1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
|
-----------------------------------------------------------------------------
-- |
-- Module : Data.SBV.Core.Symbolic
-- Copyright : (c) Levent Erkok
-- License : BSD3
-- Maintainer: erkokl@gmail.com
-- Stability : experimental
--
-- Symbolic values
-----------------------------------------------------------------------------
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE DefaultSignatures #-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE NamedFieldPuns #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE PatternGuards #-}
{-# LANGUAGE Rank2Types #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE ViewPatterns #-}
{-# OPTIONS_GHC -Wall -Werror -fno-warn-orphans #-}
module Data.SBV.Core.Symbolic
( NodeId(..)
, SV(..), swKind, trueSV, falseSV
, Op(..), PBOp(..), OvOp(..), FPOp(..), NROp(..), StrOp(..), RegExOp(..), SeqOp(..), SetOp(..), SpecialRelOp(..)
, RegExp(..), regExpToSMTString
, Quantifier(..), needsExistentials, VarContext(..)
, RoundingMode(..)
, SBVType(..), svUninterpreted, svUninterpretedNamedArgs, newUninterpreted
, SVal(..)
, svMkSymVar, sWordN, sWordN_, sIntN, sIntN_
, ArrayContext(..), ArrayInfo
, svToSV, svToSymSV, forceSVArg
, SBVExpr(..), newExpr, isCodeGenMode, isSafetyCheckingIStage, isRunIStage, isSetupIStage
, Cached, cache, uncache, modifyState, modifyIncState
, ArrayIndex(..), uncacheAI
, NamedSymVar(..), Name, UserInputs, Inputs(..), getSV, swNodeId, namedNodeId
, addInternInput, addUserInput
, getUserName', getUserName
, lookupInput , getSValPathCondition, extendSValPathCondition
, getTableIndex
, SBVPgm(..), MonadSymbolic(..), SymbolicT, Symbolic, runSymbolic, mkNewState, runSymbolicInState, State(..), SMTDef(..), smtDefGivenName, withNewIncState, IncState(..), incrementInternalCounter
, inSMTMode, SBVRunMode(..), IStage(..), Result(..), ResultInp(..), UICodeKind(..)
, registerKind, registerLabel, recordObservable
, addAssertion, addNewSMTOption, imposeConstraint, internalConstraint, internalVariable, lambdaVar, quantVar
, SMTLibPgm(..), SMTLibVersion(..), smtLibVersionExtension
, SolverCapabilities(..)
, extractSymbolicSimulationState, CnstMap
, OptimizeStyle(..), Objective(..), Penalty(..), objectiveName, addSValOptGoal
, MonadQuery(..), QueryT(..), Query, Queriable(..), Fresh(..), QueryState(..), QueryContext(..)
, SMTScript(..), Solver(..), SMTSolver(..), SMTResult(..), SMTModel(..), SMTConfig(..), SMTEngine
, validationRequested, outputSVal, ProgInfo(..), mustIgnoreVar, getRootState
) where
import Control.DeepSeq (NFData(..))
import Control.Monad (when)
import Control.Monad.Except (MonadError, ExceptT)
import Control.Monad.Reader (MonadReader(..), ReaderT, runReaderT,
mapReaderT)
import Control.Monad.State.Lazy (MonadState)
import Control.Monad.Trans (MonadIO(liftIO), MonadTrans(lift))
import Control.Monad.Trans.Maybe (MaybeT)
import Control.Monad.Writer.Strict (MonadWriter)
import Data.Char (isAlpha, isAlphaNum, toLower)
import Data.IORef (IORef, newIORef, readIORef)
import Data.List (intercalate, sortBy, isPrefixOf)
import Data.Maybe (fromMaybe, mapMaybe)
import Data.String (IsString(fromString))
import Data.Kind (Type)
import Data.Time (getCurrentTime, UTCTime)
import GHC.Stack
import GHC.Generics (Generic)
import qualified Control.Monad.State.Lazy as LS
import qualified Control.Monad.State.Strict as SS
import qualified Control.Monad.Writer.Lazy as LW
import qualified Control.Monad.Writer.Strict as SW
import qualified Data.IORef as R (modifyIORef')
import qualified Data.Generics as G (Data(..))
import qualified Data.IntMap.Strict as IMap (IntMap, empty, toAscList, lookup, insertWith)
import qualified Data.Map.Strict as Map (Map, empty, toList, lookup, insert, size)
import qualified Data.Set as Set (Set, empty, toList, insert, member)
import qualified Data.Foldable as F (toList)
import qualified Data.Sequence as S (Seq, empty, (|>), (<|), lookup, elemIndexL)
import qualified Data.Text as T
import System.Mem.StableName
import Data.SBV.Core.Kind
import Data.SBV.Core.Concrete
import Data.SBV.SMT.SMTLibNames
import Data.SBV.Utils.TDiff (Timing)
import Data.SBV.Utils.Lib (stringToQFS)
import Data.SBV.Control.Types
#if MIN_VERSION_base(4,11,0)
import Control.Monad.Fail as Fail
#endif
-- | A symbolic node id
newtype NodeId = NodeId { getId :: (Int, Int) } -- Lambda-level, and node-id
deriving (Ord, G.Data)
-- Equality is pair-wise, except we accommodate for negative node-id; which is reserved for true/false
instance Eq NodeId where
NodeId n1@(_, i) == NodeId n2@(_, j)
| i < 0 && j < 0
= i == j
| True
= n1 == n2
-- | A symbolic word, tracking it's signedness and size.
data SV = SV !Kind !NodeId
deriving G.Data
-- | For equality, we merely use the lambda-level/node-id
instance Eq SV where
SV _ n1 == SV _ n2 = n1 == n2
-- | Again, simply use the lambda-level/node-id for ordering
instance Ord SV where
SV _ n1 `compare` SV _ n2 = n1 `compare` n2
instance HasKind SV where
kindOf (SV k _) = k
instance Show SV where
show (SV _ (NodeId (l, n))) = case n of
-2 -> "false"
-1 -> "true"
_ -> prefix ++ 's' : show n
where prefix = case l of
0 -> ""
_ -> 'l' : show l ++ "_"
-- | Kind of a symbolic word.
swKind :: SV -> Kind
swKind (SV k _) = k
-- | retrieve the node id of a symbolic word
swNodeId :: SV -> NodeId
swNodeId (SV _ nid) = nid
-- | Forcing an argument; this is a necessary evil to make sure all the arguments
-- to an uninterpreted function are evaluated before called; the semantics of uinterpreted
-- functions is necessarily strict; deviating from Haskell's
forceSVArg :: SV -> IO ()
forceSVArg (SV k n) = k `seq` n `seq` return ()
-- | Constant False as an 'SV'. Note that this value always occupies slot -2 and level 0.
falseSV :: SV
falseSV = SV KBool $ NodeId (0, -2)
-- | Constant True as an 'SV'. Note that this value always occupies slot -1 and level 0.
trueSV :: SV
trueSV = SV KBool $ NodeId (0, -1)
-- | Symbolic operations
data Op = Plus
| Times
| Minus
| UNeg
| Abs
| Quot
| Rem
| Equal
| Implies
| NotEqual
| LessThan
| GreaterThan
| LessEq
| GreaterEq
| Ite
| And
| Or
| XOr
| Not
| Shl
| Shr
| Rol Int
| Ror Int
| Extract Int Int -- Extract i j: extract bits i to j. Least significant bit is 0 (big-endian)
| Join -- Concat two words to form a bigger one, in the order given
| ZeroExtend Int
| SignExtend Int
| LkUp (Int, Kind, Kind, Int) !SV !SV -- (table-index, arg-type, res-type, length of the table) index out-of-bounds-value
| ArrEq ArrayIndex ArrayIndex -- Array equality
| ArrRead ArrayIndex
| KindCast Kind Kind
| Uninterpreted String
| QuantifiedBool String -- When we generate a forall/exists (nested etc.) boolean value
| SpecialRelOp Kind SpecialRelOp -- Generate the equality to the internal operation
| Label String -- Essentially no-op; useful for code generation to emit comments.
| IEEEFP FPOp -- Floating-point ops, categorized separately
| NonLinear NROp -- Non-linear ops (mostly trigonometric), categorized separately
| OverflowOp OvOp -- Overflow-ops, categorized separately
| PseudoBoolean PBOp -- Pseudo-boolean ops, categorized separately
| RegExOp RegExOp -- RegEx operations, categorized separately
| StrOp StrOp -- String ops, categorized separately
| SeqOp SeqOp -- Sequence ops, categorized separately
| SetOp SetOp -- Set operations, categorized separately
| TupleConstructor Int -- Construct an n-tuple
| TupleAccess Int Int -- Access element i of an n-tuple; second argument is n
| EitherConstructor Kind Kind Bool -- Construct a sum; False: left, True: right
| EitherIs Kind Kind Bool -- Either branch tester; False: left, True: right
| EitherAccess Bool -- Either branch access; False: left, True: right
| RationalConstructor -- Construct a rational. Note that there's no access to numerator or denumerator, since we cannot store rationals in canonical form
| MaybeConstructor Kind Bool -- Construct a maybe value; False: Nothing, True: Just
| MaybeIs Kind Bool -- Maybe tester; False: nothing, True: just
| MaybeAccess -- Maybe branch access; grab the contents of the just
deriving (Eq, Ord, G.Data)
-- | Special relations supported by z3
data SpecialRelOp = IsPartialOrder String
| IsLinearOrder String
| IsTreeOrder String
| IsPiecewiseLinearOrder String
deriving (Eq, Ord, G.Data, Show)
instance NFData SpecialRelOp where
rnf (IsPartialOrder n) = rnf n
rnf (IsLinearOrder n) = rnf n
rnf (IsTreeOrder n) = rnf n
rnf (IsPiecewiseLinearOrder n) = rnf n
-- | Floating point operations
data FPOp = FP_Cast Kind Kind SV -- From-Kind, To-Kind, RoundingMode. This is "value" conversion
| FP_Reinterpret Kind Kind -- From-Kind, To-Kind. This is bit-reinterpretation using IEEE-754 interchange format
| FP_Abs
| FP_Neg
| FP_Add
| FP_Sub
| FP_Mul
| FP_Div
| FP_FMA
| FP_Sqrt
| FP_Rem
| FP_RoundToIntegral
| FP_Min
| FP_Max
| FP_ObjEqual
| FP_IsNormal
| FP_IsSubnormal
| FP_IsZero
| FP_IsInfinite
| FP_IsNaN
| FP_IsNegative
| FP_IsPositive
deriving (Eq, Ord, G.Data)
-- Note that the show instance maps to the SMTLib names. We need to make sure
-- this mapping stays correct through SMTLib changes. The only exception
-- is FP_Cast; where we handle different source/origins explicitly later on.
instance Show FPOp where
show (FP_Cast f t r) = "(FP_Cast: " ++ show f ++ " -> " ++ show t ++ ", using RM [" ++ show r ++ "])"
show (FP_Reinterpret f t) = case t of
KFloat -> "(_ to_fp 8 24)"
KDouble -> "(_ to_fp 11 53)"
KFP eb sb -> "(_ to_fp " ++ show eb ++ " " ++ show sb ++ ")"
_ -> error $ "SBV.FP_Reinterpret: Unexpected conversion: " ++ show f ++ " to " ++ show t
show FP_Abs = "fp.abs"
show FP_Neg = "fp.neg"
show FP_Add = "fp.add"
show FP_Sub = "fp.sub"
show FP_Mul = "fp.mul"
show FP_Div = "fp.div"
show FP_FMA = "fp.fma"
show FP_Sqrt = "fp.sqrt"
show FP_Rem = "fp.rem"
show FP_RoundToIntegral = "fp.roundToIntegral"
show FP_Min = "fp.min"
show FP_Max = "fp.max"
show FP_ObjEqual = "="
show FP_IsNormal = "fp.isNormal"
show FP_IsSubnormal = "fp.isSubnormal"
show FP_IsZero = "fp.isZero"
show FP_IsInfinite = "fp.isInfinite"
show FP_IsNaN = "fp.isNaN"
show FP_IsNegative = "fp.isNegative"
show FP_IsPositive = "fp.isPositive"
-- | Non-linear operations
data NROp = NR_Sin
| NR_Cos
| NR_Tan
| NR_ASin
| NR_ACos
| NR_ATan
| NR_Sqrt
| NR_Sinh
| NR_Cosh
| NR_Tanh
| NR_Exp
| NR_Log
| NR_Pow
deriving (Eq, Ord, G.Data)
-- | The show instance carefully arranges for these to be printed as it can be understood by dreal
instance Show NROp where
show NR_Sin = "sin"
show NR_Cos = "cos"
show NR_Tan = "tan"
show NR_ASin = "asin"
show NR_ACos = "acos"
show NR_ATan = "atan"
show NR_Sinh = "sinh"
show NR_Cosh = "cosh"
show NR_Tanh = "tanh"
show NR_Sqrt = "sqrt"
show NR_Exp = "exp"
show NR_Log = "log"
show NR_Pow = "pow"
-- | Pseudo-boolean operations
data PBOp = PB_AtMost Int -- ^ At most k
| PB_AtLeast Int -- ^ At least k
| PB_Exactly Int -- ^ Exactly k
| PB_Le [Int] Int -- ^ At most k, with coefficients given. Generalizes PB_AtMost
| PB_Ge [Int] Int -- ^ At least k, with coefficients given. Generalizes PB_AtLeast
| PB_Eq [Int] Int -- ^ Exactly k, with coefficients given. Generalized PB_Exactly
deriving (Eq, Ord, Show, G.Data)
-- | Overflow operations
data OvOp = Overflow_SMul_OVFL -- ^ Signed multiplication overflow
| Overflow_SMul_UDFL -- ^ Signed multiplication underflow
| Overflow_UMul_OVFL -- ^ Unsigned multiplication overflow
deriving (Eq, Ord, G.Data)
-- | Show instance. It's important that these follow the internal z3 names
instance Show OvOp where
show Overflow_SMul_OVFL = "bvsmul_noovfl"
show Overflow_SMul_UDFL = "bvsmul_noudfl"
show Overflow_UMul_OVFL = "bvumul_noovfl"
-- | String operations. Note that we do not define @StrAt@ as it translates to 'StrSubstr' trivially.
data StrOp = StrConcat -- ^ Concatenation of one or more strings
| StrLen -- ^ String length
| StrUnit -- ^ Unit string
| StrNth -- ^ Nth element
| StrSubstr -- ^ Retrieves substring of @s@ at @offset@
| StrIndexOf -- ^ Retrieves first position of @sub@ in @s@, @-1@ if there are no occurrences
| StrContains -- ^ Does @s@ contain the substring @sub@?
| StrPrefixOf -- ^ Is @pre@ a prefix of @s@?
| StrSuffixOf -- ^ Is @suf@ a suffix of @s@?
| StrReplace -- ^ Replace the first occurrence of @src@ by @dst@ in @s@
| StrStrToNat -- ^ Retrieve integer encoded by string @s@ (ground rewriting only)
| StrNatToStr -- ^ Retrieve string encoded by integer @i@ (ground rewriting only)
| StrToCode -- ^ Equivalent to Haskell's ord
| StrFromCode -- ^ Equivalent to Haskell's chr
| StrInRe RegExp -- ^ Check if string is in the regular expression
deriving (Eq, Ord, G.Data)
-- | Regular-expression operators. The only thing we can do is to compare for equality/disequality.
data RegExOp = RegExEq RegExp RegExp
| RegExNEq RegExp RegExp
deriving (Eq, Ord, G.Data)
-- | Regular expressions. Note that regular expressions themselves are
-- concrete, but the 'Data.SBV.RegExp.match' function from the 'Data.SBV.RegExp.RegExpMatchable' class
-- can check membership against a symbolic string/character. Also, we
-- are preferring a datatype approach here, as opposed to coming up with
-- some string-representation; there are way too many alternatives
-- already so inventing one isn't a priority. Please get in touch if you
-- would like a parser for this type as it might be easier to use.
data RegExp = Literal String -- ^ Precisely match the given string
| All -- ^ Accept every string
| AllChar -- ^ Accept every single character
| None -- ^ Accept no strings
| Range Char Char -- ^ Accept range of characters
| Conc [RegExp] -- ^ Concatenation
| KStar RegExp -- ^ Kleene Star: Zero or more
| KPlus RegExp -- ^ Kleene Plus: One or more
| Opt RegExp -- ^ Zero or one
| Comp RegExp -- ^ Complement of regular expression
| Diff RegExp RegExp -- ^ Difference of regular expressions
| Loop Int Int RegExp -- ^ From @n@ repetitions to @m@ repetitions
| Power Int RegExp -- ^ Exactly @n@ repetitions, i.e., nth power
| Union [RegExp] -- ^ Union of regular expressions
| Inter RegExp RegExp -- ^ Intersection of regular expressions
deriving (Eq, Ord, G.Data)
-- | With overloaded strings, we can have direct literal regular expressions.
instance IsString RegExp where
fromString = Literal
-- | Regular expressions as a 'Num' instance. Note that only some operations make sense and
-- not in the most obvious way. For instance, we would typically expect @a - b@ to be the
-- same as @a + negate b@, but that equality does not hold in general. So, use the @Num@
-- instance only as constructing syntax, not doing algebraic manipulations.
instance Num RegExp where
-- flatten the concats to make them simpler
Conc xs * y = Conc (xs ++ [y])
x * Conc ys = Conc (x : ys)
x * y = Conc [x, y]
-- flatten the unions to make them simpler
Union xs + y = Union (xs ++ [y])
x + Union ys = Union (x : ys)
x + y = Union [x, y]
x - y = Diff x y
abs = error "Num.RegExp: no abs method"
signum = error "Num.RegExp: no signum method"
fromInteger x
| x == 0 = None
| x == 1 = Literal "" -- Unit for concatenation is the empty string
| True = error $ "Num.RegExp: Only 0 and 1 makes sense as a reg-exp, no meaning for: " ++ show x
negate = Comp
-- | Convert a reg-exp to a Haskell-like string
instance Show RegExp where
show = regExpToString show
-- | Convert a reg-exp to a SMT-lib acceptable representation
regExpToSMTString :: RegExp -> String
regExpToSMTString = regExpToString (\s -> '"' : stringToQFS s ++ "\"")
-- | Convert a RegExp to a string, parameterized by how strings are converted
regExpToString :: (String -> String) -> RegExp -> String
regExpToString fs (Literal s) = "(str.to.re " ++ fs s ++ ")"
regExpToString _ All = "re.all"
regExpToString _ AllChar = "re.allchar"
regExpToString _ None = "re.nostr"
regExpToString fs (Range ch1 ch2) = "(re.range " ++ fs [ch1] ++ " " ++ fs [ch2] ++ ")"
regExpToString _ (Conc []) = show (1 :: Integer)
regExpToString fs (Conc [x]) = regExpToString fs x
regExpToString fs (Conc xs) = "(re.++ " ++ unwords (map (regExpToString fs) xs) ++ ")"
regExpToString fs (KStar r) = "(re.* " ++ regExpToString fs r ++ ")"
regExpToString fs (KPlus r) = "(re.+ " ++ regExpToString fs r ++ ")"
regExpToString fs (Opt r) = "(re.opt " ++ regExpToString fs r ++ ")"
regExpToString fs (Comp r) = "(re.comp " ++ regExpToString fs r ++ ")"
regExpToString fs (Diff r1 r2) = "(re.diff " ++ regExpToString fs r1 ++ " " ++ regExpToString fs r2 ++ ")"
regExpToString fs (Loop lo hi r)
| lo >= 0, hi >= lo = "((_ re.loop " ++ show lo ++ " " ++ show hi ++ ") " ++ regExpToString fs r ++ ")"
| True = error $ "Invalid regular-expression Loop with arguments: " ++ show (lo, hi)
regExpToString fs (Power n r)
| n >= 0 = regExpToString fs (Loop n n r)
| True = error $ "Invalid regular-expression Power with arguments: " ++ show n
regExpToString fs (Inter r1 r2) = "(re.inter " ++ regExpToString fs r1 ++ " " ++ regExpToString fs r2 ++ ")"
regExpToString _ (Union []) = "re.nostr"
regExpToString fs (Union [x]) = regExpToString fs x
regExpToString fs (Union xs) = "(re.union " ++ unwords (map (regExpToString fs) xs) ++ ")"
-- | Show instance for @StrOp@. Note that the mapping here is important to match the SMTLib equivalents.
instance Show StrOp where
show StrConcat = "str.++"
show StrLen = "str.len"
show StrUnit = "str.unit" -- NB. This is actually a no-op, since in SMTLib characters are the same as strings.
show StrNth = "str.at"
show StrSubstr = "str.substr"
show StrIndexOf = "str.indexof"
show StrContains = "str.contains"
show StrPrefixOf = "str.prefixof"
show StrSuffixOf = "str.suffixof"
show StrReplace = "str.replace"
show StrStrToNat = "str.to.int" -- NB. SMTLib uses "int" here though only nats are supported
show StrNatToStr = "int.to.str" -- NB. SMTLib uses "int" here though only nats are supported
show StrToCode = "str.to_code"
show StrFromCode = "str.from_code"
-- Note the breakage here with respect to argument order. We fix this explicitly later.
show (StrInRe s) = "str.in.re " ++ regExpToSMTString s
-- | Show instance for @RegExOp@.
instance Show RegExOp where
show (RegExEq r1 r2) = "(= " ++ regExpToSMTString r1 ++ " " ++ regExpToSMTString r2 ++ ")"
show (RegExNEq r1 r2) = "(distinct " ++ regExpToSMTString r1 ++ " " ++ regExpToSMTString r2 ++ ")"
-- | Sequence operations.
data SeqOp = SeqConcat -- ^ See StrConcat
| SeqLen -- ^ See StrLen
| SeqUnit -- ^ See StrUnit
| SeqNth -- ^ See StrNth
| SeqSubseq -- ^ See StrSubseq
| SeqIndexOf -- ^ See StrIndexOf
| SeqContains -- ^ See StrContains
| SeqPrefixOf -- ^ See StrPrefixOf
| SeqSuffixOf -- ^ See StrSuffixOf
| SeqReplace -- ^ See StrReplace
| SeqMap String -- ^ Mapping over sequences
| SeqMapI String -- ^ Mapping over sequences with offset
| SeqFoldLeft String -- ^ Folding of sequences
| SeqFoldLeftI String -- ^ Folding of sequences with offset
| SBVReverse Kind -- ^ Reversal of sequences. NB. Also works for strings; hence the name.
deriving (Eq, Ord, G.Data)
-- | Show instance for SeqOp. Again, mapping is important.
instance Show SeqOp where
show SeqConcat = "seq.++"
show SeqLen = "seq.len"
show SeqUnit = "seq.unit"
show SeqNth = "seq.nth"
show SeqSubseq = "seq.extract"
show SeqIndexOf = "seq.indexof"
show SeqContains = "seq.contains"
show SeqPrefixOf = "seq.prefixof"
show SeqSuffixOf = "seq.suffixof"
show SeqReplace = "seq.replace"
show (SeqMap s) = "seq.map " ++ s
show (SeqMapI s) = "seq.mapi " ++ s
show (SeqFoldLeft s) = "seq.foldl " ++ s
show (SeqFoldLeftI s) = "seq.foldli " ++ s
-- Note: This isn't part of SMTLib, we explicitly handle it
show (SBVReverse k) = "sbv.reverse[" ++ show k ++ "]"
-- | Set operations.
data SetOp = SetEqual
| SetMember
| SetInsert
| SetDelete
| SetIntersect
| SetUnion
| SetSubset
| SetDifference
| SetComplement
| SetHasSize
deriving (Eq, Ord, G.Data)
-- The show instance for 'SetOp' is merely for debugging, we map them separately so
-- the mapped strings are less important here.
instance Show SetOp where
show SetEqual = "=="
show SetMember = "Set.member"
show SetInsert = "Set.insert"
show SetDelete = "Set.delete"
show SetIntersect = "Set.intersect"
show SetUnion = "Set.union"
show SetSubset = "Set.subset"
show SetDifference = "Set.difference"
show SetComplement = "Set.complement"
show SetHasSize = "Set.setHasSize"
-- Show instance for 'Op'. Note that this is largely for debugging purposes, not used
-- for being read by any tool.
instance Show Op where
show Shl = "<<"
show Shr = ">>"
show (Rol i) = "<<<" ++ show i
show (Ror i) = ">>>" ++ show i
show (Extract i j) = "choose [" ++ show i ++ ":" ++ show j ++ "]"
show (LkUp (ti, at, rt, l) i e)
= "lookup(" ++ tinfo ++ ", " ++ show i ++ ", " ++ show e ++ ")"
where tinfo = "table" ++ show ti ++ "(" ++ show at ++ " -> " ++ show rt ++ ", " ++ show l ++ ")"
show (ArrEq i j) = "array_" ++ show i ++ " == array_" ++ show j
show (ArrRead i) = "select array_" ++ show i
show (KindCast fr to) = "cast_" ++ show fr ++ "_" ++ show to
show (Uninterpreted i) = "[uninterpreted] " ++ i
show (QuantifiedBool i) = "[quantified boolean] " ++ i
show (Label s) = "[label] " ++ s
show (IEEEFP w) = show w
show (NonLinear w) = show w
show (PseudoBoolean p) = show p
show (OverflowOp o) = show o
show (StrOp s) = show s
show (RegExOp s) = show s
show (SeqOp s) = show s
show (SetOp s) = show s
show (TupleConstructor 0) = "mkSBVTuple0"
show (TupleConstructor n) = "mkSBVTuple" ++ show n
show (TupleAccess i n) = "proj_" ++ show i ++ "_SBVTuple" ++ show n
-- Remember, while we try to maintain SMTLib compabitibility here, these output
-- is merely for debugging purposes. For how we actually render these in SMTLib,
-- look at the file SBV/SMT/SMTLib2.hs for these constructors.
show (EitherConstructor k1 k2 False) = "(_ left_SBVEither " ++ show (KEither k1 k2) ++ ")"
show (EitherConstructor k1 k2 True ) = "(_ right_SBVEither " ++ show (KEither k1 k2) ++ ")"
show (EitherIs k1 k2 False) = "(_ is (left_SBVEither (" ++ show k1 ++ ") " ++ show (KEither k1 k2) ++ "))"
show (EitherIs k1 k2 True ) = "(_ is (right_SBVEither (" ++ show k2 ++ ") " ++ show (KEither k1 k2) ++ "))"
show (EitherAccess False) = "get_left_SBVEither"
show (EitherAccess True ) = "get_right_SBVEither"
show RationalConstructor = "SBV.Rational"
show (MaybeConstructor k False) = "(_ nothing_SBVMaybe " ++ show (KMaybe k) ++ ")"
show (MaybeConstructor k True) = "(_ just_SBVMaybe " ++ show (KMaybe k) ++ ")"
show (MaybeIs k False) = "(_ is (nothing_SBVMaybe () " ++ show (KMaybe k) ++ "))"
show (MaybeIs k True ) = "(_ is (just_SBVMaybe (" ++ show k ++ ") " ++ show (KMaybe k) ++ "))"
show MaybeAccess = "get_just_SBVMaybe"
show op
| Just s <- op `lookup` syms = s
| True = error "impossible happened; can't find op!"
where syms = [ (Plus, "+"), (Times, "*"), (Minus, "-"), (UNeg, "-"), (Abs, "abs")
, (Quot, "quot")
, (Rem, "rem")
, (Equal, "=="), (NotEqual, "/="), (Implies, "=>")
, (LessThan, "<"), (GreaterThan, ">"), (LessEq, "<="), (GreaterEq, ">=")
, (Ite, "if_then_else")
, (And, "&"), (Or, "|"), (XOr, "^"), (Not, "~")
, (Join, "#")
]
-- | Quantifiers: forall or exists. Note that we allow arbitrary nestings.
data Quantifier = ALL | EX deriving Eq
-- | Show instance for 'Quantifier'
instance Show Quantifier where
show ALL = "Forall"
show EX = "Exists"
-- | Which context is this variable being created?
data VarContext = NonQueryVar (Maybe Quantifier) -- in this case, it can be quantified
| QueryVar -- in this case, it is always existential
-- | Are there any existential quantifiers?
needsExistentials :: [Quantifier] -> Bool
needsExistentials = (EX `elem`)
-- | A simple type for SBV computations, used mainly for uninterpreted constants.
-- We keep track of the signedness/size of the arguments. A non-function will
-- have just one entry in the list.
newtype SBVType = SBVType [Kind]
deriving (Eq, Ord)
instance Show SBVType where
show (SBVType []) = error "SBV: internal error, empty SBVType"
show (SBVType xs) = intercalate " -> " $ map show xs
-- | A symbolic expression
data SBVExpr = SBVApp !Op ![SV]
deriving (Eq, Ord, G.Data)
-- | To improve hash-consing, take advantage of commutative operators by
-- reordering their arguments.
reorder :: SBVExpr -> SBVExpr
reorder s = case s of
SBVApp op [a, b] | isCommutative op && a > b -> SBVApp op [b, a]
_ -> s
where isCommutative :: Op -> Bool
isCommutative o = o `elem` [Plus, Times, Equal, NotEqual, And, Or, XOr]
-- Show instance for 'SBVExpr'. Again, only for debugging purposes.
instance Show SBVExpr where
show (SBVApp Ite [t, a, b]) = unwords ["if", show t, "then", show a, "else", show b]
show (SBVApp Shl [a, i]) = unwords [show a, "<<", show i]
show (SBVApp Shr [a, i]) = unwords [show a, ">>", show i]
show (SBVApp (Rol i) [a]) = unwords [show a, "<<<", show i]
show (SBVApp (Ror i) [a]) = unwords [show a, ">>>", show i]
show (SBVApp (PseudoBoolean pb) args) = unwords (show pb : map show args)
show (SBVApp (OverflowOp op) args) = unwords (show op : map show args)
show (SBVApp op [a, b]) = unwords [show a, show op, show b]
show (SBVApp op args) = unwords (show op : map show args)
-- | A program is a sequence of assignments
newtype SBVPgm = SBVPgm {pgmAssignments :: S.Seq (SV, SBVExpr)}
-- | Helper synonym for text, in case we switch to something else later.
type Name = T.Text
-- | 'NamedSymVar' pairs symbolic values and user given/automatically generated names
data NamedSymVar = NamedSymVar !SV !Name
deriving (Show, Generic)
-- | For comparison purposes, we simply use the SV and ignore the name
instance Eq NamedSymVar where
(==) (NamedSymVar l _) (NamedSymVar r _) = l == r
instance Ord NamedSymVar where
compare (NamedSymVar l _) (NamedSymVar r _) = compare l r
-- | Convert to a named symvar, from string
toNamedSV' :: SV -> String -> NamedSymVar
toNamedSV' s = NamedSymVar s . T.pack
-- | Convert to a named symvar, from text
toNamedSV :: SV -> Name -> NamedSymVar
toNamedSV = NamedSymVar
-- | Get the node id from a named sym var
namedNodeId :: NamedSymVar -> NodeId
namedNodeId = swNodeId . getSV
-- | Get the SV from a named sym var
getSV :: NamedSymVar -> SV
getSV (NamedSymVar s _) = s
-- | Get the user-name typed value from named sym var
getUserName :: NamedSymVar -> Name
getUserName (NamedSymVar _ nm) = nm
-- | Get the string typed value from named sym var
getUserName' :: NamedSymVar -> String
getUserName' = T.unpack . getUserName
-- | Style of optimization. Note that in the pareto case the user is allowed
-- to specify a max number of fronts to query the solver for, since there might
-- potentially be an infinite number of them and there is no way to know exactly
-- how many ahead of time. If 'Nothing' is given, SBV will possibly loop forever
-- if the number is really infinite.
data OptimizeStyle = Lexicographic -- ^ Objectives are optimized in the order given, earlier objectives have higher priority.
| Independent -- ^ Each objective is optimized independently.
| Pareto (Maybe Int) -- ^ Objectives are optimized according to pareto front: That is, no objective can be made better without making some other worse.
deriving (Eq, Show)
-- | Penalty for a soft-assertion. The default penalty is @1@, with all soft-assertions belonging
-- to the same objective goal. A positive weight and an optional group can be provided by using
-- the 'Penalty' constructor.
data Penalty = DefaultPenalty -- ^ Default: Penalty of @1@ and no group attached
| Penalty Rational (Maybe String) -- ^ Penalty with a weight and an optional group
deriving Show
-- | Objective of optimization. We can minimize, maximize, or give a soft assertion with a penalty
-- for not satisfying it.
data Objective a = Minimize String a -- ^ Minimize this metric
| Maximize String a -- ^ Maximize this metric
| AssertWithPenalty String a Penalty -- ^ A soft assertion, with an associated penalty
deriving (Show, Functor)
-- | The name of the objective
objectiveName :: Objective a -> String
objectiveName (Minimize s _) = s
objectiveName (Maximize s _) = s
objectiveName (AssertWithPenalty s _ _) = s
-- | The state we keep track of as we interact with the solver
data QueryState = QueryState { queryAsk :: Maybe Int -> String -> IO String
, querySend :: Maybe Int -> String -> IO ()
, queryRetrieveResponse :: Maybe Int -> IO String
, queryConfig :: SMTConfig
, queryTerminate :: IO ()
, queryTimeOutValue :: Maybe Int
, queryAssertionStackDepth :: Int
}
-- | Computations which support query operations.
class Monad m => MonadQuery m where
queryState :: m State
default queryState :: (MonadTrans t, MonadQuery m', m ~ t m') => m State
queryState = lift queryState
instance MonadQuery m => MonadQuery (ExceptT e m)
instance MonadQuery m => MonadQuery (MaybeT m)
instance MonadQuery m => MonadQuery (ReaderT r m)
instance MonadQuery m => MonadQuery (SS.StateT s m)
instance MonadQuery m => MonadQuery (LS.StateT s m)
instance (MonadQuery m, Monoid w) => MonadQuery (SW.WriterT w m)
instance (MonadQuery m, Monoid w) => MonadQuery (LW.WriterT w m)
-- | A query is a user-guided mechanism to directly communicate and extract
-- results from the solver. A generalization of 'Data.SBV.Query'.
newtype QueryT m a = QueryT { runQueryT :: ReaderT State m a }
deriving (Applicative, Functor, Monad, MonadIO, MonadTrans,
MonadError e, MonadState s, MonadWriter w)
instance Monad m => MonadQuery (QueryT m) where
queryState = QueryT ask
mapQueryT :: (ReaderT State m a -> ReaderT State n b) -> QueryT m a -> QueryT n b
mapQueryT f = QueryT . f . runQueryT
{-# INLINE mapQueryT #-}
-- | Create a fresh variable of some type in the underlying query monad transformer.
-- For further control on how these variables are projected and embedded, see the
-- 'Queriable' class.
class Fresh m a where
fresh :: QueryT m a
-- | An queriable value. This is a generalization of the 'Fresh' class, in case one needs
-- to be more specific about how projections/embeddings are done.
class Queriable m a where
type QueryResult a :: Type
-- | ^ Create a new symbolic value of type @a@
create :: QueryT m a
-- | ^ Extract the current value in a SAT context
project :: a -> QueryT m (QueryResult a)
-- | ^ Create a literal value. Morally, 'embed' and 'project' are inverses of each other
-- via the 'QueryT' monad transformer.
embed :: QueryResult a -> QueryT m a
-- Have to define this one by hand, because we use ReaderT in the implementation
instance MonadReader r m => MonadReader r (QueryT m) where
ask = lift ask
local f = mapQueryT $ mapReaderT $ local f
-- | A query is a user-guided mechanism to directly communicate and extract
-- results from the solver.
type Query = QueryT IO
instance MonadSymbolic Query where
symbolicEnv = queryState
instance NFData OptimizeStyle where
rnf x = x `seq` ()
instance NFData Penalty where
rnf DefaultPenalty = ()
rnf (Penalty p mbs) = rnf p `seq` rnf mbs
instance NFData a => NFData (Objective a) where
rnf (Minimize s a) = rnf s `seq` rnf a
rnf (Maximize s a) = rnf s `seq` rnf a
rnf (AssertWithPenalty s a p) = rnf s `seq` rnf a `seq` rnf p
-- | A result can either produce something at the top or as a lambda/constraint. Distinguish by inputs
data ResultInp = ResultTopInps ([NamedSymVar], [NamedSymVar]) -- user inputs -- trackers
| ResultLamInps [(Quantifier, NamedSymVar)] -- for constraints, we can have quantifiers
instance NFData ResultInp where
rnf (ResultTopInps xs) = rnf xs
rnf (ResultLamInps xs) = rnf xs
-- | Several data about the program
data ProgInfo = ProgInfo { hasQuants :: Bool
, progSpecialRels :: [SpecialRelOp]
, progTransClosures :: [(String, String)]
}
instance NFData ProgInfo where
rnf (ProgInfo a b c) = rnf a `seq` rnf b `seq` rnf c
-- | Result of running a symbolic computation
data Result = Result { progInfo :: ProgInfo -- ^ various info we collect about the program
, reskinds :: Set.Set Kind -- ^ kinds used in the program
, resTraces :: [(String, CV)] -- ^ quick-check counter-example information (if any)
, resObservables :: [(String, CV -> Bool, SV)] -- ^ observable expressions (part of the model)
, resUISegs :: [(String, [String])] -- ^ uninterpeted code segments
, resParams :: ResultInp -- ^ top-inputs or lambda params
, resConsts :: (CnstMap, [(SV, CV)]) -- ^ constants
, resTables :: [((Int, Kind, Kind), [SV])] -- ^ tables (automatically constructed) (tableno, index-type, result-type) elts
, resArrays :: [(Int, ArrayInfo)] -- ^ arrays (user specified)
, resUIConsts :: [(String, (Maybe [String], SBVType))] -- ^ uninterpreted constants
, resDefinitions :: [SMTDef] -- ^ definitions created via smtFunction or lambda
, resAsgns :: SBVPgm -- ^ assignments
, resConstraints :: S.Seq (Bool, [(String, String)], SV) -- ^ additional constraints (boolean)
, resAssertions :: [(String, Maybe CallStack, SV)] -- ^ assertions
, resOutputs :: [SV] -- ^ outputs
}
-- Show instance for 'Result'. Only for debugging purposes.
instance Show Result where
-- If there's nothing interesting going on, just print the constant. Note that the
-- definition of interesting here is rather subjective; but essentially if we reduced
-- the result to a single constant already, without any reference to anything.
show Result{resConsts=(_, cs), resOutputs=[r]}
| Just c <- r `lookup` cs
= show c
show (Result _ kinds _ _ cgs params (_, cs) ts as uis defns xs cstrs asserts os) = intercalate "\n" $
(if null usorts then [] else "SORTS" : map (" " ++) usorts)
++ (case params of
ResultTopInps (i, t) -> "INPUTS" : map shn i ++ (if null t then [] else "TRACKER VARS" : map shn t)
ResultLamInps qs -> "LAMBDA-CONSTRAINT PARAMS" : map shq qs
)
++ ["CONSTANTS"]
++ concatMap shc cs
++ ["TABLES"]
++ map sht ts
++ ["ARRAYS"]
++ map sha as
++ ["UNINTERPRETED CONSTANTS"]
++ map shui uis
++ ["USER GIVEN CODE SEGMENTS"]
++ concatMap shcg cgs
++ ["AXIOMS-DEFINITIONS"]
++ map show defns
++ ["DEFINE"]
++ map (\(s, e) -> " " ++ shs s ++ " = " ++ show e) (F.toList (pgmAssignments xs))
++ ["CONSTRAINTS"]
++ map ((" " ++) . shCstr) (F.toList cstrs)
++ ["ASSERTIONS"]
++ map ((" "++) . shAssert) asserts
++ ["OUTPUTS"]
++ sh2 os
where sh2 :: Show a => [a] -> [String]
sh2 = map ((" "++) . show)
usorts = [sh s t | KUserSort s t <- Set.toList kinds]
where sh s Nothing = s
sh s (Just es) = s ++ " (" ++ intercalate ", " es ++ ")"
shs sv = show sv ++ " :: " ++ show (swKind sv)
sht ((i, at, rt), es) = " Table " ++ show i ++ " : " ++ show at ++ "->" ++ show rt ++ " = " ++ show es
shc (sv, cv)
| sv == falseSV || sv == trueSV
= []
| True
= [" " ++ show sv ++ " = " ++ show cv]
shcg (s, ss) = ("Variable: " ++ s) : map (" " ++) ss
shn (NamedSymVar sv nm) = " " <> ni <> " :: " ++ show (swKind sv) ++ alias
where ni = show sv
alias | ni == T.unpack nm = ""
| True = ", aliasing " ++ show nm
shq (q, v) = shn v ++ ", " ++ if q == ALL then "universal" else "existential"
sha (i, (nm, (ai, bi), ctx)) = " " ++ ni ++ " :: " ++ show ai ++ " -> " ++ show bi ++ alias
++ "\n Context: " ++ show ctx
where ni = "array_" ++ show i
alias | ni == nm = ""
| True = ", aliasing " ++ show nm
shui (nm, t) = " [uninterpreted] " ++ nm ++ " :: " ++ show t
shCstr (isSoft, [], c) = soft isSoft ++ show c
shCstr (isSoft, [(":named", nm)], c) = soft isSoft ++ nm ++ ": " ++ show c
shCstr (isSoft, attrs, c) = soft isSoft ++ show c ++ " (attributes: " ++ show attrs ++ ")"
soft True = "[SOFT] "
soft False = ""
shAssert (nm, stk, p) = " -- assertion: " ++ nm ++ " " ++ maybe "[No location]"
#if MIN_VERSION_base(4,9,0)
prettyCallStack
#else
showCallStack
#endif
stk ++ ": " ++ show p
-- | The context of a symbolic array as created
data ArrayContext = ArrayFree (Either (Maybe SV) String) -- ^ A new array, the contents are initialized with the given value, if any, or the custom lambda given
| ArrayMutate ArrayIndex SV SV -- ^ An array created by mutating another array at a given cell
| ArrayMerge SV ArrayIndex ArrayIndex -- ^ An array created by symbolically merging two other arrays
instance Show ArrayContext where
show (ArrayFree (Left Nothing)) = " initialized with random elements"
show (ArrayFree (Left (Just sv))) = " initialized with " ++ show sv
show (ArrayFree (Right lambda)) = " initialized with " ++ show lambda
show (ArrayMutate i a b) = " cloned from array_" ++ show i ++ " with " ++ show a ++ " :: " ++ show (swKind a) ++ " |-> " ++ show b ++ " :: " ++ show (swKind b)
show (ArrayMerge s i j) = " merged arrays " ++ show i ++ " and " ++ show j ++ " on condition " ++ show s
-- | Expression map, used for hash-consing
type ExprMap = Map.Map SBVExpr SV
-- | Constants are stored in a map, for hash-consing.
type CnstMap = Map.Map CV SV
-- | Kinds used in the program; used for determining the final SMT-Lib logic to pick
type KindSet = Set.Set Kind
-- | Tables generated during a symbolic run
type TableMap = Map.Map (Kind, Kind, [SV]) Int
-- | Representation for symbolic arrays
type ArrayInfo = (String, (Kind, Kind), ArrayContext)
-- | SMT Arrays generated during a symbolic run
type ArrayMap = IMap.IntMap ArrayInfo
-- | Uninterpreted-constants generated during a symbolic run
type UIMap = Map.Map String (Maybe [String], SBVType)
-- | Code-segments for Uninterpreted-constants, as given by the user
type CgMap = Map.Map String [String]
-- | Cached values, implementing sharing
type Cache a = IMap.IntMap [(StableName (State -> IO a), a)]
-- | Stage of an interactive run
data IStage = ISetup -- Before we initiate contact.
| ISafe -- In the context of a safe/safeWith call
| IRun -- After the contact is started
-- | Are we checking safety
isSafetyCheckingIStage :: IStage -> Bool
isSafetyCheckingIStage s = case s of
ISetup -> False
ISafe -> True
IRun -> False
-- | Are we in setup?
isSetupIStage :: IStage -> Bool
isSetupIStage s = case s of
ISetup -> True
ISafe -> False
IRun -> True
-- | Are we in a run?
isRunIStage :: IStage -> Bool
isRunIStage s = case s of
ISetup -> False
ISafe -> False
IRun -> True
-- | Different means of running a symbolic piece of code
data SBVRunMode = SMTMode QueryContext IStage Bool SMTConfig -- ^ In regular mode, with a stage. Bool is True if this is SAT.
| CodeGen -- ^ Code generation mode.
| LambdaGen Int -- ^ Inside a lambda-expression at level
| Concrete (Maybe (Bool, [(NamedSymVar, CV)])) -- ^ Concrete simulation mode, with given environment if any. If Nothing: Random.
-- Show instance for SBVRunMode; debugging purposes only
instance Show SBVRunMode where
show (SMTMode qc ISetup True _) = "Satisfiability setup (" ++ show qc ++ ")"
show (SMTMode qc ISafe True _) = "Safety setup (" ++ show qc ++ ")"
show (SMTMode qc IRun True _) = "Satisfiability (" ++ show qc ++ ")"
show (SMTMode qc ISetup False _) = "Proof setup (" ++ show qc ++ ")"
show (SMTMode qc ISafe False _) = error $ "ISafe-False is not an expected/supported combination for SBVRunMode! (" ++ show qc ++ ")"
show (SMTMode qc IRun False _) = "Proof (" ++ show qc ++ ")"
show CodeGen = "Code generation"
show LambdaGen{} = "Lambda generation"
show (Concrete Nothing) = "Concrete evaluation with random values"
show (Concrete (Just (True, _))) = "Concrete evaluation during model validation for sat"
show (Concrete (Just (False, _))) = "Concrete evaluation during model validation for prove"
-- | Is this a CodeGen run? (i.e., generating code)
isCodeGenMode :: State -> IO Bool
isCodeGenMode State{runMode} = do rm <- readIORef runMode
return $ case rm of
Concrete{} -> False
SMTMode{} -> False
LambdaGen{} -> False
CodeGen -> True
-- | The state in query mode, i.e., additional context
data IncState = IncState { rNewInps :: IORef [NamedSymVar] -- always existential!
, rNewKinds :: IORef KindSet
, rNewConsts :: IORef CnstMap
, rNewArrs :: IORef ArrayMap
, rNewTbls :: IORef TableMap
, rNewUIs :: IORef UIMap
, rNewAsgns :: IORef SBVPgm
, rNewConstraints :: IORef (S.Seq (Bool, [(String, String)], SV))
}
-- | Get a new IncState
newIncState :: IO IncState
newIncState = do
is <- newIORef []
ks <- newIORef Set.empty
nc <- newIORef Map.empty
am <- newIORef IMap.empty
tm <- newIORef Map.empty
ui <- newIORef Map.empty
pgm <- newIORef (SBVPgm S.empty)
cstrs <- newIORef S.empty
return IncState { rNewInps = is
, rNewKinds = ks
, rNewConsts = nc
, rNewArrs = am
, rNewTbls = tm
, rNewUIs = ui
, rNewAsgns = pgm
, rNewConstraints = cstrs
}
-- | Get a new IncState
withNewIncState :: State -> (State -> IO a) -> IO (IncState, a)
withNewIncState st cont = do
is <- newIncState
R.modifyIORef' (rIncState st) (const is)
r <- cont st
finalIncState <- readIORef (rIncState st)
return (finalIncState, r)
-- | User defined inputs
type UserInputs = S.Seq NamedSymVar
-- | Internally declared
type InternInps = S.Seq NamedSymVar
-- | Entire set of names, for faster lookup
type AllInps = Set.Set Name
-- | Inputs as a record of maps and sets. See above type-synonyms for their roles.
data Inputs = Inputs { userInputs :: !UserInputs
, internInputs :: !InternInps
, allInputs :: !AllInps
} deriving (Eq,Show)
-- | Inputs to a lambda-abstraction. These are quantified to handle constraints
type LambdaInputs = S.Seq (Quantifier, NamedSymVar)
-- | Semigroup instance; combining according to indexes.
instance Semigroup Inputs where
(Inputs lui lii lai) <> (Inputs rui rii rai) = Inputs (lui <> rui) (lii <> rii) (lai <> rai)
-- | Monoid instance, we start with no maps.
instance Monoid Inputs where
mempty = Inputs { userInputs = mempty
, internInputs = mempty
, allInputs = mempty
}
-- | Modify the user-inputs field
onUserInputs :: (UserInputs -> UserInputs) -> Inputs -> Inputs
onUserInputs f inp@Inputs{userInputs} = inp{userInputs = f userInputs}
-- | Modify the internal-inputs field
onInternInputs :: (InternInps -> InternInps) -> Inputs -> Inputs
onInternInputs f inp@Inputs{internInputs} = inp{internInputs = f internInputs}
-- | Modify the all-inputs field
onAllInputs :: (AllInps -> AllInps) -> Inputs -> Inputs
onAllInputs f inp@Inputs{allInputs} = inp{allInputs = f allInputs}
-- | Add a new internal input
addInternInput :: SV -> Name -> Inputs -> Inputs
addInternInput sv nm = goAll . goIntern
where !new = toNamedSV sv nm
goIntern = onInternInputs (S.|> new)
goAll = onAllInputs (Set.insert nm)
-- | Add a new user input
addUserInput :: SV -> Name -> Inputs -> Inputs
addUserInput sv nm = goAll . goUser
where new = toNamedSV sv nm
goUser = onUserInputs (S.|> new) -- add to the end of the sequence
goAll = onAllInputs (Set.insert nm)
-- | Find a user-input from its SV. Note that only level-0 vars
-- can be found this way.
lookupInput :: Eq a => (a -> SV) -> SV -> S.Seq a -> Maybe a
lookupInput f sv ns
| l == 0 = res
| True = Nothing -- l != 0, a lambda var, so we ignore
where
(l, i) = getId (swNodeId sv)
svs = fmap f ns
res = case S.lookup i ns of -- Nothing on negative Int or Int > length seq
Nothing -> secondLookup
x@(Just e) -> if sv == f e then x else secondLookup
-- we try the fast lookup first, if the node ids don't match then
-- we use the more expensive O (n) to find the index and the elem
secondLookup = S.elemIndexL sv svs >>= flip S.lookup ns
-- | A defined function/value
data SMTDef = SMTDef String -- ^ Defined functions -- name
Kind -- ^ Final kind of the definition (resulting kind, not the params)
[String] -- ^ other definitions it refers to
(Maybe String) -- ^ parameter string
(Int -> String) -- ^ Body, in SMTLib syntax, given the tab amount
| SMTLam Kind -- ^ Final kind of the definition (resulting kind, not the params)
[String] -- ^ Anonymous function -- other definitions it refers to
(Maybe String) -- ^ parameter string
(Int -> String) -- ^ Body, in SMTLib syntax, given the tab amount
-- | For debug purposes
instance Show SMTDef where
show d = case d of
SMTDef nm fk frees p body -> shDef (Just nm) fk frees p body
SMTLam fk frees p body -> shDef Nothing fk frees p body
where shDef mbNm fk frees p body = unlines [ "-- User defined function: " ++ fromMaybe "Anonymous" mbNm
, "-- Final return type : " ++ show fk
, "-- Refers to : " ++ intercalate ", " frees
, "-- Parameters : " ++ fromMaybe "NONE" p
, "-- Body : "
, body 2
]
-- The name of this definition
smtDefGivenName :: SMTDef -> Maybe String
smtDefGivenName (SMTDef n _ _ _ _) = Just n
smtDefGivenName SMTLam{} = Nothing
-- | NFData instance for SMTDef
instance NFData SMTDef where
rnf (SMTDef n fk frees params body) = rnf n `seq` rnf fk `seq` rnf frees `seq` rnf params `seq` rnf body
rnf (SMTLam fk frees params body) = rnf fk `seq` rnf frees `seq` rnf params `seq` rnf body
-- | The state of the symbolic interpreter
data State = State { pathCond :: SVal -- ^ kind KBool
, stCfg :: SMTConfig
, startTime :: UTCTime
, rProgInfo :: IORef ProgInfo
, runMode :: IORef SBVRunMode
, rIncState :: IORef IncState
, rCInfo :: IORef [(String, CV)]
, rObservables :: IORef (S.Seq (Name, CV -> Bool, SV))
, rctr :: IORef Int
, rLambdaLevel :: IORef Int
, rUsedKinds :: IORef KindSet
, rUsedLbls :: IORef (Set.Set String)
, rinps :: IORef Inputs
, rlambdaInps :: IORef LambdaInputs
, rConstraints :: IORef (S.Seq (Bool, [(String, String)], SV))
, routs :: IORef [SV]
, rtblMap :: IORef TableMap
, spgm :: IORef SBVPgm
, rconstMap :: IORef CnstMap
, rexprMap :: IORef ExprMap
, rArrayMap :: IORef ArrayMap
, rUIMap :: IORef UIMap
, rUserFuncs :: IORef (Set.Set String) -- Functions that the user wanted explicit code generation for
, rCgMap :: IORef CgMap
, rDefns :: IORef [SMTDef]
, rSMTOptions :: IORef [SMTOption]
, rOptGoals :: IORef [Objective (SV, SV)]
, rAsserts :: IORef [(String, Maybe CallStack, SV)]
, rSVCache :: IORef (Cache SV)
, rAICache :: IORef (Cache ArrayIndex)
, rQueryState :: IORef (Maybe QueryState)
, parentState :: Maybe State -- Pointer to our parent if we're in a sublevel
}
-- | Chase to the root state. No infinite chains!
getRootState :: State -> State
getRootState st = maybe st getRootState (parentState st)
-- NFData is a bit of a lie, but it's sufficient, most of the content is iorefs that we don't want to touch
instance NFData State where
rnf State{} = ()
-- | Get the current path condition
getSValPathCondition :: State -> SVal
getSValPathCondition = pathCond
-- | Extend the path condition with the given test value.
extendSValPathCondition :: State -> (SVal -> SVal) -> State
extendSValPathCondition st f = st{pathCond = f (pathCond st)}
-- | Are we running in proof mode?
inSMTMode :: State -> IO Bool
inSMTMode State{runMode} = do rm <- readIORef runMode
return $ case rm of
CodeGen -> False
LambdaGen{} -> False
Concrete{} -> False
SMTMode{} -> True
-- | The "Symbolic" value. Either a constant (@Left@) or a symbolic
-- value (@Right Cached@). Note that caching is essential for making
-- sure sharing is preserved.
data SVal = SVal !Kind !(Either CV (Cached SV))
instance HasKind SVal where
kindOf (SVal k _) = k
-- Show instance for 'SVal'. Not particularly "desirable", but will do if needed
-- NB. We do not show the type info on constant KBool values, since there's no
-- implicit "fromBoolean" applied to Booleans in Haskell; and thus a statement
-- of the form "True :: SBool" is just meaningless. (There should be a fromBoolean!)
instance Show SVal where
show (SVal KBool (Left c)) = showCV False c
show (SVal k (Left c)) = showCV False c ++ " :: " ++ show k
show (SVal k (Right _)) = "<symbolic> :: " ++ show k
-- | This instance is only defined so that we can define an instance for
-- 'Data.Bits.Bits'. '==' and '/=' simply throw an error.
-- We really don't want an 'Eq' instance for 'Data.SBV.Core.SBV' or 'SVal'. As it really makes no sense.
-- But since we do want the 'Data.Bits.Bits' instance, we're forced to define equality. See
-- <http://github.com/LeventErkok/sbv/issues/301>. We simply error out.
instance Eq SVal where
a == b = noEquals "==" ".==" (show a, show b)
a /= b = noEquals "/=" "./=" (show a, show b)
-- Bail out nicely.
noEquals :: String -> String -> (String, String) -> a
noEquals o n (l, r) = error $ unlines [ ""
, "*** Data.SBV: Comparing symbolic values using Haskell's Eq class!"
, "***"
, "*** Received: " ++ l ++ " " ++ o ++ " " ++ r
, "*** Instead use: " ++ l ++ " " ++ n ++ " " ++ r
, "***"
, "*** The Eq instance for symbolic values are necessiated only because"
, "*** of the Bits class requirement. You must use symbolic equality"
, "*** operators instead. (And complain to Haskell folks that they"
, "*** remove the 'Eq' superclass from 'Bits'!.)"
]
-- | Things we do not support in interactive mode, at least for now!
noInteractive :: [String] -> a
noInteractive ss = error $ unlines $ ""
: "*** Data.SBV: Unsupported interactive/query mode feature."
: map ("*** " ++) ss
++ ["*** Data.SBV: Please report this as a feature request!"]
-- | Things we do not support in interactive mode, nor we ever intend to
noInteractiveEver :: [String] -> a
noInteractiveEver ss = error $ unlines $ ""
: "*** Data.SBV: Unsupported interactive/query mode feature."
: map ("*** " ++) ss
-- | Modification of the state, but carefully handling the interactive tasks.
-- Note that the state is always updated regardless of the mode, but we get
-- to also perform extra operation in interactive mode. (Typically error out, but also simply
-- ignore if it has no impact.)
modifyState :: State -> (State -> IORef a) -> (a -> a) -> IO () -> IO ()
modifyState st@State{runMode} field update interactiveUpdate = do
R.modifyIORef' (field st) update
rm <- readIORef runMode
case rm of
SMTMode _ IRun _ _ -> interactiveUpdate
_ -> return ()
-- | Modify the incremental state
modifyIncState :: State -> (IncState -> IORef a) -> (a -> a) -> IO ()
modifyIncState State{rIncState} field update = do
incState <- readIORef rIncState
R.modifyIORef' (field incState) update
-- | Add an observable
-- notice that we cons like a list, we should build at the end of the seq, but cons to preserve semantics for now
recordObservable :: State -> String -> (CV -> Bool) -> SV -> IO ()
recordObservable st (T.pack -> nm) chk sv = modifyState st rObservables ((nm, chk, sv) S.<|) (return ())
-- | Increment the variable counter
incrementInternalCounter :: State -> IO Int
incrementInternalCounter st = do ctr <- readIORef (rctr st)
modifyState st rctr (+1) (return ())
return ctr
{-# INLINE incrementInternalCounter #-}
-- | Kind of code we have for uninterpretation
data UICodeKind = UINone -- no code
| UISMT SMTDef -- SMTLib, first argument are the free-variables in it
| UICgC [String] -- Code-gen, currently only C
-- | Uninterpreted constants and functions. An uninterpreted constant is
-- a value that is indexed by its name. The only property the prover assumes
-- about these values are that they are equivalent to themselves; i.e., (for
-- functions) they return the same results when applied to same arguments.
-- We support uninterpreted-functions as a general means of black-box'ing
-- operations that are /irrelevant/ for the purposes of the proof; i.e., when
-- the proofs can be performed without any knowledge about the function itself.
svUninterpreted :: Kind -> String -> UICodeKind -> [SVal] -> SVal
svUninterpreted k nm code args = svUninterpretedGen k nm code args Nothing
svUninterpretedNamedArgs :: Kind -> String -> UICodeKind -> [(SVal, String)] -> SVal
svUninterpretedNamedArgs k nm code args = svUninterpretedGen k nm code (map fst args) (Just (map snd args))
svUninterpretedGen :: Kind -> String -> UICodeKind -> [SVal] -> Maybe [String] -> SVal
svUninterpretedGen k nm code args mbArgNames = SVal k $ Right $ cache result
where result st = do let ty = SBVType (map kindOf args ++ [k])
newUninterpreted st (nm, mbArgNames) ty code
sws <- mapM (svToSV st) args
mapM_ forceSVArg sws
newExpr st k $ SBVApp (Uninterpreted nm) sws
-- | Create a new uninterpreted symbol, possibly with user given code
newUninterpreted :: State -> (String, Maybe [String]) -> SBVType -> UICodeKind -> IO ()
newUninterpreted st (nm, mbArgNames) t uiCode
| not isInternal && (null nm || not enclosed && (not (isAlpha (head nm)) || not (all validChar (tail nm))))
= error $ "Bad uninterpreted constant name: " ++ show nm ++ ". Must be a valid SMTLib identifier."
| True
= do uiMap <- readIORef (rUIMap st)
() <- case uiCode of
UINone -> pure ()
UISMT d -> modifyState st rDefns (\defs -> d : filter (\o -> smtDefGivenName o /= Just nm) defs)
$ noInteractive [ "Defined functions (smtFunction):"
, " Name: " ++ nm
, " Type: " ++ show t
, ""
, "You should use these functions at least once the query part starts"
, "and then use them in the query section as usual."
]
UICgC c -> -- No need to record the code in interactive mode: CodeGen doesn't use interactive
modifyState st rCgMap (Map.insert nm c) (return ())
case nm `Map.lookup` uiMap of
Just (_, t') -> checkType t' (return ())
Nothing -> modifyState st rUIMap (Map.insert nm (mbArgNames, t))
$ modifyIncState st rNewUIs
(\newUIs -> case nm `Map.lookup` newUIs of
Just (_, t') -> checkType t' newUIs
Nothing -> Map.insert nm (mbArgNames, t) newUIs)
where checkType :: SBVType -> r -> r
checkType t' cont
| t /= t' = error $ "Uninterpreted constant " ++ show nm ++ " used at incompatible types\n"
++ " Current type : " ++ show t ++ "\n"
++ " Previously used at: " ++ show t'
| True = cont
validChar x = isAlphaNum x || x `elem` ("_" :: String)
enclosed = head nm == '|' && last nm == '|' && length nm > 2 && not (any (`elem` ("|\\" :: String)) (tail (init nm)))
-- let internal names go through
isInternal = "__internal_sbv_" `isPrefixOf` nm
-- | Add a new sAssert based constraint
addAssertion :: State -> Maybe CallStack -> String -> SV -> IO ()
addAssertion st cs msg cond = modifyState st rAsserts ((msg, cs, cond):)
$ noInteractive [ "Named assertions (sAssert):"
, " Tag: " ++ msg
, " Loc: " ++ maybe "Unknown" show cs
]
-- | Create an internal variable, which acts as an input but isn't visible to the user.
-- Such variables are existentially quantified in a SAT context, and universally quantified
-- in a proof context.
internalVariable :: State -> Kind -> IO SV
internalVariable st k = do NamedSymVar sv nm <- newSV st k
let n = "__internal_sbv_" <> nm
v = NamedSymVar sv n
modifyState st rinps (addUserInput sv n) $ modifyIncState st rNewInps (v :)
return sv
{-# INLINE internalVariable #-}
-- | Create a variable to be used in a constraint-expression
quantVar :: Quantifier -> State -> Kind -> IO SV
quantVar q st k = do v@(NamedSymVar sv _) <- newSV st k
modifyState st rlambdaInps (S.|> (q, v)) (return ())
return sv
{-# INLINE quantVar #-}
-- | Create a variable to be used in a lambda-expression
lambdaVar :: State -> Kind -> IO SV
lambdaVar = quantVar ALL
{-# INLINE lambdaVar #-}
-- | Create a new SV
newSV :: State -> Kind -> IO NamedSymVar
newSV st k = do ctr <- incrementInternalCounter st
ll <- readIORef (rLambdaLevel st)
let sv = SV k (NodeId (ll, ctr))
registerKind st k
return $ NamedSymVar sv $ T.pack (show sv)
{-# INLINE newSV #-}
-- | Register a new kind with the system, used for uninterpreted sorts.
-- NB: Is it safe to have new kinds in query mode? It could be that
-- the new kind might introduce a constraint that effects the logic. For
-- instance, if we're seeing 'Double' for the first time and using a BV
-- logic, then things would fall apart. But this should be rare, and hopefully
-- the success-response checking mechanism will catch the rare cases where this
-- is an issue. In either case, the user can always arrange for the right
-- logic by calling 'Data.SBV.setLogic' appropriately, so it seems safe to just
-- allow for this.
registerKind :: State -> Kind -> IO ()
registerKind st k
| KUserSort sortName _ <- k, map toLower sortName `elem` smtLibReservedNames
= error $ "SBV: " ++ show sortName ++ " is a reserved sort; please use a different name."
| True
= do -- Adding a kind to the incState is tricky; we only need to add it
-- * If it's an uninterpreted sort that's not already in the general state
-- * OR If it's a tuple-sort whose cardinality isn't already in the general state
-- * OR If it's a list that's not already in the general state (so we can send the flatten commands)
existingKinds <- readIORef (rUsedKinds st)
modifyState st rUsedKinds (Set.insert k) $ do
-- Why do we discriminate here? Because the incremental context is sensitive to the
-- order: In particular, if an uninterpreted kind is already in there, we don't
-- want to re-add because double-declaration would be wrong. See 'cvtInc' for details.
let needsAdding = case k of
KUserSort{} -> k `notElem` existingKinds
KList{} -> k `notElem` existingKinds
KTuple nks -> length nks `notElem` [length oks | KTuple oks <- Set.toList existingKinds]
KMaybe{} -> k `notElem` existingKinds
KEither{} -> k `notElem` existingKinds
_ -> False
when needsAdding $ modifyIncState st rNewKinds (Set.insert k)
-- Don't forget to register subkinds!
case k of
KBool {} -> return ()
KBounded {} -> return ()
KUnbounded{} -> return ()
KReal {} -> return ()
KUserSort {} -> return ()
KFloat {} -> return ()
KDouble {} -> return ()
KFP {} -> return ()
KRational {} -> return ()
KChar {} -> return ()
KString {} -> return ()
KList ek -> registerKind st ek
KSet ek -> registerKind st ek
KTuple eks -> mapM_ (registerKind st) eks
KMaybe ke -> registerKind st ke
KEither k1 k2 -> mapM_ (registerKind st) [k1, k2]
-- | Register a new label with the system, making sure they are unique and have no '|'s in them
registerLabel :: String -> State -> String -> IO ()
registerLabel whence st nm
| map toLower nm `elem` smtLibReservedNames
= err "is a reserved string; please use a different name."
| '|' `elem` nm
= err "contains the character `|', which is not allowed!"
| '\\' `elem` nm
= err "contains the character `\\', which is not allowed!"
| True
= do old <- readIORef $ rUsedLbls st
if nm `Set.member` old
then err "is used multiple times. Please do not use duplicate names!"
else modifyState st rUsedLbls (Set.insert nm) (return ())
where err w = error $ "SBV (" ++ whence ++ "): " ++ show nm ++ " " ++ w
-- | Create a new constant; hash-cons as necessary
newConst :: State -> CV -> IO SV
newConst st c = do
constMap <- readIORef (rconstMap st)
case c `Map.lookup` constMap of
-- NB. Unlike in 'newExpr', we don't have to make sure the returned sv
-- has the kind we asked for, because the constMap stores the full CV
-- which already has a kind field in it.
Just sv -> return sv
Nothing -> do (NamedSymVar sv _) <- newSV st (kindOf c)
let ins = Map.insert c sv
modifyState st rconstMap ins $ modifyIncState st rNewConsts ins
return sv
{-# INLINE newConst #-}
-- | Create a new table; hash-cons as necessary
getTableIndex :: State -> Kind -> Kind -> [SV] -> IO Int
getTableIndex st at rt elts = do
let key = (at, rt, elts)
tblMap <- readIORef (rtblMap st)
case key `Map.lookup` tblMap of
Just i -> return i
_ -> do let i = Map.size tblMap
upd = Map.insert key i
modifyState st rtblMap upd $ modifyIncState st rNewTbls upd
return i
-- | Create a new expression; hash-cons as necessary
newExpr :: State -> Kind -> SBVExpr -> IO SV
newExpr st k app = do
let e = reorder app
exprMap <- readIORef (rexprMap st)
case e `Map.lookup` exprMap of
-- NB. Check to make sure that the kind of the hash-consed value
-- is the same kind as we're requesting. This might look unnecessary,
-- at first, but `svSign` and `svUnsign` rely on this as we can
-- get the same expression but at a different type. See
-- <http://github.com/GaloisInc/cryptol/issues/566> as an example.
Just sv | kindOf sv == k -> return sv
_ -> do (NamedSymVar sv _) <- newSV st k
let append (SBVPgm xs) = SBVPgm (xs S.|> (sv, e))
modifyState st spgm append $ modifyIncState st rNewAsgns append
modifyState st rexprMap (Map.insert e sv) (return ())
return sv
{-# INLINE newExpr #-}
-- | Convert a symbolic value to an internal SV
svToSV :: State -> SVal -> IO SV
svToSV st (SVal _ (Left c)) = newConst st c
svToSV st (SVal _ (Right f)) = uncache f st
-- | Generalization of 'Data.SBV.svToSymSV'
svToSymSV :: MonadSymbolic m => SVal -> m SV
svToSymSV sbv = do st <- symbolicEnv
liftIO $ svToSV st sbv
-------------------------------------------------------------------------
-- * Symbolic Computations
-------------------------------------------------------------------------
-- | A Symbolic computation. Represented by a reader monad carrying the
-- state of the computation, layered on top of IO for creating unique
-- references to hold onto intermediate results.
-- | Computations which support symbolic operations
class MonadIO m => MonadSymbolic m where
symbolicEnv :: m State
default symbolicEnv :: (MonadTrans t, MonadSymbolic m', m ~ t m') => m State
symbolicEnv = lift symbolicEnv
instance MonadSymbolic m => MonadSymbolic (ExceptT e m)
instance MonadSymbolic m => MonadSymbolic (MaybeT m)
instance MonadSymbolic m => MonadSymbolic (ReaderT r m)
instance MonadSymbolic m => MonadSymbolic (SS.StateT s m)
instance MonadSymbolic m => MonadSymbolic (LS.StateT s m)
instance (MonadSymbolic m, Monoid w) => MonadSymbolic (SW.WriterT w m)
instance (MonadSymbolic m, Monoid w) => MonadSymbolic (LW.WriterT w m)
-- | A generalization of 'Data.SBV.Symbolic'.
newtype SymbolicT m a = SymbolicT { runSymbolicT :: ReaderT State m a }
deriving ( Applicative, Functor, Monad, MonadIO, MonadTrans
, MonadError e, MonadState s, MonadWriter w
#if MIN_VERSION_base(4,11,0)
, Fail.MonadFail
#endif
)
-- | `MonadSymbolic` instance for `SymbolicT m`
instance MonadIO m => MonadSymbolic (SymbolicT m) where
symbolicEnv = SymbolicT ask
-- | Map a computation over the symbolic transformer.
mapSymbolicT :: (ReaderT State m a -> ReaderT State n b) -> SymbolicT m a -> SymbolicT n b
mapSymbolicT f = SymbolicT . f . runSymbolicT
{-# INLINE mapSymbolicT #-}
-- Have to define this one by hand, because we use ReaderT in the implementation
instance MonadReader r m => MonadReader r (SymbolicT m) where
ask = lift ask
local f = mapSymbolicT $ mapReaderT $ local f
-- | `Symbolic` is specialization of `SymbolicT` to the `IO` monad. Unless you are using
-- transformers explicitly, this is the type you should prefer.
type Symbolic = SymbolicT IO
-- | Create a symbolic value, based on the quantifier we have. If an
-- explicit quantifier is given, we just use that. If not, then we
-- pick the quantifier appropriately based on the run-mode.
-- @randomCV@ is used for generating random values for this variable
-- when used for @quickCheck@ or 'Data.SBV.Tools.GenTest.genTest' purposes.
svMkSymVar :: VarContext -> Kind -> Maybe String -> State -> IO SVal
svMkSymVar = svMkSymVarGen False
-- | Create an existentially quantified tracker variable
svMkTrackerVar :: Kind -> String -> State -> IO SVal
svMkTrackerVar k nm = svMkSymVarGen True (NonQueryVar (Just EX)) k (Just nm)
-- | Generalization of 'Data.SBV.sWordN'
sWordN :: MonadSymbolic m => Int -> String -> m SVal
sWordN w nm = symbolicEnv >>= liftIO . svMkSymVar (NonQueryVar Nothing) (KBounded False w) (Just nm)
-- | Generalization of 'Data.SBV.sWordN_'
sWordN_ :: MonadSymbolic m => Int -> m SVal
sWordN_ w = symbolicEnv >>= liftIO . svMkSymVar (NonQueryVar Nothing) (KBounded False w) Nothing
-- | Generalization of 'Data.SBV.sIntN'
sIntN :: MonadSymbolic m => Int -> String -> m SVal
sIntN w nm = symbolicEnv >>= liftIO . svMkSymVar (NonQueryVar Nothing) (KBounded True w) (Just nm)
-- | Generalization of 'Data.SBV.sIntN_'
sIntN_ :: MonadSymbolic m => Int -> m SVal
sIntN_ w = symbolicEnv >>= liftIO . svMkSymVar (NonQueryVar Nothing) (KBounded True w) Nothing
-- | Create a symbolic value, based on the quantifier we have. If an
-- explicit quantifier is given, we just use that. If not, then we
-- pick the quantifier appropriately based on the run-mode.
-- @randomCV@ is used for generating random values for this variable
-- when used for @quickCheck@ or 'Data.SBV.Tools.GenTest.genTest' purposes.
svMkSymVarGen :: Bool -> VarContext -> Kind -> Maybe String -> State -> IO SVal
svMkSymVarGen isTracker varContext k mbNm st = do
rm <- readIORef (runMode st)
let varInfo = case mbNm of
Nothing -> ", of type " ++ show k
Just nm -> ", while defining " ++ nm ++ " :: " ++ show k
disallow what = error $ "Data.SBV: Unsupported: " ++ what ++ varInfo ++ " in mode: " ++ show rm
noUI cont
| isUserSort k = disallow "User defined sorts"
| True = cont
(isQueryVar, mbQ) = case varContext of
NonQueryVar mq -> (False, mq)
QueryVar -> (True, Just EX)
mkS q = do (NamedSymVar sv internalName) <- newSV st k
let nm = fromMaybe (T.unpack internalName) mbNm
introduceUserName st (isQueryVar, isTracker) nm k q sv
mkC cv = do registerKind st k
modifyState st rCInfo ((fromMaybe "_" mbNm, cv):) (return ())
return $ SVal k (Left cv)
case (mbQ, rm) of
(Just q, SMTMode{} ) -> mkS q
(Nothing, SMTMode _ _ isSAT _) -> mkS (if isSAT then EX else ALL)
(Just EX, CodeGen{}) -> disallow "Existentially quantified variables"
(_ , CodeGen) -> noUI $ mkS ALL -- code generation, pick universal
(Just EX, Concrete Nothing) -> disallow "Existentially quantified variables"
(_ , Concrete Nothing) -> noUI (randomCV k >>= mkC)
(Just EX, LambdaGen{}) -> disallow "Existentially quantified variables"
(_, LambdaGen{}) -> noUI $ mkS ALL
-- Model validation:
(_ , Concrete (Just (_isSat, env))) -> do
let bad why conc = error $ unlines [ ""
, "*** Data.SBV: " ++ why
, "***"
, "*** To turn validation off, use `cfg{validateModel = False}`"
, "***"
, "*** " ++ conc
]
cant = "Validation engine is not capable of handling this case. Failed to validate."
report = "Please report this as a bug in SBV!"
case () of
() | isUserSort k -> bad ("Cannot validate models in the presence of user defined kinds, saw: " ++ show k) cant
_ -> do (NamedSymVar sv internalName) <- newSV st k
let nm = fromMaybe (T.unpack internalName) mbNm
nsv = toNamedSV' sv nm
cv = case [v | (nsv', v) <- env, nsv == nsv'] of
[] -> if isTracker
then -- The sole purpose of a tracker variable is to send the optimization
-- directive to the solver, so we can name "expressions" that are minimized
-- or maximized. There will be no constraints on these when we are doing
-- the validation; in fact they will not even be used anywhere during a
-- validation run. So, simply push a zero value that inhabits all metrics.
mkConstCV k (0::Integer)
else bad ("Cannot locate variable: " ++ show (nsv, k)) report
[c] -> c
r -> bad ( "Found multiple matching values for variable: " ++ show nsv
++ "\n*** " ++ show r) report
mkC cv
-- | Introduce a new user name. We simply append a suffix if we have seen this variable before.
introduceUserName :: State -> (Bool, Bool) -> String -> Kind -> Quantifier -> SV -> IO SVal
introduceUserName st@State{runMode} (isQueryVar, isTracker) nmOrig k q sv = do
old <- allInputs <$> readIORef (rinps st)
let nm = mkUnique (T.pack nmOrig) old
-- If this is not a query variable and we're in a query, reject it.
-- See https://github.com/LeventErkok/sbv/issues/554 for the rationale.
-- In theory, it should be possible to support this, but fixing it is
-- rather costly as we'd have to track the regular updates and sync the
-- incremental state appropriately. Instead, we issue an error message
-- and ask the user to obey the query mode rules.
rm <- readIORef runMode
case rm of
SMTMode _ IRun _ _ | not isQueryVar -> noInteractiveEver [ "Adding a new input variable in query mode: " ++ show nm
, ""
, "Hint: Use freshVar/freshVar_ for introducing new inputs in query mode."
]
_ -> pure ()
if isTracker && q == ALL
then error $ "SBV: Impossible happened! A universally quantified tracker variable is being introduced: " ++ show nm
else do let newInp olds = case q of
EX -> toNamedSV sv nm : olds
ALL -> noInteractive [ "Adding a new universally quantified variable: "
, " Name : " ++ show nm
, " Kind : " ++ show k
, " Quantifier: Universal"
, " Node : " ++ show sv
, "Only existential variables are supported in query mode."
]
if isTracker
then modifyState st rinps (addInternInput sv nm)
$ noInteractive ["Adding a new tracker variable in interactive mode: " ++ show nm]
else modifyState st rinps (addUserInput sv nm)
$ modifyIncState st rNewInps newInp
return $ SVal k $ Right $ cache (const (return sv))
where -- The following can be rather slow if we keep reusing the same prefix, but I doubt it'll be a problem in practice
-- Also, the following will fail if we span the range of integers without finding a match, but your computer would
-- die way ahead of that happening if that's the case!
mkUnique :: T.Text -> Set.Set Name -> T.Text
mkUnique prefix names = head $ dropWhile (`Set.member` names) (prefix : [prefix <> "_" <> T.pack (show i) | i <- [(0::Int)..]])
-- | Create a new state
mkNewState :: MonadIO m => SMTConfig -> SBVRunMode -> m State
mkNewState cfg currentRunMode = liftIO $ do
currTime <- getCurrentTime
progInfo <- newIORef ProgInfo { hasQuants = False
, progSpecialRels = []
, progTransClosures = []
}
rm <- newIORef currentRunMode
ctr <- newIORef (-2) -- start from -2; False and True will always occupy the first two elements
lambda <- newIORef $ case currentRunMode of
SMTMode{} -> 0
CodeGen{} -> 0
Concrete{} -> 0
LambdaGen i -> i
cInfo <- newIORef []
observes <- newIORef mempty
pgm <- newIORef (SBVPgm S.empty)
emap <- newIORef Map.empty
cmap <- newIORef Map.empty
inps <- newIORef mempty
lambdaInps <- newIORef mempty
outs <- newIORef []
tables <- newIORef Map.empty
arrays <- newIORef IMap.empty
userFuncs <- newIORef Set.empty
uis <- newIORef Map.empty
cgs <- newIORef Map.empty
defns <- newIORef []
swCache <- newIORef IMap.empty
aiCache <- newIORef IMap.empty
usedKinds <- newIORef Set.empty
usedLbls <- newIORef Set.empty
cstrs <- newIORef S.empty
smtOpts <- newIORef []
optGoals <- newIORef []
asserts <- newIORef []
istate <- newIORef =<< newIncState
qstate <- newIORef Nothing
pure $ State { runMode = rm
, stCfg = cfg
, startTime = currTime
, rProgInfo = progInfo
, pathCond = SVal KBool (Left trueCV)
, rIncState = istate
, rCInfo = cInfo
, rObservables = observes
, rctr = ctr
, rLambdaLevel = lambda
, rUsedKinds = usedKinds
, rUsedLbls = usedLbls
, rinps = inps
, rlambdaInps = lambdaInps
, routs = outs
, rtblMap = tables
, spgm = pgm
, rconstMap = cmap
, rArrayMap = arrays
, rexprMap = emap
, rUserFuncs = userFuncs
, rUIMap = uis
, rCgMap = cgs
, rDefns = defns
, rSVCache = swCache
, rAICache = aiCache
, rConstraints = cstrs
, rSMTOptions = smtOpts
, rOptGoals = optGoals
, rAsserts = asserts
, rQueryState = qstate
, parentState = Nothing
}
-- | Generalization of 'Data.SBV.runSymbolic'
runSymbolic :: MonadIO m => SMTConfig -> SBVRunMode -> SymbolicT m a -> m (a, Result)
runSymbolic cfg currentRunMode comp = do
st <- mkNewState cfg currentRunMode
runSymbolicInState st comp
-- | Run a symbolic computation in a given state
runSymbolicInState :: MonadIO m => State -> SymbolicT m a -> m (a, Result)
runSymbolicInState st (SymbolicT c) = do
_ <- liftIO $ newConst st falseCV -- s(-2) == falseSV
_ <- liftIO $ newConst st trueCV -- s(-1) == trueSV
r <- runReaderT c st
res <- liftIO $ extractSymbolicSimulationState st
-- Clean-up after ourselves
qs <- liftIO $ readIORef $ rQueryState st
case qs of
Nothing -> return ()
Just QueryState{queryTerminate} -> liftIO queryTerminate
return (r, res)
-- | Grab the program from a running symbolic simulation state.
extractSymbolicSimulationState :: State -> IO Result
extractSymbolicSimulationState st@State{ runMode=rrm
, spgm=pgm, rinps=inps, rlambdaInps=linps, routs=outs, rtblMap=tables, rArrayMap=arrays
, rUIMap=uis, rDefns=defns
, rAsserts=asserts, rUsedKinds=usedKinds, rCgMap=cgs, rCInfo=cInfo, rConstraints=cstrs
, rObservables=observes, rProgInfo=progInfo
} = do
SBVPgm rpgm <- readIORef pgm
rm <- readIORef rrm
inpsO <- do Inputs{userInputs, internInputs} <- readIORef inps
ls <- readIORef linps
let lambdaOnly = case rm of
SMTMode{} -> False
CodeGen{} -> False
Concrete{} -> False
LambdaGen{} -> True
topInps = (F.toList userInputs, F.toList internInputs)
lamInps = F.toList ls
if lambdaOnly
then case topInps of
([], []) -> pure $ ResultLamInps (F.toList ls)
(xs, ys) -> error $ unlines [ ""
, "*** Data.SBV: Impossible happened; saw inputs in lambda mode."
, "***"
, "*** Inps : " ++ show xs
, "*** Trackers: " ++ show ys
]
else case lamInps of
[] -> pure $ ResultTopInps topInps
_ -> error $ unlines [ ""
, "*** Data.SBV: Impossible happened; saw lambda inputs in regular mode."
, "***"
, "*** Params: " ++ show lamInps
]
outsO <- reverse <$> readIORef outs
let swap (a, b) = (b, a)
cmp (a, _) (b, _) = a `compare` b
arrange (i, (at, rt, es)) = ((i, at, rt), es)
constMap <- readIORef (rconstMap st)
let cnsts = sortBy cmp . map swap . Map.toList $ constMap
tbls <- map arrange . sortBy cmp . map swap . Map.toList <$> readIORef tables
arrs <- IMap.toAscList <$> readIORef arrays
ds <- reverse <$> readIORef defns
unint <- do unints <- Map.toList <$> readIORef uis
-- drop those that has a definition associated with it
let defineds = mapMaybe smtDefGivenName ds
pure [ui | ui@(nm, _) <- unints, nm `notElem` defineds]
knds <- readIORef usedKinds
cgMap <- Map.toList <$> readIORef cgs
traceVals <- reverse <$> readIORef cInfo
observables <- reverse . fmap (\(n,f,sv) -> (T.unpack n, f, sv)) . F.toList
<$> readIORef observes
extraCstrs <- readIORef cstrs
assertions <- reverse <$> readIORef asserts
pinfo <- readIORef progInfo
return $ Result pinfo knds traceVals observables cgMap inpsO (constMap, cnsts) tbls arrs unint ds (SBVPgm rpgm) extraCstrs assertions outsO
-- | Generalization of 'Data.SBV.addNewSMTOption'
addNewSMTOption :: MonadSymbolic m => SMTOption -> m ()
addNewSMTOption o = do st <- symbolicEnv
liftIO $ modifyState st rSMTOptions (o:) (return ())
-- | Generalization of 'Data.SBV.imposeConstraint'
imposeConstraint :: MonadSymbolic m => Bool -> [(String, String)] -> SVal -> m ()
imposeConstraint isSoft attrs c = do st <- symbolicEnv
rm <- liftIO $ readIORef (runMode st)
case rm of
CodeGen -> error "SBV: constraints are not allowed in code-generation"
_ -> liftIO $ do mapM_ (registerLabel "Constraint" st) [nm | (":named", nm) <- attrs]
internalConstraint st isSoft attrs c
-- | Require a boolean condition to be true in the state. Only used for internal purposes.
internalConstraint :: State -> Bool -> [(String, String)] -> SVal -> IO ()
internalConstraint st isSoft attrs b = do v <- svToSV st b
rm <- liftIO $ readIORef (runMode st)
-- Are we running validation? If so, we always want to
-- add the constraint for debug purposes. Otherwise
-- we only add it if it's interesting; i.e., not directly
-- true or has some attributes.
let isValidating = case rm of
SMTMode _ _ _ cfg -> validationRequested cfg
CodeGen -> False
LambdaGen{} -> False
Concrete Nothing -> False
Concrete (Just _) -> True -- The case when we *are* running the validation
let c = (isSoft, attrs, v)
interesting = v /= trueSV || not (null attrs)
when (isValidating || interesting) $
modifyState st rConstraints (S.|> c)
$ modifyIncState st rNewConstraints (S.|> c)
-- | Generalization of 'Data.SBV.addSValOptGoal'
addSValOptGoal :: MonadSymbolic m => Objective SVal -> m ()
addSValOptGoal obj = do st <- symbolicEnv
-- create the tracking variable here for the metric
let mkGoal nm orig = liftIO $ do origSV <- svToSV st orig
track <- svMkTrackerVar (kindOf orig) nm st
trackSV <- svToSV st track
return (origSV, trackSV)
let walk (Minimize nm v) = Minimize nm <$> mkGoal nm v
walk (Maximize nm v) = Maximize nm <$> mkGoal nm v
walk (AssertWithPenalty nm v mbP) = flip (AssertWithPenalty nm) mbP <$> mkGoal nm v
!obj' <- walk obj
liftIO $ modifyState st rOptGoals (obj' :)
$ noInteractive [ "Adding an optimization objective:"
, " Objective: " ++ show obj
]
-- | Generalization of 'Data.SBV.outputSVal'
outputSVal :: MonadSymbolic m => SVal -> m ()
outputSVal (SVal _ (Left c)) = do
st <- symbolicEnv
sv <- liftIO $ newConst st c
liftIO $ modifyState st routs (sv:) (return ())
outputSVal (SVal _ (Right f)) = do
st <- symbolicEnv
sv <- liftIO $ uncache f st
liftIO $ modifyState st routs (sv:) (return ())
---------------------------------------------------------------------------------
-- * Cached values
---------------------------------------------------------------------------------
-- | We implement a peculiar caching mechanism, applicable to the use case in
-- implementation of SBV's. Whenever we do a state based computation, we do
-- not want to keep on evaluating it in the then-current state. That will
-- produce essentially a semantically equivalent value. Thus, we want to run
-- it only once, and reuse that result, capturing the sharing at the Haskell
-- level. This is similar to the "type-safe observable sharing" work, but also
-- takes into the account of how symbolic simulation executes.
--
-- See Andy Gill's type-safe observable sharing trick for the inspiration behind
-- this technique: <http://ku-fpg.github.io/files/Gill-09-TypeSafeReification.pdf>
--
-- Note that this is *not* a general memo utility!
newtype Cached a = Cached (State -> IO a)
-- | Cache a state-based computation
cache :: (State -> IO a) -> Cached a
cache = Cached
-- | Uncache a previously cached computation
uncache :: Cached SV -> State -> IO SV
uncache = uncacheGen rSVCache
-- | An SMT array index is simply an int value
newtype ArrayIndex = ArrayIndex { unArrayIndex :: Int } deriving (Eq, Ord, G.Data)
-- | We simply show indexes as the underlying integer
instance Show ArrayIndex where
show (ArrayIndex i) = show i
-- | Uncache, retrieving SMT array indexes
uncacheAI :: Cached ArrayIndex -> State -> IO ArrayIndex
uncacheAI = uncacheGen rAICache
-- | Generic uncaching. Note that this is entirely safe, since we do it in the IO monad.
uncacheGen :: (State -> IORef (Cache a)) -> Cached a -> State -> IO a
uncacheGen getCache (Cached f) st = do
let rCache = getCache st
stored <- readIORef rCache
sn <- f `seq` makeStableName f
let h = hashStableName sn
case (h `IMap.lookup` stored) >>= (sn `lookup`) of
Just r -> return r
Nothing -> do r <- f st
r `seq` R.modifyIORef' rCache (IMap.insertWith (++) h [(sn, r)])
return r
-- | Representation of SMTLib Program versions. As of June 2015, we're dropping support
-- for SMTLib1, and supporting SMTLib2 only. We keep this data-type around in case
-- SMTLib3 comes along and we want to support 2 and 3 simultaneously.
data SMTLibVersion = SMTLib2
deriving (Bounded, Enum, Eq, Show)
-- | The extension associated with the version
smtLibVersionExtension :: SMTLibVersion -> String
smtLibVersionExtension SMTLib2 = "smt2"
-- | Representation of an SMT-Lib program. In between pre and post goes the refuted models
data SMTLibPgm = SMTLibPgm SMTLibVersion [String]
instance NFData SMTLibVersion where rnf a = a `seq` ()
instance NFData SMTLibPgm where rnf (SMTLibPgm v p) = rnf v `seq` rnf p
instance Show SMTLibPgm where
show (SMTLibPgm _ pre) = intercalate "\n" pre
-- Other Technicalities..
instance NFData CV where
rnf (CV x y) = x `seq` y `seq` ()
instance NFData GeneralizedCV where
rnf (ExtendedCV e) = e `seq` ()
rnf (RegularCV c) = c `seq` ()
#if MIN_VERSION_base(4,9,0)
#else
-- Can't really force this, but not a big deal
instance NFData CallStack where
rnf _ = ()
#endif
instance NFData NamedSymVar where
rnf (NamedSymVar s n) = rnf s `seq` rnf n
instance NFData Result where
rnf (Result hasQuants kindInfo qcInfo obs cgs inps consts tbls arrs uis axs pgm cstr asserts outs)
= rnf hasQuants `seq` rnf kindInfo `seq` rnf qcInfo `seq` rnf obs `seq` rnf cgs
`seq` rnf inps `seq` rnf consts `seq` rnf tbls
`seq` rnf arrs `seq` rnf uis `seq` rnf axs
`seq` rnf pgm `seq` rnf cstr `seq` rnf asserts
`seq` rnf outs
instance NFData Kind where rnf a = seq a ()
instance NFData ArrayContext where rnf a = seq a ()
instance NFData SV where rnf a = seq a ()
instance NFData SBVExpr where rnf a = seq a ()
instance NFData Quantifier where rnf a = seq a ()
instance NFData SBVType where rnf a = seq a ()
instance NFData SBVPgm where rnf a = seq a ()
instance NFData (Cached a) where rnf (Cached f) = f `seq` ()
instance NFData SVal where rnf (SVal x y) = rnf x `seq` rnf y
instance NFData SMTResult where
rnf (Unsatisfiable _ m ) = rnf m
rnf (Satisfiable _ m ) = rnf m
rnf (DeltaSat _ p m ) = rnf m `seq` rnf p
rnf (SatExtField _ m ) = rnf m
rnf (Unknown _ m ) = rnf m
rnf (ProofError _ m mr) = rnf m `seq` rnf mr
instance NFData SMTModel where
rnf (SMTModel objs bndgs assocs uifuns) = rnf objs `seq` rnf bndgs `seq` rnf assocs `seq` rnf uifuns
instance NFData SMTScript where
rnf (SMTScript b m) = rnf b `seq` rnf m
-- | Translation tricks needed for specific capabilities afforded by each solver
data SolverCapabilities = SolverCapabilities {
supportsQuantifiers :: Bool -- ^ Supports SMT-Lib2 style quantifiers?
, supportsDefineFun :: Bool -- ^ Supports define-fun construct?
, supportsDistinct :: Bool -- ^ Supports calls to distinct?
, supportsBitVectors :: Bool -- ^ Supports bit-vectors?
, supportsUninterpretedSorts :: Bool -- ^ Supports SMT-Lib2 style uninterpreted-sorts
, supportsUnboundedInts :: Bool -- ^ Supports unbounded integers?
, supportsInt2bv :: Bool -- ^ Supports int2bv?
, supportsReals :: Bool -- ^ Supports reals?
, supportsApproxReals :: Bool -- ^ Supports printing of approximations of reals?
, supportsDeltaSat :: Maybe String -- ^ Supports delta-satisfiability? (With given precision query)
, supportsIEEE754 :: Bool -- ^ Supports floating point numbers?
, supportsSets :: Bool -- ^ Supports set operations?
, supportsOptimization :: Bool -- ^ Supports optimization routines?
, supportsPseudoBooleans :: Bool -- ^ Supports pseudo-boolean operations?
, supportsCustomQueries :: Bool -- ^ Supports interactive queries per SMT-Lib?
, supportsGlobalDecls :: Bool -- ^ Supports global declarations? (Needed for push-pop.)
, supportsDataTypes :: Bool -- ^ Supports datatypes?
, supportsFoldAndMap :: Bool -- ^ Does it support fold and map?
, supportsSpecialRels :: Bool -- ^ Does it support special relations (orders, transitive closure etc.)
, supportsDirectAccessors :: Bool -- ^ Supports data-type accessors without full ascription?
, supportsFlattenedModels :: Maybe [String] -- ^ Supports flattened model output? (With given config lines.)
}
-- | Solver configuration. See also 'Data.SBV.z3', 'Data.SBV.yices', 'Data.SBV.cvc4', 'Data.SBV.boolector', 'Data.SBV.mathSAT', etc.
-- which are instantiations of this type for those solvers, with reasonable defaults. In particular, custom configuration can be
-- created by varying those values. (Such as @z3{verbose=True}@.)
--
-- Most fields are self explanatory. The notion of precision for printing algebraic reals stems from the fact that such values does
-- not necessarily have finite decimal representations, and hence we have to stop printing at some depth. It is important to
-- emphasize that such values always have infinite precision internally. The issue is merely with how we print such an infinite
-- precision value on the screen. The field 'printRealPrec' controls the printing precision, by specifying the number of digits after
-- the decimal point. The default value is 16, but it can be set to any positive integer.
--
-- When printing, SBV will add the suffix @...@ at the end of a real-value, if the given bound is not sufficient to represent the real-value
-- exactly. Otherwise, the number will be written out in standard decimal notation. Note that SBV will always print the whole value if it
-- is precise (i.e., if it fits in a finite number of digits), regardless of the precision limit. The limit only applies if the representation
-- of the real value is not finite, i.e., if it is not rational.
--
-- The 'printBase' field can be used to print numbers in base 2, 10, or 16.
--
-- The 'crackNum' field can be used to display numbers in detail, all its bits and how they are laid out in memory. Works with all bounded number types
-- (i.e., SWord and SInt), but also with floats. It is particularly useful with floating-point numbers, as it shows you how they are laid out in
-- memory following the IEEE754 rules.
data SMTConfig = SMTConfig {
verbose :: Bool -- ^ Debug mode
, timing :: Timing -- ^ Print timing information on how long different phases took (construction, solving, etc.)
, printBase :: Int -- ^ Print integral literals in this base (2, 10, and 16 are supported.)
, printRealPrec :: Int -- ^ Print algebraic real values with this precision. (SReal, default: 16)
, crackNum :: Bool -- ^ For each numeric value, show it in detail in the model with its bits spliced out. Good for floats.
, satCmd :: String -- ^ Usually "(check-sat)". However, users might tweak it based on solver characteristics.
, allSatMaxModelCount :: Maybe Int -- ^ In a 'Data.SBV.allSat' call, return at most this many models. If nothing, return all.
, allSatPrintAlong :: Bool -- ^ In a 'Data.SBV.allSat' call, print models as they are found.
, allSatTrackUFs :: Bool -- ^ In a 'Data.SBV.allSat' call, should we try to extract values of uninterpreted functions?
, isNonModelVar :: String -> Bool -- ^ When constructing a model, ignore variables whose name satisfy this predicate. (Default: (const False), i.e., don't ignore anything)
, validateModel :: Bool -- ^ If set, SBV will attempt to validate the model it gets back from the solver.
, optimizeValidateConstraints :: Bool -- ^ Validate optimization results. NB: Does NOT make sure the model is optimal, just checks they satisfy the constraints.
, transcript :: Maybe FilePath -- ^ If Just, the entire interaction will be recorded as a playable file (for debugging purposes mostly)
, smtLibVersion :: SMTLibVersion -- ^ What version of SMT-lib we use for the tool
, dsatPrecision :: Maybe Double -- ^ Delta-sat precision
, solver :: SMTSolver -- ^ The actual SMT solver.
, extraArgs :: [String] -- ^ Extra command line arguments to pass to the solver.
, roundingMode :: RoundingMode -- ^ Rounding mode to use for floating-point conversions
, solverSetOptions :: [SMTOption] -- ^ Options to set as we start the solver
, ignoreExitCode :: Bool -- ^ If true, we shall ignore the exit code upon exit. Otherwise we require ExitSuccess.
, redirectVerbose :: Maybe FilePath -- ^ Redirect the verbose output to this file if given. If Nothing, stdout is implied.
}
-- | Ignore internal names and those the user told us to
mustIgnoreVar :: SMTConfig -> String -> Bool
mustIgnoreVar cfg s = "__internal_sbv" `isPrefixOf` s || isNonModelVar cfg s
-- | We show the name of the solver for the config. Arguably this is misleading, but better than nothing.
instance Show SMTConfig where
show = show . name . solver
-- | Returns true if we have to perform validation
validationRequested :: SMTConfig -> Bool
validationRequested SMTConfig{validateModel, optimizeValidateConstraints} = validateModel || optimizeValidateConstraints
-- We're just seq'ing top-level here, it shouldn't really matter. (i.e., no need to go deeper.)
instance NFData SMTConfig where
rnf SMTConfig{} = ()
-- | A model, as returned by a solver
data SMTModel = SMTModel {
modelObjectives :: [(String, GeneralizedCV)] -- ^ Mapping of symbolic values to objective values.
, modelBindings :: Maybe [(NamedSymVar, CV)] -- ^ Mapping of input variables as reported by the solver. Only collected if model validation is requested.
, modelAssocs :: [(String, CV)] -- ^ Mapping of symbolic values to constants.
, modelUIFuns :: [(String, (SBVType, Either String ([([CV], CV)], CV)))] -- ^ Mapping of uninterpreted functions to association lists in the model.
-- Note that an uninterpreted constant (function of arity 0) will be stored
-- in the 'modelAssocs' field. Left is used when the function returned is too
-- difficult for SBV to figure out what it means
}
deriving Show
-- | The result of an SMT solver call. Each constructor is tagged with
-- the 'SMTConfig' that created it so that further tools can inspect it
-- and build layers of results, if needed. For ordinary uses of the library,
-- this type should not be needed, instead use the accessor functions on
-- it. (Custom Show instances and model extractors.)
data SMTResult = Unsatisfiable SMTConfig (Maybe [String]) -- ^ Unsatisfiable. If unsat-cores are enabled, they will be returned in the second parameter.
| Satisfiable SMTConfig SMTModel -- ^ Satisfiable with model
| DeltaSat SMTConfig (Maybe String) SMTModel -- ^ Delta satisfiable with queried string if available and model
| SatExtField SMTConfig SMTModel -- ^ Prover returned a model, but in an extension field containing Infinite/epsilon
| Unknown SMTConfig SMTReasonUnknown -- ^ Prover returned unknown, with the given reason
| ProofError SMTConfig [String] (Maybe SMTResult) -- ^ Prover errored out, with possibly a bogus result
-- | A script, to be passed to the solver.
data SMTScript = SMTScript {
scriptBody :: String -- ^ Initial feed
, scriptModel :: [String] -- ^ Continuation script, to extract results
}
-- | An SMT engine
type SMTEngine = forall res.
SMTConfig -- ^ current configuration
-> State -- ^ the state in which to run the engine
-> String -- ^ program
-> (State -> IO res) -- ^ continuation
-> IO res
-- | Solvers that SBV is aware of
data Solver = ABC
| Boolector
| Bitwuzla
| CVC4
| CVC5
| DReal
| MathSAT
| Yices
| Z3
deriving (Show, Enum, Bounded)
-- | An SMT solver
data SMTSolver = SMTSolver {
name :: Solver -- ^ The solver in use
, executable :: String -- ^ The path to its executable
, preprocess :: String -> String -- ^ Each line sent to the solver will be passed through this function (typically id)
, options :: SMTConfig -> [String] -- ^ Options to provide to the solver
, engine :: SMTEngine -- ^ The solver engine, responsible for interpreting solver output
, capabilities :: SolverCapabilities -- ^ Various capabilities of the solver
}
-- | Query execution context
data QueryContext = QueryInternal -- ^ Triggered from inside SBV
| QueryExternal -- ^ Triggered from user code
-- | Show instance for 'QueryContext', for debugging purposes
instance Show QueryContext where
show QueryInternal = "Internal Query"
show QueryExternal = "User Query"
{- HLint ignore type FPOp "Use camelCase" -}
{- HLint ignore type PBOp "Use camelCase" -}
{- HLint ignore type OvOp "Use camelCase" -}
{- HLint ignore type NROp "Use camelCase" -}
|