1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
|
-----------------------------------------------------------------------------
-- |
-- Module : Data.SBV.Core.Operations
-- Copyright : (c) Levent Erkok
-- License : BSD3
-- Maintainer: erkokl@gmail.com
-- Stability : experimental
--
-- Constructors and basic operations on symbolic values
-----------------------------------------------------------------------------
{-# LANGUAGE BangPatterns #-}
{-# OPTIONS_GHC -Wall -Werror #-}
module Data.SBV.Core.Operations
(
-- ** Basic constructors
svTrue, svFalse, svBool
, svInteger, svFloat, svDouble, svFloatingPoint, svReal, svEnumFromThenTo, svString, svChar
-- ** Basic destructors
, svAsBool, svAsInteger, svNumerator, svDenominator
-- ** Basic operations
, svPlus, svTimes, svMinus, svUNeg, svAbs
, svDivide, svQuot, svRem, svQuotRem
, svEqual, svNotEqual, svStrongEqual, svImplies, svSetEqual
, svLessThan, svGreaterThan, svLessEq, svGreaterEq, svStructuralLessThan
, svAnd, svOr, svXOr, svNot
, svShl, svShr, svRol, svRor
, svExtract, svJoin, svZeroExtend, svSignExtend
, svIte, svLazyIte, svSymbolicMerge
, svSelect
, svSign, svUnsign, svSetBit, svWordFromBE, svWordFromLE
, svExp, svFromIntegral
-- ** Overflows
, svMkOverflow
-- ** Derived operations
, svToWord1, svFromWord1, svTestBit
, svShiftLeft, svShiftRight
, svRotateLeft, svRotateRight
, svBarrelRotateLeft, svBarrelRotateRight
, svBlastLE, svBlastBE
, svAddConstant, svIncrement, svDecrement
, svFloatAsSWord32, svDoubleAsSWord64, svFloatingPointAsSWord
-- ** Basic array operations
, SArr(..), readSArr, writeSArr, mergeSArr, newSArr, eqSArr
-- Utils
, mkSymOp
)
where
import Prelude hiding (Foldable(..))
import Data.Bits (Bits(..))
import Data.List (genericIndex, genericLength, genericTake, foldr, length, foldl')
import qualified Data.IORef as R (readIORef)
import qualified Data.IntMap.Strict as IMap (size, insert)
import Data.SBV.Core.AlgReals
import Data.SBV.Core.Kind
import Data.SBV.Core.Concrete
import Data.SBV.Core.Symbolic
import Data.SBV.Core.SizedFloats
import Data.Ratio
import Data.SBV.Utils.Numeric (fpIsEqualObjectH, floatToWord, doubleToWord)
import LibBF
--------------------------------------------------------------------------------
-- Basic constructors
-- | Boolean True.
svTrue :: SVal
svTrue = SVal KBool (Left trueCV)
-- | Boolean False.
svFalse :: SVal
svFalse = SVal KBool (Left falseCV)
-- | Convert from a Boolean.
svBool :: Bool -> SVal
svBool b = if b then svTrue else svFalse
-- | Convert from an Integer.
svInteger :: Kind -> Integer -> SVal
svInteger k n = SVal k (Left $! mkConstCV k n)
-- | Convert from a Float
svFloat :: Float -> SVal
svFloat f = SVal KFloat (Left $! CV KFloat (CFloat f))
-- | Convert from a Double
svDouble :: Double -> SVal
svDouble d = SVal KDouble (Left $! CV KDouble (CDouble d))
-- | Convert from a generalized floating point
svFloatingPoint :: FP -> SVal
svFloatingPoint f@(FP eb sb _) = SVal k (Left $! CV k (CFP f))
where k = KFP eb sb
-- | Convert from a String
svString :: String -> SVal
svString s = SVal KString (Left $! CV KString (CString s))
-- | Convert from a Char
svChar :: Char -> SVal
svChar c = SVal KChar (Left $! CV KChar (CChar c))
-- | Convert from a Rational
svReal :: Rational -> SVal
svReal d = SVal KReal (Left $! CV KReal (CAlgReal (fromRational d)))
--------------------------------------------------------------------------------
-- Basic destructors
-- | Extract a bool, by properly interpreting the integer stored.
svAsBool :: SVal -> Maybe Bool
svAsBool (SVal _ (Left cv)) = Just (cvToBool cv)
svAsBool _ = Nothing
-- | Extract an integer from a concrete value.
svAsInteger :: SVal -> Maybe Integer
svAsInteger (SVal _ (Left (CV _ (CInteger n)))) = Just n
svAsInteger _ = Nothing
-- | Grab the numerator of an SReal, if available
svNumerator :: SVal -> Maybe Integer
svNumerator (SVal KReal (Left (CV KReal (CAlgReal (AlgRational True r))))) = Just $ numerator r
svNumerator _ = Nothing
-- | Grab the denominator of an SReal, if available
svDenominator :: SVal -> Maybe Integer
svDenominator (SVal KReal (Left (CV KReal (CAlgReal (AlgRational True r))))) = Just $ denominator r
svDenominator _ = Nothing
-------------------------------------------------------------------------------------
-- | Constructing [x, y, .. z] and [x .. y]. Only works when all arguments are concrete and integral and the result is guaranteed finite
-- Note that the it isn't "obviously" clear why the following works; after all we're doing the construction over Integer's and mapping
-- it back to other types such as SIntN/SWordN. The reason is that the values we receive are guaranteed to be in their domains; and thus
-- the lifting to Integers preserves the bounds; and then going back is just fine. So, things like @[1, 5 .. 200] :: [SInt8]@ work just
-- fine (end evaluate to empty list), since we see @[1, 5 .. -56]@ in the @Integer@ domain. Also note the explicit check for @s /= f@
-- below to make sure we don't stutter and produce an infinite list.
svEnumFromThenTo :: SVal -> Maybe SVal -> SVal -> Maybe [SVal]
svEnumFromThenTo bf mbs bt
| Just bs <- mbs, Just f <- svAsInteger bf, Just s <- svAsInteger bs, Just t <- svAsInteger bt, s /= f = Just $ map (svInteger (kindOf bf)) [f, s .. t]
| Nothing <- mbs, Just f <- svAsInteger bf, Just t <- svAsInteger bt = Just $ map (svInteger (kindOf bf)) [f .. t]
| True = Nothing
-------------------------------------------------------------------------------------
-- Basic operations
-- | Addition.
svPlus :: SVal -> SVal -> SVal
svPlus x y
| isConcreteZero x = y
| isConcreteZero y = x
| True = liftSym2 (mkSymOp Plus) [rationalCheck] (+) (+) (+) (+) (+) (+) x y
-- | Multiplication.
svTimes :: SVal -> SVal -> SVal
svTimes x y
| isConcreteZero x = x
| isConcreteZero y = y
| isConcreteOne x = y
| isConcreteOne y = x
| True = liftSym2 (mkSymOp Times) [rationalCheck] (*) (*) (*) (*) (*) (*) x y
-- | Subtraction.
svMinus :: SVal -> SVal -> SVal
svMinus x y
| isConcreteZero y = x
| True = liftSym2 (mkSymOp Minus) [rationalCheck] (-) (-) (-) (-) (-) (-) x y
-- | Unary minus. We handle arbitrary-FP's specially here, just for the negated literals.
svUNeg :: SVal -> SVal
svUNeg = liftSym1 (mkSymOp1 UNeg) negate negate negate negate negate negate
-- | Absolute value.
svAbs :: SVal -> SVal
svAbs = liftSym1 (mkSymOp1 Abs) abs abs abs abs abs abs
-- | Division.
svDivide :: SVal -> SVal -> SVal
svDivide = liftSym2 (mkSymOp Quot) [rationalCheck] (/) idiv (/) (/) (/) (/)
where idiv x 0 = x
idiv x y = x `div` y
-- | Exponentiation.
svExp :: SVal -> SVal -> SVal
svExp b e
| Just x <- svAsInteger e
= if x >= 0 then let go n v
| n == 0 = one
| even n = go (n `div` 2) (svTimes v v)
| True = svTimes v $ go (n `div` 2) (svTimes v v)
in go x b
else error $ "svExp: exponentiation: negative exponent: " ++ show x
| not (isBounded e) || hasSign e
= error $ "svExp: exponentiation only works with unsigned bounded symbolic exponents, kind: " ++ show (kindOf e)
| True
= prod $ zipWith (\use n -> svIte use n one)
(svBlastLE e)
(iterate (\x -> svTimes x x) b)
where prod = foldr svTimes one
one = svInteger (kindOf b) 1
-- | Bit-blast: Little-endian. Assumes the input is a bit-vector or a floating point type.
svBlastLE :: SVal -> [SVal]
svBlastLE x = map (svTestBit x) [0 .. intSizeOf x - 1]
-- | Set a given bit at index
svSetBit :: SVal -> Int -> SVal
svSetBit x i = x `svOr` svInteger (kindOf x) (bit i :: Integer)
-- | Bit-blast: Big-endian. Assumes the input is a bit-vector or a floating point type.
svBlastBE :: SVal -> [SVal]
svBlastBE = reverse . svBlastLE
-- | Un-bit-blast from big-endian representation to a word of the right size.
-- The input is assumed to be unsigned.
svWordFromLE :: [SVal] -> SVal
svWordFromLE bs = go zero 0 bs
where zero = svInteger (KBounded False (length bs)) 0
go !acc _ [] = acc
go !acc !i (x:xs) = go (svIte x (svSetBit acc i) acc) (i+1) xs
-- | Un-bit-blast from little-endian representation to a word of the right size.
-- The input is assumed to be unsigned.
svWordFromBE :: [SVal] -> SVal
svWordFromBE = svWordFromLE . reverse
-- | Add a constant value:
svAddConstant :: Integral a => SVal -> a -> SVal
svAddConstant x i = x `svPlus` svInteger (kindOf x) (fromIntegral i)
-- | Increment:
svIncrement :: SVal -> SVal
svIncrement x = svAddConstant x (1::Integer)
-- | Decrement:
svDecrement :: SVal -> SVal
svDecrement x = svAddConstant x (-1 :: Integer)
-- | Quotient: Overloaded operation whose meaning depends on the kind at which
-- it is used: For unbounded integers, it corresponds to the SMT-Lib
-- "div" operator ("Euclidean" division, which always has a
-- non-negative remainder). For unsigned bitvectors, it is "bvudiv";
-- and for signed bitvectors it is "bvsdiv", which rounds toward zero.
-- Division by 0 is defined s.t. @x/0 = 0@, which holds even when @x@ itself is @0@.
svQuot :: SVal -> SVal -> SVal
svQuot x y
| isConcreteZero x = x
| isConcreteZero y = svInteger (kindOf x) 0
| isConcreteOne y = x
| True = liftSym2 (mkSymOp Quot) [nonzeroCheck]
(noReal "quot") quot' (noFloat "quot") (noDouble "quot") (noFP "quot") (noRat "quot") x y
where
quot' a b | kindOf x == KUnbounded = div a (abs b) * signum b
| otherwise = quot a b
-- | Remainder: Overloaded operation whose meaning depends on the kind at which
-- it is used: For unbounded integers, it corresponds to the SMT-Lib
-- "mod" operator (always non-negative). For unsigned bitvectors, it
-- is "bvurem"; and for signed bitvectors it is "bvsrem", which rounds
-- toward zero (sign of remainder matches that of @x@). Division by 0 is
-- defined s.t. @x/0 = 0@, which holds even when @x@ itself is @0@.
svRem :: SVal -> SVal -> SVal
svRem x y
| isConcreteZero x = x
| isConcreteZero y = x
| isConcreteOne y = svInteger (kindOf x) 0
| True = liftSym2 (mkSymOp Rem) [nonzeroCheck]
(noReal "rem") rem' (noFloat "rem") (noDouble "rem") (noFP "rem") (noRat "rem") x y
where
rem' a b | kindOf x == KUnbounded = mod a (abs b)
| otherwise = rem a b
-- | Combination of quot and rem
svQuotRem :: SVal -> SVal -> (SVal, SVal)
svQuotRem x y = (x `svQuot` y, x `svRem` y)
-- | Optimize away x == true and x /= false to x; otherwise just do eqOpt
eqOptBool :: Op -> SV -> SV -> SV -> Maybe SV
eqOptBool op w x y
| k == KBool && op == Equal && x == trueSV = Just y -- true .== y --> y
| k == KBool && op == Equal && y == trueSV = Just x -- x .== true --> x
| k == KBool && op == NotEqual && x == falseSV = Just y -- false ./= y --> y
| k == KBool && op == NotEqual && y == falseSV = Just x -- x ./= false --> x
| True = eqOpt w x y -- fallback
where k = swKind x
-- | Equality.
svEqual :: SVal -> SVal -> SVal
svEqual a b
| isSet a && isSet b
= svSetEqual a b
| True
= liftSym2B (mkSymOpSC (eqOptBool Equal trueSV) Equal) rationalCheck (==) (==) (==) (==) (==) (==) (==) (==) (==) (==) (==) (==) (==) a b
-- | Implication. Only for booleans.
svImplies :: SVal -> SVal -> SVal
svImplies a b
| isConcreteZero a -- false implies everything
|| isConcreteOne b -- true is implied by everything
= svTrue
| any (\x -> kindOf x /= KBool) [a, b]
= bad
| True
= liftSym2B (mkSymOpSC (eqOpt trueSV) Implies) rationalCheck bad imp bad bad bad bad bad bad bad bad bad bad bad a b
where bad = error $ "Data.SBV.svImplies: Unexpected arguments: " ++ show (a, kindOf a, b, kindOf b)
imp :: Integer -> Integer -> Bool
imp 0 0 = True
imp 0 1 = True
imp 1 0 = False
imp 1 1 = True
imp x y = error $ "Data.SBV.svImplies: Called on unreduced arguments: " ++ show (x, y, a, kindOf a, b, kindOf b)
-- | Inequality.
svNotEqual :: SVal -> SVal -> SVal
svNotEqual a b
| isSet a && isSet b
= svNot $ svEqual a b
| True
= liftSym2B (mkSymOpSC (eqOptBool NotEqual falseSV) NotEqual) rationalCheck (/=) (/=) (/=) (/=) (/=) (/=) (/=) (/=) (/=) (/=) (/=) (/=) (/=) a b
-- | Set equality. Note that we only do constant folding if we get both a regular or both a
-- complement set. Otherwise we get a symbolic value even if they might be completely concrete.
svSetEqual :: SVal -> SVal -> SVal
svSetEqual sa sb
| not (isSet sa && isSet sb && kindOf sa == kindOf sb)
= error $ "Data.SBV.svSetEqual: Called on ill-typed args: " ++ show (kindOf sa, kindOf sb)
| Just (RegularSet a) <- getSet sa, Just (RegularSet b) <- getSet sb
= svBool (a == b)
| Just (ComplementSet a) <- getSet sa, Just (ComplementSet b) <- getSet sb
= svBool (a == b)
| True
= SVal KBool $ Right $ cache r
where getSet (SVal _ (Left (CV _ (CSet s)))) = Just s
getSet _ = Nothing
r st = do sva <- svToSV st sa
svb <- svToSV st sb
newExpr st KBool $ SBVApp (SetOp SetEqual) [sva, svb]
-- | Strong equality. Only matters on floats, where it says @NaN@ equals @NaN@ and @+0@ and @-0@ are different.
-- Otherwise equivalent to `svEqual`.
svStrongEqual :: SVal -> SVal -> SVal
svStrongEqual x y | isFloat x, Just f1 <- getF x, Just f2 <- getF y = svBool $ f1 `fpIsEqualObjectH` f2
| isDouble x, Just f1 <- getD x, Just f2 <- getD y = svBool $ f1 `fpIsEqualObjectH` f2
| isFP x, Just f1 <- getFP x, Just f2 <- getFP y = svBool $ f1 `fpIsEqualObjectH` f2
| isFloat x || isDouble x || isFP x = SVal KBool $ Right $ cache r
| True = svEqual x y
where getF (SVal _ (Left (CV _ (CFloat f)))) = Just f
getF _ = Nothing
getD (SVal _ (Left (CV _ (CDouble d)))) = Just d
getD _ = Nothing
getFP (SVal _ (Left (CV _ (CFP f)))) = Just f
getFP _ = Nothing
r st = do sx <- svToSV st x
sy <- svToSV st y
newExpr st KBool (SBVApp (IEEEFP FP_ObjEqual) [sx, sy])
-- | Less than.
svLessThan :: SVal -> SVal -> SVal
svLessThan x y
| isConcreteMax x = svFalse
| isConcreteMin y = svFalse
| True = liftSym2B (mkSymOpSC (eqOpt falseSV) LessThan) rationalCheck (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (<) (uiLift "<" (<)) x y
-- | Greater than.
svGreaterThan :: SVal -> SVal -> SVal
svGreaterThan x y
| isConcreteMin x = svFalse
| isConcreteMax y = svFalse
| True = liftSym2B (mkSymOpSC (eqOpt falseSV) GreaterThan) rationalCheck (>) (>) (>) (>) (>) (>) (>) (>) (>) (>) (>) (>) (uiLift ">" (>)) x y
-- | Less than or equal to.
svLessEq :: SVal -> SVal -> SVal
svLessEq x y
| isConcreteMin x = svTrue
| isConcreteMax y = svTrue
| True = liftSym2B (mkSymOpSC (eqOpt trueSV) LessEq) rationalCheck (<=) (<=) (<=) (<=) (<=) (<=) (<=) (<=) (<=) (<=) (<=) (<=) (uiLift "<=" (<=)) x y
-- | Greater than or equal to.
svGreaterEq :: SVal -> SVal -> SVal
svGreaterEq x y
| isConcreteMax x = svTrue
| isConcreteMin y = svTrue
| True = liftSym2B (mkSymOpSC (eqOpt trueSV) GreaterEq) rationalCheck (>=) (>=) (>=) (>=) (>=) (>=) (>=) (>=) (>=) (>=) (>=) (>=) (uiLift ">=" (>=)) x y
-- | Bitwise and.
svAnd :: SVal -> SVal -> SVal
svAnd x y
| isConcreteZero x = x
| isConcreteOnes x = y
| isConcreteZero y = y
| isConcreteOnes y = x
| True = liftSym2 (mkSymOpSC opt And) [] (noReal ".&.") (.&.) (noFloat ".&.") (noDouble ".&.") (noFP ".&.") (noRat ".&") x y
where opt a b
| a == falseSV || b == falseSV = Just falseSV
| a == trueSV = Just b
| b == trueSV = Just a
| True = Nothing
-- | Bitwise or.
svOr :: SVal -> SVal -> SVal
svOr x y
| isConcreteZero x = y
| isConcreteOnes x = x
| isConcreteZero y = x
| isConcreteOnes y = y
| True = liftSym2 (mkSymOpSC opt Or) []
(noReal ".|.") (.|.) (noFloat ".|.") (noDouble ".|.") (noFP ".|.") (noRat ".|.") x y
where opt a b
| a == trueSV || b == trueSV = Just trueSV
| a == falseSV = Just b
| b == falseSV = Just a
| True = Nothing
-- | Bitwise xor.
svXOr :: SVal -> SVal -> SVal
svXOr x y
| isConcreteZero x = y
| isConcreteOnes x = svNot y
| isConcreteZero y = x
| isConcreteOnes y = svNot x
| True = liftSym2 (mkSymOpSC opt XOr) []
(noReal "xor") xor (noFloat "xor") (noDouble "xor") (noFP "xor") (noRat "xor") x y
where opt a b
| a == b && swKind a == KBool = Just falseSV
| a == falseSV = Just b
| b == falseSV = Just a
| True = Nothing
-- | Bitwise complement.
svNot :: SVal -> SVal
svNot = liftSym1 (mkSymOp1SC opt Not)
(noRealUnary "complement") complement
(noFloatUnary "complement") (noDoubleUnary "complement") (noFPUnary "complement") (noRatUnary "complement")
where opt a
| a == falseSV = Just trueSV
| a == trueSV = Just falseSV
| True = Nothing
-- | Shift left by a constant amount. Translates to the "bvshl"
-- operation in SMT-Lib.
--
-- NB. Haskell spec says the behavior is undefined if the shift amount
-- is negative. We arbitrarily return the value unchanged if this is the case.
svShl :: SVal -> Int -> SVal
svShl x i
| i <= 0
= x
| isBounded x, i >= intSizeOf x
= svInteger k 0
| True
= x `svShiftLeft` svInteger k (fromIntegral i)
where k = kindOf x
-- | Shift right by a constant amount. Translates to either "bvlshr"
-- (logical shift right) or "bvashr" (arithmetic shift right) in
-- SMT-Lib, depending on whether @x@ is a signed bitvector.
--
-- NB. Haskell spec says the behavior is undefined if the shift amount
-- is negative. We arbitrarily return the value unchanged if this is the case.
svShr :: SVal -> Int -> SVal
svShr x i
| i <= 0
= x
| isBounded x, i >= intSizeOf x
= if not (hasSign x)
then z
else svIte (x `svLessThan` z) neg1 z
| True
= x `svShiftRight` svInteger k (fromIntegral i)
where k = kindOf x
z = svInteger k 0
neg1 = svInteger k (-1)
-- | Rotate-left, by a constant.
--
-- NB. Haskell spec says the behavior is undefined if the shift amount
-- is negative. We arbitrarily return the value unchanged if this is the case.
svRol :: SVal -> Int -> SVal
svRol x i
| i <= 0
= x
| True
= case kindOf x of
KBounded _ sz -> liftSym1 (mkSymOp1 (Rol (i `mod` sz)))
(noRealUnary "rotateL") (rot True sz i)
(noFloatUnary "rotateL") (noDoubleUnary "rotateL") (noFPUnary "rotateL") (noRatUnary "rotateL") x
_ -> svShl x i -- for unbounded Integers, rotateL is the same as shiftL in Haskell
-- | Rotate-right, by a constant.
--
-- NB. Haskell spec says the behavior is undefined if the shift amount
-- is negative. We arbitrarily return the value unchanged if this is the case.
svRor :: SVal -> Int -> SVal
svRor x i
| i <= 0
= x
| True
= case kindOf x of
KBounded _ sz -> liftSym1 (mkSymOp1 (Ror (i `mod` sz)))
(noRealUnary "rotateR") (rot False sz i)
(noFloatUnary "rotateR") (noDoubleUnary "rotateR") (noFPUnary "rotateR") (noRatUnary "rotateR") x
_ -> svShr x i -- for unbounded integers, rotateR is the same as shiftR in Haskell
-- | Generic rotation. Since the underlying representation is just Integers, rotations has to be
-- careful on the bit-size.
rot :: Bool -> Int -> Int -> Integer -> Integer
rot toLeft sz amt x
| sz < 2 = x
| True = norm x y' `shiftL` y .|. norm (x `shiftR` y') y
where (y, y') | toLeft = (amt `mod` sz, sz - y)
| True = (sz - y', amt `mod` sz)
norm v s = v .&. ((1 `shiftL` s) - 1)
-- | Extract bit-sequences.
svExtract :: Int -> Int -> SVal -> SVal
svExtract i j x@(SVal (KBounded s _) _)
| i < j
= SVal k (Left $! CV k (CInteger 0))
| SVal _ (Left (CV _ (CInteger v))) <- x
= SVal k (Left $! normCV (CV k (CInteger (v `shiftR` j))))
| True
= SVal k (Right (cache y))
where k = KBounded s (i - j + 1)
y st = do sv <- svToSV st x
newExpr st k (SBVApp (Extract i j) [sv])
svExtract i j v@(SVal KFloat _) = svExtract i j (svFloatAsSWord32 v)
svExtract i j v@(SVal KDouble _) = svExtract i j (svDoubleAsSWord64 v)
svExtract i j v@(SVal KFP{} _) = svExtract i j (svFloatingPointAsSWord v)
svExtract _ _ _ = error "extract: non-bitvector/float type"
-- | Join two words, by concatenating
svJoin :: SVal -> SVal -> SVal
svJoin x@(SVal (KBounded s i) a) y@(SVal (KBounded s' j) b)
| s /= s'
= error $ "svJoin: received differently signed values: " ++ show (x, y)
| i == 0 = y
| j == 0 = x
| Left (CV _ (CInteger m)) <- a, Left (CV _ (CInteger n)) <- b
= let val
| s -- signed, arithmetic doesn't work; blast and come back
= let xbits = [m `testBit` xi | xi <- [0 .. i-1]]
ybits = [n `testBit` yi | yi <- [0 .. j-1]]
rbits = zip [0..] (ybits ++ xbits)
in foldl' (\acc (idx, set) -> if set then setBit acc idx else acc) 0 rbits
| True -- unsigned, go fast
= m `shiftL` j .|. n
in SVal k (Left $! normCV (CV k (CInteger val)))
| True
= SVal k (Right (cache z))
where
k = KBounded s (i + j)
z st = do xsw <- svToSV st x
ysw <- svToSV st y
newExpr st k (SBVApp Join [xsw, ysw])
svJoin _ _ = error "svJoin: non-bitvector type"
-- | Zero-extend by given number of bits.
svZeroExtend :: Int -> SVal -> SVal
svZeroExtend = svExtend True ZeroExtend
-- | Sign-extend by given number of bits.
svSignExtend :: Int -> SVal -> SVal
svSignExtend = svExtend False SignExtend
svExtend :: Bool -> (Int -> Op) -> Int -> SVal -> SVal
svExtend isZeroExtend extender i x@(SVal (KBounded s sz) a)
| i < 0
= error $ "svExtend: Received negative extension amount: " ++ show i
| i == 0
= x
| Left (CV _ (CInteger cv)) <- a
= SVal k' (Left (normCV (CV k' (CInteger (replBit (not isZeroExtend && (cv `testBit` (sz-1))) cv)))))
| True
= SVal k' (Right (cache z))
where k' = KBounded s (sz+i)
z st = do xsw <- svToSV st x
newExpr st k' (SBVApp (extender i) [xsw])
replBit :: Bool -> Integer -> Integer
replBit b = go sz
where stop = sz + i
go k v | k == stop = v
| b = go (k+1) (v `setBit` k)
| True = go (k+1) (v `clearBit` k)
svExtend _ _ _ _ = error "svExtend: non-bitvector type"
-- | If-then-else. This one will force branches.
svIte :: SVal -> SVal -> SVal -> SVal
svIte t a b = svSymbolicMerge (kindOf a) True t a b
-- | Lazy If-then-else. This one will delay forcing the branches unless it's really necessary.
svLazyIte :: Kind -> SVal -> SVal -> SVal -> SVal
svLazyIte k t a b = svSymbolicMerge k False t a b
-- | Merge two symbolic values, at kind @k@, possibly @force@'ing the branches to make
-- sure they do not evaluate to the same result.
svSymbolicMerge :: Kind -> Bool -> SVal -> SVal -> SVal -> SVal
svSymbolicMerge k force t a b
| Just r <- svAsBool t
= if r then a else b
| force, rationalSBVCheck a b, sameResult a b
= a
| True
= SVal k $ Right $ cache c
where sameResult (SVal _ (Left c1)) (SVal _ (Left c2)) = c1 == c2
sameResult _ _ = False
c st = do swt <- svToSV st t
case () of
() | swt == trueSV -> svToSV st a -- these two cases should never be needed as we expect symbolicMerge to be
() | swt == falseSV -> svToSV st b -- called with symbolic tests, but just in case..
() -> do {- It is tempting to record the choice of the test expression here as we branch down to the 'then' and 'else' branches. That is,
when we evaluate 'a', we can make use of the fact that the test expression is True, and similarly we can use the fact that it
is False when b is evaluated. In certain cases this can cut down on symbolic simulation significantly, for instance if
repetitive decisions are made in a recursive loop. Unfortunately, the implementation of this idea is quite tricky, due to
our sharing based implementation. As the 'then' branch is evaluated, we will create many expressions that are likely going
to be "reused" when the 'else' branch is executed. But, it would be *dead wrong* to share those values, as they were "cached"
under the incorrect assumptions. To wit, consider the following:
foo x y = ite (y .== 0) k (k+1)
where k = ite (y .== 0) x (x+1)
When we reduce the 'then' branch of the first ite, we'd record the assumption that y is 0. But while reducing the 'then' branch, we'd
like to share @k@, which would evaluate (correctly) to @x@ under the given assumption. When we backtrack and evaluate the 'else'
branch of the first ite, we'd see @k@ is needed again, and we'd look it up from our sharing map to find (incorrectly) that its value
is @x@, which was stored there under the assumption that y was 0, which no longer holds. Clearly, this is unsound.
A sound implementation would have to precisely track which assumptions were active at the time expressions get shared. That is,
in the above example, we should record that the value of @k@ was cached under the assumption that @y@ is 0. While sound, this
approach unfortunately leads to significant loss of valid sharing when the value itself had nothing to do with the assumption itself.
To wit, consider:
foo x y = ite (y .== 0) k (k+1)
where k = x+5
If we tracked the assumptions, we would recompute @k@ twice, since the branch assumptions would differ. Clearly, there is no need to
re-compute @k@ in this case since its value is independent of @y@. Note that the whole SBV performance story is based on aggressive sharing,
and losing that would have other significant ramifications.
The "proper" solution would be to track, with each shared computation, precisely which assumptions it actually *depends* on, rather
than blindly recording all the assumptions present at that time. SBV's symbolic simulation engine clearly has all the info needed to do this
properly, but the implementation is not straightforward at all. For each subexpression, we would need to chase down its dependencies
transitively, which can require a lot of scanning of the generated program causing major slow-down; thus potentially defeating the
whole purpose of sharing in the first place.
Design choice: Keep it simple, and simply do not track the assumption at all. This will maximize sharing, at the cost of evaluating
unreachable branches. I think the simplicity is more important at this point than efficiency.
Also note that the user can avoid most such issues by properly combining if-then-else's with common conditions together. That is, the
first program above should be written like this:
foo x y = ite (y .== 0) x (x+2)
In general, the following transformations should be done whenever possible:
ite e1 (ite e1 e2 e3) e4 --> ite e1 e2 e4
ite e1 e2 (ite e1 e3 e4) --> ite e1 e2 e4
This is in accordance with the general rule-of-thumb stating conditionals should be avoided as much as possible. However, we might prefer
the following:
ite e1 (f e2 e4) (f e3 e5) --> f (ite e1 e2 e3) (ite e1 e4 e5)
especially if this expression happens to be inside 'f's body itself (i.e., when f is recursive), since it reduces the number of
recursive calls. Clearly, programming with symbolic simulation in mind is another kind of beast altogether.
-}
let sta = st `extendSValPathCondition` svAnd t
let stb = st `extendSValPathCondition` svAnd (svNot t)
swa <- svToSV sta a -- evaluate 'then' branch
swb <- svToSV stb b -- evaluate 'else' branch
-- merge, but simplify for certain boolean cases:
case () of
() | swa == swb -> return swa -- if t then a else a ==> a
() | swa == trueSV && swb == falseSV -> return swt -- if t then true else false ==> t
() | swa == falseSV && swb == trueSV -> newExpr st k (SBVApp Not [swt]) -- if t then false else true ==> not t
() | swa == trueSV -> newExpr st k (SBVApp Or [swt, swb]) -- if t then true else b ==> t OR b
() | swa == falseSV -> do swt' <- newExpr st KBool (SBVApp Not [swt])
newExpr st k (SBVApp And [swt', swb]) -- if t then false else b ==> t' AND b
() | swb == trueSV -> do swt' <- newExpr st KBool (SBVApp Not [swt])
newExpr st k (SBVApp Or [swt', swa]) -- if t then a else true ==> t' OR a
() | swb == falseSV -> newExpr st k (SBVApp And [swt, swa]) -- if t then a else false ==> t AND a
() -> newExpr st k (SBVApp Ite [swt, swa, swb])
-- | Total indexing operation. @svSelect xs default index@ is
-- intuitively the same as @xs !! index@, except it evaluates to
-- @default@ if @index@ overflows. Translates to SMT-Lib tables.
svSelect :: [SVal] -> SVal -> SVal -> SVal
svSelect xs err ind
| SVal _ (Left c) <- ind =
case cvVal c of
CInteger i -> if i < 0 || i >= genericLength xs
then err
else xs `genericIndex` i
_ -> error $ "SBV.select: unsupported " ++ show (kindOf ind) ++ " valued select/index expression"
svSelect xsOrig err ind = xs `seq` SVal kElt (Right (cache r))
where
kInd = kindOf ind
kElt = kindOf err
-- Based on the index size, we need to limit the elements. For
-- instance if the index is 8 bits, but there are 257 elements,
-- that last element will never be used and we can chop it off.
xs = case kInd of
KBounded False i -> genericTake ((2::Integer) ^ i) xsOrig
KBounded True i -> genericTake ((2::Integer) ^ (i-1)) xsOrig
KUnbounded -> xsOrig
_ -> error $ "SBV.select: unsupported " ++ show kInd ++ " valued select/index expression"
r st = do sws <- mapM (svToSV st) xs
swe <- svToSV st err
if all (== swe) sws -- off-chance that all elts are the same
then return swe
else do idx <- getTableIndex st kInd kElt sws
swi <- svToSV st ind
let len = length xs
-- NB. No need to worry here that the index
-- might be < 0; as the SMTLib translation
-- takes care of that automatically
newExpr st kElt (SBVApp (LkUp (idx, kInd, kElt, len) swi swe) [])
-- Change the sign of a bit-vector quantity. Fails if passed a non-bv
svChangeSign :: Bool -> SVal -> SVal
svChangeSign s x
| not (isBounded x) = error $ "Data.SBV." ++ nm ++ ": Received non bit-vector kind: " ++ show (kindOf x)
| Just n <- svAsInteger x = svInteger k n
| True = SVal k (Right (cache y))
where
nm = if s then "svSign" else "svUnsign"
k = KBounded s (intSizeOf x)
y st = do xsw <- svToSV st x
newExpr st k (SBVApp (Extract (intSizeOf x - 1) 0) [xsw])
-- | Convert a symbolic bitvector from unsigned to signed.
svSign :: SVal -> SVal
svSign = svChangeSign True
-- | Convert a symbolic bitvector from signed to unsigned.
svUnsign :: SVal -> SVal
svUnsign = svChangeSign False
-- | Convert a symbolic bitvector from one integral kind to another.
svFromIntegral :: Kind -> SVal -> SVal
svFromIntegral kTo x
| Just v <- svAsInteger x
= svInteger kTo v
| True
= result
where result = SVal kTo (Right (cache y))
kFrom = kindOf x
y st = do xsw <- svToSV st x
newExpr st kTo (SBVApp (KindCast kFrom kTo) [xsw])
--------------------------------------------------------------------------------
-- Derived operations
-- | Convert an SVal from kind Bool to an unsigned bitvector of size 1.
svToWord1 :: SVal -> SVal
svToWord1 b = svSymbolicMerge k True b (svInteger k 1) (svInteger k 0)
where k = KBounded False 1
-- | Convert an SVal from a bitvector of size 1 (signed or unsigned) to kind Bool.
svFromWord1 :: SVal -> SVal
svFromWord1 x = svNotEqual x (svInteger k 0)
where k = kindOf x
-- | Test the value of a bit. Note that we do an extract here
-- as opposed to masking and checking against zero, as we found
-- extraction to be much faster with large bit-vectors.
svTestBit :: SVal -> Int -> SVal
svTestBit x i
| i < intSizeOf x = svFromWord1 (svExtract i i x)
| True = svFalse
-- | Generalization of 'svShl', where the shift-amount is symbolic.
svShiftLeft :: SVal -> SVal -> SVal
svShiftLeft = svShift True
-- | Generalization of 'svShr', where the shift-amount is symbolic.
--
-- NB. If the shiftee is signed, then this is an arithmetic shift;
-- otherwise it's logical.
svShiftRight :: SVal -> SVal -> SVal
svShiftRight = svShift False
-- | Generic shifting of bounded quantities. The shift amount must be non-negative and within the bounds of the argument
-- for bit vectors. For negative shift amounts, the result is returned unchanged. For overshifts, left-shift produces 0,
-- right shift produces 0 or -1 depending on the result being signed.
svShift :: Bool -> SVal -> SVal -> SVal
svShift toLeft x i
| Just r <- constFoldValue
= r
| cannotOverShift
= svIte (i `svLessThan` svInteger ki 0) -- Negative shift, no change
x
regularShiftValue
| True
= svIte (i `svLessThan` svInteger ki 0) -- Negative shift, no change
x
$ svIte (i `svGreaterEq` svInteger ki (fromIntegral (intSizeOf x))) -- Overshift, by at least the bit-width of x
overShiftValue
regularShiftValue
where nm | toLeft = "shiftLeft"
| True = "shiftRight"
kx = kindOf x
ki = kindOf i
-- Constant fold the result if possible. If either quantity is unbounded, then we only support constants
-- as there's no easy/meaningful way to map this combo to SMTLib. Should be rarely needed, if ever!
-- We also perform basic sanity check here so that if we go past here, we know we have bitvectors only.
constFoldValue
| Just iv <- getConst i, iv == 0
= Just x
| Just xv <- getConst x, xv == 0
= Just x
| Just xv <- getConst x, Just iv <- getConst i
= Just $ SVal kx . Left $! normCV $ CV kx (CInteger (xv `opC` shiftAmount iv))
| isUnbounded x || isUnbounded i
= bailOut $ "Not yet implemented unbounded/non-constants shifts for " ++ show (kx, ki) ++ ", please file a request!"
| not (isBounded x && isBounded i)
= bailOut $ "Unexpected kinds: " ++ show (kx, ki)
| True
= Nothing
where bailOut m = error $ "SBV." ++ nm ++ ": " ++ m
getConst (SVal _ (Left (CV _ (CInteger val)))) = Just val
getConst _ = Nothing
opC | toLeft = shiftL
| True = shiftR
-- like fromIntegral, but more paranoid
shiftAmount :: Integer -> Int
shiftAmount iv
| iv <= 0 = 0
| isUnbounded i, iv > fromIntegral (maxBound :: Int) = bailOut $ "Unsupported constant unbounded shift with amount: " ++ show iv
| isUnbounded x = fromIntegral iv
| iv >= fromIntegral ub = ub
| not (isBounded x && isBounded i) = bailOut $ "Unsupported kinds: " ++ show (kx, ki)
| True = fromIntegral iv
where ub = intSizeOf x
-- Overshift is not possible if the bit-size of x won't even fit into the bit-vector size
-- of i. Note that this is a *necessary* check, Consider for instance if we're shifting a
-- 32-bit value using a 1-bit shift amount (which can happen if the value is 1 with minimal
-- shift widths). We would compare 1 >= 32, but stuffing 32 into bit-vector of size 1 would
-- overflow. See http://github.com/LeventErkok/sbv/issues/323 for this case. Thus, we
-- make sure that the bit-vector would fit as a value.
cannotOverShift = maxRepresentable <= fromIntegral (intSizeOf x)
where maxRepresentable :: Integer
maxRepresentable
| hasSign i = bit (intSizeOf i - 1) - 1
| True = bit (intSizeOf i ) - 1
-- An overshift occurs if we're shifting by more than or equal to the bit-width of x
-- For shift-left: this value is always 0
-- For shift-right:
-- If x is unsigned: 0
-- If x is signed and is less than 0, then -1 else 0
overShiftValue | toLeft = zx
| hasSign x = svIte (x `svLessThan` zx) neg1 zx
| True = zx
where zx = svInteger kx 0
neg1 = svInteger kx (-1)
-- Regular shift, we know that the shift value fits into the bit-width of x, since it's between 0 and sizeOf x. So, we can just
-- turn it into a properly sized argument and ship it to SMTLib
regularShiftValue = SVal kx $ Right $ cache result
where result st = do sw1 <- svToSV st x
sw2 <- svToSV st i
let op | toLeft = Shl
| True = Shr
adjustedShift <- if kx == ki
then return sw2
else newExpr st kx (SBVApp (KindCast ki kx) [sw2])
newExpr st kx (SBVApp op [sw1, adjustedShift])
-- | Generalization of 'svRol', where the rotation amount is symbolic.
-- If the first argument is not bounded, then the this is the same as shift.
svRotateLeft :: SVal -> SVal -> SVal
svRotateLeft x i
| not (isBounded x)
= svShiftLeft x i
| isBounded i && bit si <= toInteger sx -- wrap-around not possible
= svIte (svLessThan i zi)
(svSelect [x `svRor` k | k <- [0 .. bit si - 1]] z (svUNeg i))
(svSelect [x `svRol` k | k <- [0 .. bit si - 1]] z i)
| True
= svIte (svLessThan i zi)
(svSelect [x `svRor` k | k <- [0 .. sx - 1]] z (svUNeg i `svRem` n))
(svSelect [x `svRol` k | k <- [0 .. sx - 1]] z ( i `svRem` n))
where sx = intSizeOf x
si = intSizeOf i
z = svInteger (kindOf x) 0
zi = svInteger (kindOf i) 0
n = svInteger (kindOf i) (toInteger sx)
-- | A variant of 'svRotateLeft' that uses a barrel-rotate design, which can lead to
-- better verification code. Only works when both arguments are finite and the second
-- argument is unsigned.
svBarrelRotateLeft :: SVal -> SVal -> SVal
svBarrelRotateLeft x i
| not (isBounded x && isBounded i && not (hasSign i))
= error $ "Data.SBV.Dynamic.svBarrelRotateLeft: Arguments must be bounded with second argument unsigned. Received: " ++ show (x, i)
| Just iv <- svAsInteger i
= svRol x $ fromIntegral (iv `rem` fromIntegral (intSizeOf x))
| True
= barrelRotate svRol x i
-- | A variant of 'svRotateLeft' that uses a barrel-rotate design, which can lead to
-- better verification code. Only works when both arguments are finite and the second
-- argument is unsigned.
svBarrelRotateRight :: SVal -> SVal -> SVal
svBarrelRotateRight x i
| not (isBounded x && isBounded i && not (hasSign i))
= error $ "Data.SBV.Dynamic.svBarrelRotateRight: Arguments must be bounded with second argument unsigned. Received: " ++ show (x, i)
| Just iv <- svAsInteger i
= svRor x $ fromIntegral (iv `rem` fromIntegral (intSizeOf x))
| True
= barrelRotate svRor x i
-- Barrel rotation, by bit-blasting the argument:
barrelRotate :: (SVal -> Int -> SVal) -> SVal -> SVal -> SVal
barrelRotate f a c = loop blasted a
where loop :: [(SVal, Integer)] -> SVal -> SVal
loop [] acc = acc
loop ((b, v) : rest) acc = loop rest (svIte b (f acc (fromInteger v)) acc)
sa = toInteger $ intSizeOf a
n = svInteger (kindOf c) sa
-- Reduce by the modulus amount, we need not care about the
-- any part larger than the value of the bit-size of the
-- argument as it is identity for rotations
reducedC = c `svRem` n
-- blast little-endian, and zip with bit-position
blasted = takeWhile significant $ zip (svBlastLE reducedC) [2^i | i <- [(0::Integer)..]]
-- Any term whose bit-position is larger than our input size
-- is insignificant, since the reduction would've put 0's in those
-- bits. For instance, if a is 32 bits, and c is 5 bits, then we
-- need not look at any position i s.t. 2^i > 32
significant (_, pos) = pos < sa
-- | Generalization of 'svRor', where the rotation amount is symbolic.
-- If the first argument is not bounded, then the this is the same as shift.
svRotateRight :: SVal -> SVal -> SVal
svRotateRight x i
| not (isBounded x)
= svShiftRight x i
| isBounded i && bit si <= toInteger sx -- wrap-around not possible
= svIte (svLessThan i zi)
(svSelect [x `svRol` k | k <- [0 .. bit si - 1]] z (svUNeg i))
(svSelect [x `svRor` k | k <- [0 .. bit si - 1]] z i)
| True
= svIte (svLessThan i zi)
(svSelect [x `svRol` k | k <- [0 .. sx - 1]] z (svUNeg i `svRem` n))
(svSelect [x `svRor` k | k <- [0 .. sx - 1]] z ( i `svRem` n))
where sx = intSizeOf x
si = intSizeOf i
z = svInteger (kindOf x) 0
zi = svInteger (kindOf i) 0
n = svInteger (kindOf i) (toInteger sx)
--------------------------------------------------------------------------------
-- | Overflow detection.
svMkOverflow :: OvOp -> SVal -> SVal -> SVal
svMkOverflow o x y = SVal KBool (Right (cache r))
where r st = do sx <- svToSV st x
sy <- svToSV st y
newExpr st KBool $ SBVApp (OverflowOp o) [sx, sy]
---------------------------------------------------------------------------------
-- * Symbolic Arrays
---------------------------------------------------------------------------------
-- | Arrays in terms of SMT-Lib arrays
data SArr = SArr (Kind, Kind) (Cached ArrayIndex)
-- | Read the array element at @a@
readSArr :: SArr -> SVal -> SVal
readSArr (SArr (_, bk) f) a = SVal bk $ Right $ cache r
where r st = do arr <- uncacheAI f st
i <- svToSV st a
newExpr st bk (SBVApp (ArrRead arr) [i])
-- | Update the element at @a@ to be @b@
writeSArr :: SArr -> SVal -> SVal -> SArr
writeSArr (SArr ainfo f) a b = SArr ainfo $ cache g
where g st = do arr <- uncacheAI f st
addr <- svToSV st a
val <- svToSV st b
amap <- R.readIORef (rArrayMap st)
let j = ArrayIndex $ IMap.size amap
upd = IMap.insert (unArrayIndex j) ("array_" ++ show j, ainfo, ArrayMutate arr addr val)
j `seq` modifyState st rArrayMap upd $ modifyIncState st rNewArrs upd
return j
-- | Merge two given arrays on the symbolic condition
-- Intuitively: @mergeArrays cond a b = if cond then a else b@.
-- Merging pushes the if-then-else choice down on to elements
mergeSArr :: SVal -> SArr -> SArr -> SArr
mergeSArr t (SArr ainfo a) (SArr _ b) = SArr ainfo $ cache h
where h st = do ai <- uncacheAI a st
bi <- uncacheAI b st
ts <- svToSV st t
amap <- R.readIORef (rArrayMap st)
let k = ArrayIndex $ IMap.size amap
upd = IMap.insert (unArrayIndex k) ("array_" ++ show k, ainfo, ArrayMerge ts ai bi)
k `seq` modifyState st rArrayMap upd $ modifyIncState st rNewArrs upd
return k
-- | Create a named new array
newSArr :: State -> (Kind, Kind) -> (Int -> String) -> Either (Maybe SVal) String -> IO SArr
newSArr st ainfo mkNm mbVal = do
amap <- R.readIORef $ rArrayMap st
mbSWDef <- case mbVal of
Left mbSV -> case mbSV of
Nothing -> pure (Left Nothing)
Just sv -> Left . Just <$> svToSV st sv
Right lam -> pure (Right lam)
let i = ArrayIndex $ IMap.size amap
nm = mkNm (unArrayIndex i)
upd = IMap.insert (unArrayIndex i) (nm, ainfo, ArrayFree mbSWDef)
registerLabel "SArray declaration" st nm
modifyState st rArrayMap upd $ modifyIncState st rNewArrs upd
return $ SArr ainfo $ cache $ const $ return i
-- | Compare two arrays for equality
eqSArr :: SArr -> SArr -> SVal
eqSArr (SArr _ a) (SArr _ b) = SVal KBool $ Right $ cache c
where c st = do ai <- uncacheAI a st
bi <- uncacheAI b st
newExpr st KBool (SBVApp (ArrEq ai bi) [])
--------------------------------------------------------------------------------
-- Utility functions
noUnint :: (Maybe Int, String) -> a
noUnint x = error $ "Unexpected operation called on uninterpreted/enumerated value: " ++ show x
noUnint2 :: (Maybe Int, String) -> (Maybe Int, String) -> a
noUnint2 x y = error $ "Unexpected binary operation called on uninterpreted/enumerated values: " ++ show (x, y)
noCharLift :: Char -> a
noCharLift x = error $ "Unexpected operation called on char: " ++ show x
noStringLift :: String -> a
noStringLift x = error $ "Unexpected operation called on string: " ++ show x
noCharLift2 :: Char -> Char -> a
noCharLift2 x y = error $ "Unexpected binary operation called on chars: " ++ show (x, y)
noStringLift2 :: String -> String -> a
noStringLift2 x y = error $ "Unexpected binary operation called on strings: " ++ show (x, y)
liftSym1 :: (State -> Kind -> SV -> IO SV) -> (AlgReal -> AlgReal) -> (Integer -> Integer) -> (Float -> Float) -> (Double -> Double) -> (FP -> FP) ->(Rational -> Rational) -> SVal -> SVal
liftSym1 _ opCR opCI opCF opCD opFP opRA (SVal k (Left a)) = SVal k . Left $! mapCV opCR opCI opCF opCD opFP opRA noCharLift noStringLift noUnint a
liftSym1 opS _ _ _ _ _ _ a@(SVal k _) = SVal k $ Right $ cache c
where c st = do sva <- svToSV st a
opS st k sva
{- A note on constant folding.
There are cases where we miss out on certain constant foldings. On May 8 2018, Matt Peddie pointed this
out, as the C code he was getting had redundancies. I was aware that could be missing constant foldings
due to missed out optimizations, or some other code snafu, but till Matt pointed it out I haven't realized
that we could be hiding constants inside an if-then-else. The example is:
proveWith z3{verbose=True} $ \x -> 0 .< ite (x .== (x::SWord8)) 1 (2::SWord8)
If you try this, you'll see that it generates (shortened):
(define-fun s1 () (_ BitVec 8) #x00)
(define-fun s2 () (_ BitVec 8) #x01)
(define-fun s3 () Bool (bvult s1 s2))
But clearly we have all the info for s3 to be computed! The issue here is that the reduction of @x .== x@ to @true@
happens after we start computing the if-then-else, hence we are already committed to an SV at that point. The call
to ite eventually recognizes this, but at that point it picks up the now constants from SV's, missing the constant
folding opportunity.
We can fix this, by looking up the constants table in liftSV2, along the lines of:
liftSV2 :: (CV -> CV -> Bool) -> (CV -> CV -> CV) -> (State -> Kind -> SV -> SV -> IO SV) -> Kind -> SVal -> SVal -> Cached SV
liftSV2 okCV opCV opS k a b = cache c
where c st = do sw1 <- svToSV st a
sw2 <- svToSV st b
cmap <- readIORef (rconstMap st)
let cv1 = [cv | ((_, cv), sv) <- M.toList cmap, sv == sv1]
cv2 = [cv | ((_, cv), sv) <- M.toList cmap, sv == sv2]
case (cv1, cv2) of
([x], [y]) | okCV x y -> newConst st $ opCV x y
_ -> opS st k sv1 sv2
(with obvious modifications to call sites to get the proper arguments.)
But this means that we have to grab the constant list for every symbolically lifted operation, also do the
same for other places, etc.; for the rare opportunity of catching a @x .== x@ optimization. Even then, the
constants for the branches would still be generated. (i.e., in the above example we would still generate
@s1@ and @s2@, but would skip @s3@.)
It seems to me that the price to pay is rather high, as this is hardly the most common case; so we're opting
here to ignore these cases.
See http://github.com/LeventErkok/sbv/issues/379 for some further discussion.
-}
liftSV2 :: (State -> Kind -> SV -> SV -> IO SV) -> Kind -> SVal -> SVal -> Cached SV
liftSV2 opS k a b = cache c
where c st = do sw1 <- svToSV st a
sw2 <- svToSV st b
opS st k sw1 sw2
liftSym2 :: (State -> Kind -> SV -> SV -> IO SV)
-> [CV -> CV -> Bool]
-> (AlgReal -> AlgReal -> AlgReal)
-> (Integer -> Integer -> Integer)
-> (Float -> Float -> Float)
-> (Double -> Double -> Double)
-> (FP -> FP -> FP)
-> (Rational -> Rational-> Rational)
-> SVal -> SVal -> SVal
liftSym2 _ okCV opCR opCI opCF opCD opFP opRA (SVal k (Left a)) (SVal _ (Left b)) | and [f a b | f <- okCV] = SVal k . Left $! mapCV2 opCR opCI opCF opCD opFP opRA noCharLift2 noStringLift2 noUnint2 a b
liftSym2 opS _ _ _ _ _ _ _ a@(SVal k _) b = SVal k $ Right $ liftSV2 opS k a b
liftSym2B :: (State -> Kind -> SV -> SV -> IO SV)
-> (CV -> CV -> Bool)
-> (AlgReal -> AlgReal -> Bool)
-> (Integer -> Integer -> Bool)
-> (Float -> Float -> Bool)
-> (Double -> Double -> Bool)
-> (FP -> FP -> Bool)
-> (Rational -> Rational -> Bool)
-> (Char -> Char -> Bool)
-> (String -> String -> Bool)
-> ([CVal] -> [CVal] -> Bool)
-> ([CVal] -> [CVal] -> Bool)
-> (Maybe CVal -> Maybe CVal -> Bool)
-> (Either CVal CVal -> Either CVal CVal -> Bool)
-> ((Maybe Int, String) -> (Maybe Int, String) -> Bool)
-> SVal -> SVal -> SVal
liftSym2B _ okCV opCR opCI opCF opCD opAF opAR opCC opCS opCSeq opCTup opCMaybe opCEither opUI (SVal _ (Left a)) (SVal _ (Left b)) | okCV a b = svBool (liftCV2 opCR opCI opCF opCD opAF opAR opCC opCS opCSeq opCTup opCMaybe opCEither opUI a b)
liftSym2B opS _ _ _ _ _ _ _ _ _ _ _ _ _ _ a b = SVal KBool $ Right $ liftSV2 opS KBool a b
-- | Create a symbolic two argument operation; with shortcut optimizations
mkSymOpSC :: (SV -> SV -> Maybe SV) -> Op -> State -> Kind -> SV -> SV -> IO SV
mkSymOpSC shortCut op st k a b = maybe (newExpr st k (SBVApp op [a, b])) return (shortCut a b)
-- | Create a symbolic two argument operation; no shortcut optimizations
mkSymOp :: Op -> State -> Kind -> SV -> SV -> IO SV
mkSymOp = mkSymOpSC (const (const Nothing))
mkSymOp1SC :: (SV -> Maybe SV) -> Op -> State -> Kind -> SV -> IO SV
mkSymOp1SC shortCut op st k a = maybe (newExpr st k (SBVApp op [a])) return (shortCut a)
mkSymOp1 :: Op -> State -> Kind -> SV -> IO SV
mkSymOp1 = mkSymOp1SC (const Nothing)
-- | eqOpt says the references are to the same SV, thus we can optimize. Note that
-- we explicitly disallow KFloat/KDouble/KFloat here. Why? Because it's *NOT* true that
-- NaN == NaN, NaN >= NaN, and so-forth. So, we have to make sure we don't optimize
-- floats and doubles, in case the argument turns out to be NaN.
eqOpt :: SV -> SV -> SV -> Maybe SV
eqOpt w x y = case swKind x of
KFloat -> Nothing
KDouble -> Nothing
KFP{} -> Nothing
_ -> if x == y then Just w else Nothing
-- For uninterpreted/enumerated values, we carefully lift through the constructor index for comparisons:
uiLift :: String -> (Int -> Int -> Bool) -> (Maybe Int, String) -> (Maybe Int, String) -> Bool
uiLift _ cmp (Just i, _) (Just j, _) = i `cmp` j
uiLift w _ a b = error $ "Data.SBV.Core.Operations: Impossible happened while trying to lift " ++ w ++ " over " ++ show (a, b)
-- | Predicate to check if a value is concrete
isConcrete :: SVal -> Bool
isConcrete (SVal _ Left{}) = True
isConcrete _ = False
-- | Predicate for optimizing word operations like (+) and (*).
-- NB. We specifically do *not* match for Double/Float; because
-- FP-arithmetic doesn't obey traditional rules. For instance,
-- 0 * x = 0 fails if x happens to be NaN or +/- Infinity. So,
-- we merely return False when given a floating-point value here.
isConcreteZero :: SVal -> Bool
isConcreteZero (SVal _ (Left (CV _ (CInteger n)))) = n == 0
isConcreteZero (SVal KReal (Left (CV KReal (CAlgReal v)))) = isExactRational v && v == 0
isConcreteZero _ = False
-- | Predicate for optimizing word operations like (+) and (*).
-- NB. See comment on 'isConcreteZero' for why we don't match
-- for Float/Double values here.
isConcreteOne :: SVal -> Bool
isConcreteOne (SVal _ (Left (CV _ (CInteger 1)))) = True
isConcreteOne (SVal KReal (Left (CV KReal (CAlgReal v)))) = isExactRational v && v == 1
isConcreteOne _ = False
-- | Predicate for optimizing bitwise operations. The unbounded integer case of checking
-- against -1 might look dubious, but that's how Haskell treats 'Integer' as a member
-- of the Bits class, try @(-1 :: Integer) `testBit` i@ for any @i@ and you'll get 'True'.
isConcreteOnes :: SVal -> Bool
isConcreteOnes (SVal _ (Left (CV (KBounded b w) (CInteger n)))) = n == if b then -1 else bit w - 1
isConcreteOnes (SVal _ (Left (CV KUnbounded (CInteger n)))) = n == -1 -- see comment above
isConcreteOnes (SVal _ (Left (CV KBool (CInteger n)))) = n == 1
isConcreteOnes _ = False
-- | Predicate for optimizing comparisons.
isConcreteMax :: SVal -> Bool
isConcreteMax (SVal _ (Left (CV (KBounded False w) (CInteger n)))) = n == bit w - 1
isConcreteMax (SVal _ (Left (CV (KBounded True w) (CInteger n)))) = n == bit (w - 1) - 1
isConcreteMax (SVal _ (Left (CV KBool (CInteger n)))) = n == 1
isConcreteMax _ = False
-- | Predicate for optimizing comparisons.
isConcreteMin :: SVal -> Bool
isConcreteMin (SVal _ (Left (CV (KBounded False _) (CInteger n)))) = n == 0
isConcreteMin (SVal _ (Left (CV (KBounded True w) (CInteger n)))) = n == - bit (w - 1)
isConcreteMin (SVal _ (Left (CV KBool (CInteger n)))) = n == 0
isConcreteMin _ = False
-- | Most operations on concrete rationals require a compatibility check to avoid faulting
-- on algebraic reals.
rationalCheck :: CV -> CV -> Bool
rationalCheck a b = case (cvVal a, cvVal b) of
(CAlgReal x, CAlgReal y) -> isExactRational x && isExactRational y
_ -> True
-- | Quot/Rem operations require a nonzero check on the divisor.
nonzeroCheck :: CV -> CV -> Bool
nonzeroCheck _ b = cvVal b /= CInteger 0
-- | Same as rationalCheck, except for SBV's
rationalSBVCheck :: SVal -> SVal -> Bool
rationalSBVCheck (SVal KReal (Left a)) (SVal KReal (Left b)) = rationalCheck a b
rationalSBVCheck _ _ = True
noReal :: String -> AlgReal -> AlgReal -> AlgReal
noReal o a b = error $ "SBV.AlgReal." ++ o ++ ": Unexpected arguments: " ++ show (a, b)
noFloat :: String -> Float -> Float -> Float
noFloat o a b = error $ "SBV.Float." ++ o ++ ": Unexpected arguments: " ++ show (a, b)
noDouble :: String -> Double -> Double -> Double
noDouble o a b = error $ "SBV.Double." ++ o ++ ": Unexpected arguments: " ++ show (a, b)
noFP :: String -> FP -> FP -> FP
noFP o a b = error $ "SBV.FPR." ++ o ++ ": Unexpected arguments: " ++ show (a, b)
noRat:: String -> Rational -> Rational -> Rational
noRat o a b = error $ "SBV.Rational." ++ o ++ ": Unexpected arguments: " ++ show (a, b)
noRealUnary :: String -> AlgReal -> AlgReal
noRealUnary o a = error $ "SBV.AlgReal." ++ o ++ ": Unexpected argument: " ++ show a
noFloatUnary :: String -> Float -> Float
noFloatUnary o a = error $ "SBV.Float." ++ o ++ ": Unexpected argument: " ++ show a
noDoubleUnary :: String -> Double -> Double
noDoubleUnary o a = error $ "SBV.Double." ++ o ++ ": Unexpected argument: " ++ show a
noFPUnary :: String -> FP -> FP
noFPUnary o a = error $ "SBV.FPR." ++ o ++ ": Unexpected argument: " ++ show a
noRatUnary :: String -> Rational -> Rational
noRatUnary o a = error $ "SBV.Rational." ++ o ++ ": Unexpected argument: " ++ show a
-- | Given a composite structure, figure out how to compare for less than
svStructuralLessThan :: SVal -> SVal -> SVal
svStructuralLessThan x y
| isConcrete x && isConcrete y
= x `svLessThan` y
| KTuple{} <- kx
= tupleLT x y
| KMaybe{} <- kx
= maybeLT x y
| KEither{} <- kx
= eitherLT x y
| True
= x `svLessThan` y
where kx = kindOf x
-- | Structural less-than for tuples
tupleLT :: SVal -> SVal -> SVal
tupleLT x y = SVal KBool $ Right $ cache res
where ks = case kindOf x of
KTuple xs -> xs
k -> error $ "Data.SBV: Impossible happened, tupleLT called with: " ++ show (k, x, y)
n = length ks
res st = do sx <- svToSV st x
sy <- svToSV st y
let chkElt i ek = let xi = SVal ek $ Right $ cache $ \_ -> newExpr st ek $ SBVApp (TupleAccess i n) [sx]
yi = SVal ek $ Right $ cache $ \_ -> newExpr st ek $ SBVApp (TupleAccess i n) [sy]
lt = xi `svStructuralLessThan` yi
eq = xi `svEqual` yi
in (lt, eq)
walk [] = svFalse
walk [(lti, _)] = lti
walk ((lti, eqi) : rest) = lti `svOr` (eqi `svAnd` walk rest)
svToSV st $ walk $ zipWith chkElt [1..] ks
-- | Structural less-than for maybes
maybeLT :: SVal -> SVal -> SVal
maybeLT x y = sMaybeCase ( sMaybeCase svFalse (const svTrue) y)
(\jx -> sMaybeCase svFalse (jx `svStructuralLessThan`) y)
x
where ka = case kindOf x of
KMaybe k' -> k'
k -> error $ "Data.SBV: Impossible happened, maybeLT called with: " ++ show (k, x, y)
sMaybeCase brNothing brJust s = SVal KBool $ Right $ cache res
where res st = do sv <- svToSV st s
let justVal = SVal ka $ Right $ cache $ \_ -> newExpr st ka $ SBVApp MaybeAccess [sv]
justRes = brJust justVal
br1 <- svToSV st brNothing
br2 <- svToSV st justRes
-- Do we have a value?
noVal <- newExpr st KBool $ SBVApp (MaybeIs ka False) [sv]
newExpr st KBool $ SBVApp Ite [noVal, br1, br2]
-- | Structural less-than for either
eitherLT :: SVal -> SVal -> SVal
eitherLT x y = sEitherCase (\lx -> sEitherCase (lx `svStructuralLessThan`) (const svTrue) y)
(\rx -> sEitherCase (const svFalse) (rx `svStructuralLessThan`) y)
x
where (ka, kb) = case kindOf x of
KEither k1 k2 -> (k1, k2)
k -> error $ "Data.SBV: Impossible happened, eitherLT called with: " ++ show (k, x, y)
sEitherCase brA brB sab = SVal KBool $ Right $ cache res
where res st = do abv <- svToSV st sab
let leftVal = SVal ka $ Right $ cache $ \_ -> newExpr st ka $ SBVApp (EitherAccess False) [abv]
rightVal = SVal kb $ Right $ cache $ \_ -> newExpr st kb $ SBVApp (EitherAccess True) [abv]
leftRes = brA leftVal
rightRes = brB rightVal
br1 <- svToSV st leftRes
br2 <- svToSV st rightRes
-- Which branch are we in? Return the appropriate value:
onLeft <- newExpr st KBool $ SBVApp (EitherIs ka kb False) [abv]
newExpr st KBool $ SBVApp Ite [onLeft, br1, br2]
-- | Convert an 'Data.SBV.SFloat' to an 'Data.SBV.SWord32', preserving the bit-correspondence. Note that since the
-- representation for @NaN@s are not unique, this function will return a symbolic value when given a
-- concrete @NaN@.
--
-- Implementation note: Since there's no corresponding function in SMTLib for conversion to
-- bit-representation due to partiality, we use a translation trick by allocating a new word variable,
-- converting it to float, and requiring it to be equivalent to the input. In code-generation mode, we simply map
-- it to a simple conversion.
svFloatAsSWord32 :: SVal -> SVal
svFloatAsSWord32 (SVal KFloat (Left (CV KFloat (CFloat f))))
| not (isNaN f)
= let w32 = KBounded False 32
in SVal w32 $ Left $ CV w32 $ CInteger (fromIntegral (floatToWord f))
svFloatAsSWord32 fVal@(SVal KFloat _)
= SVal w32 (Right (cache y))
where w32 = KBounded False 32
y st = do cg <- isCodeGenMode st
if cg
then do f <- svToSV st fVal
newExpr st w32 (SBVApp (IEEEFP (FP_Reinterpret KFloat w32)) [f])
else do n <- internalVariable st w32
ysw <- newExpr st KFloat (SBVApp (IEEEFP (FP_Reinterpret w32 KFloat)) [n])
internalConstraint st False [] $ fVal `svStrongEqual` SVal KFloat (Right (cache (\_ -> return ysw)))
return n
svFloatAsSWord32 (SVal k _) = error $ "svFloatAsSWord32: non-float type: " ++ show k
-- | Convert an 'Data.SBV.SDouble' to an 'Data.SBV.SWord64', preserving the bit-correspondence. Note that since the
-- representation for @NaN@s are not unique, this function will return a symbolic value when given a
-- concrete @NaN@.
--
-- Implementation note: Since there's no corresponding function in SMTLib for conversion to
-- bit-representation due to partiality, we use a translation trick by allocating a new word variable,
-- converting it to float, and requiring it to be equivalent to the input. In code-generation mode, we simply map
-- it to a simple conversion.
svDoubleAsSWord64 :: SVal -> SVal
svDoubleAsSWord64 (SVal KDouble (Left (CV KDouble (CDouble f))))
| not (isNaN f)
= let w64 = KBounded False 64
in SVal w64 $ Left $ CV w64 $ CInteger (fromIntegral (doubleToWord f))
svDoubleAsSWord64 fVal@(SVal KDouble _)
= SVal w64 (Right (cache y))
where w64 = KBounded False 64
y st = do cg <- isCodeGenMode st
if cg
then do f <- svToSV st fVal
newExpr st w64 (SBVApp (IEEEFP (FP_Reinterpret KDouble w64)) [f])
else do n <- internalVariable st w64
ysw <- newExpr st KDouble (SBVApp (IEEEFP (FP_Reinterpret w64 KDouble)) [n])
internalConstraint st False [] $ fVal `svStrongEqual` SVal KDouble (Right (cache (\_ -> return ysw)))
return n
svDoubleAsSWord64 (SVal k _) = error $ "svDoubleAsSWord64: non-float type: " ++ show k
-- | Convert a float to the word containing the corresponding bit pattern
svFloatingPointAsSWord :: SVal -> SVal
svFloatingPointAsSWord (SVal (KFP eb sb) (Left (CV _ (CFP f@(FP _ _ fpV)))))
| not (isNaN f)
= let wN = KBounded False (eb + sb)
in SVal wN $ Left $ CV wN $ CInteger $ bfToBits (mkBFOpts eb sb NearEven) fpV
svFloatingPointAsSWord fVal@(SVal kFrom@(KFP eb sb) _)
= SVal kTo (Right (cache y))
where kTo = KBounded False (eb + sb)
y st = do cg <- isCodeGenMode st
if cg
then do f <- svToSV st fVal
newExpr st kTo (SBVApp (IEEEFP (FP_Reinterpret kFrom kTo)) [f])
else do n <- internalVariable st kTo
ysw <- newExpr st kFrom (SBVApp (IEEEFP (FP_Reinterpret kTo kFrom)) [n])
internalConstraint st False [] $ fVal `svStrongEqual` SVal kFrom (Right (cache (\_ -> return ysw)))
return n
svFloatingPointAsSWord (SVal k _) = error $ "svFloatingPointAsSWord: non-float type: " ++ show k
{- HLint ignore svIte "Eta reduce" -}
{- HLint ignore svLazyIte "Eta reduce" -}
{- HLint ignore module "Reduce duplication" -}
|