word containing the corresponding bit pattern
svFloatingPointAsSWord :: SVal -> SVal
svFloatingPointAsSWord (SVal (KFP eb sb) (Left (CV _ (CFP f@(FP _ _ fpV)))))
  | not (isNaN f)
  = let wN = KBounded False (eb + sb)
    in SVal wN $ Left $ CV wN $ CInteger $ bfToBits (mkBFOpts eb sb NearEven) fpV
svFloatingPointAsSWord fVal@(SVal kFrom@(KFP eb sb) _)
  = SVal kTo (Right (cache y))
  where kTo   = KBounded False (eb + sb)
        y st = do cg <- isCodeGenMode st
                  if cg
                     then do f <- svToSV st fVal
                             newExpr st kTo (SBVApp (IEEEFP (FP_Reinterpret kFrom kTo)) [f])
                     else do n   <- internalVariable st kTo
                             ysw <- newExpr st kFrom (SBVApp (IEEEFP (FP_Reinterpret kTo kFrom)) [n])
                             internalConstraint st False [] $ fVal `svStrongEqual` SVal kFrom (Right (cache (\_ -> return ysw)))
                             return n
svFloatingPointAsSWord (SVal k _) = error $ "svFloatingPointAsSWord: non-float type: " ++ show k

{- HLint ignore svIte     "Eta reduce"         -}
{- HLint ignore svLazyIte "Eta reduce"         -}
{- HLint ignore module    "Reduce duplication" -}