1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
|
-----------------------------------------------------------------------------
-- |
-- Module : Data.SBV.List
-- Copyright : (c) Joel Burget
-- Levent Erkok
-- License : BSD3
-- Maintainer: erkokl@gmail.com
-- Stability : experimental
--
-- A collection of list utilities, useful when working with symbolic lists.
-- To the extent possible, the functions in this module follow those of "Data.List"
-- so importing qualified is the recommended workflow. Also, it is recommended
-- you use the @OverloadedLists@ extension to allow literal lists to
-- be used as symbolic-lists.
-----------------------------------------------------------------------------
{-# LANGUAGE OverloadedLists #-}
{-# LANGUAGE Rank2Types #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeApplications #-}
{-# OPTIONS_GHC -Wall -Werror #-}
module Data.SBV.List (
-- * Length, emptiness
length, null
-- * Deconstructing/Reconstructing
, head, tail, uncons, init, singleton, listToListAt, elemAt, (!!), implode, concat, (.:), snoc, nil, (++)
-- * Containment
, elem, notElem, isInfixOf, isSuffixOf, isPrefixOf
-- * Sublists
, take, drop, subList, replace, indexOf, offsetIndexOf
-- * Reverse
, reverse
-- * Mapping
, map, mapi
-- * Folding
, foldl, foldr, foldli, foldri
-- * Zipping
, zip, zipWith
-- * Filtering
, filter
-- * Other list functions
, all, any
) where
import Prelude hiding (head, tail, init, length, take, drop, concat, null, elem,
notElem, reverse, (++), (!!), map, foldl, foldr, zip, zipWith, filter, all, any)
import qualified Prelude as P
import Data.SBV.Core.Data hiding (StrOp(..))
import Data.SBV.Core.Model
import Data.SBV.Lambda
import Data.SBV.Tuple
import Data.Maybe (isNothing, catMaybes)
import Data.List (genericLength, genericIndex, genericDrop, genericTake)
import qualified Data.List as L (tails, isSuffixOf, isPrefixOf, isInfixOf)
import Data.Proxy
-- $setup
-- >>> -- For doctest purposes only:
-- >>> import Prelude hiding (head, tail, init, length, take, drop, concat, null, elem, notElem, reverse, (++), (!!), map, foldl, foldr, zip, zipWith, filter, all, any)
-- >>> import qualified Prelude as P(map)
-- >>> import Data.SBV
-- >>> :set -XDataKinds
-- >>> :set -XOverloadedLists
-- >>> :set -XScopedTypeVariables
-- | Length of a list.
--
-- >>> sat $ \(l :: SList Word16) -> length l .== 2
-- Satisfiable. Model:
-- s0 = [0,0] :: [Word16]
-- >>> sat $ \(l :: SList Word16) -> length l .< 0
-- Unsatisfiable
-- >>> prove $ \(l1 :: SList Word16) (l2 :: SList Word16) -> length l1 + length l2 .== length (l1 ++ l2)
-- Q.E.D.
length :: SymVal a => SList a -> SInteger
length = lift1 SeqLen (Just (fromIntegral . P.length))
-- | @`null` s@ is True iff the list is empty
--
-- >>> prove $ \(l :: SList Word16) -> null l .<=> length l .== 0
-- Q.E.D.
-- >>> prove $ \(l :: SList Word16) -> null l .<=> l .== []
-- Q.E.D.
null :: SymVal a => SList a -> SBool
null l
| Just cs <- unliteral l
= literal (P.null cs)
| True
= length l .== 0
-- | @`head`@ returns the first element of a list. Unspecified if the list is empty.
--
-- >>> prove $ \c -> head (singleton c) .== (c :: SInteger)
-- Q.E.D.
head :: SymVal a => SList a -> SBV a
head = (`elemAt` 0)
-- | @`tail`@ returns the tail of a list. Unspecified if the list is empty.
--
-- >>> prove $ \(h :: SInteger) t -> tail (singleton h ++ t) .== t
-- Q.E.D.
-- >>> prove $ \(l :: SList Integer) -> length l .> 0 .=> length (tail l) .== length l - 1
-- Q.E.D.
-- >>> prove $ \(l :: SList Integer) -> sNot (null l) .=> singleton (head l) ++ tail l .== l
-- Q.E.D.
tail :: SymVal a => SList a -> SList a
tail l
| Just (_:cs) <- unliteral l
= literal cs
| True
= subList l 1 (length l - 1)
-- | @`uncons`@ returns the pair of the head and tail. Unspecified if the list is empty.
uncons :: SymVal a => SList a -> (SBV a, SList a)
uncons l = (head l, tail l)
-- | @`init`@ returns all but the last element of the list. Unspecified if the list is empty.
--
-- >>> prove $ \(h :: SInteger) t -> init (t ++ singleton h) .== t
-- Q.E.D.
init :: SymVal a => SList a -> SList a
init l
| Just cs@(_:_) <- unliteral l
= literal $ P.init cs
| True
= subList l 0 (length l - 1)
-- | @`singleton` x@ is the list of length 1 that contains the only value @x@.
--
-- >>> prove $ \(x :: SInteger) -> head (singleton x) .== x
-- Q.E.D.
-- >>> prove $ \(x :: SInteger) -> length (singleton x) .== 1
-- Q.E.D.
singleton :: SymVal a => SBV a -> SList a
singleton = lift1 SeqUnit (Just (: []))
-- | @`listToListAt` l offset@. List of length 1 at @offset@ in @l@. Unspecified if
-- index is out of bounds.
--
-- >>> prove $ \(l1 :: SList Integer) l2 -> listToListAt (l1 ++ l2) (length l1) .== listToListAt l2 0
-- Q.E.D.
-- >>> sat $ \(l :: SList Word16) -> length l .>= 2 .&& listToListAt l 0 ./= listToListAt l (length l - 1)
-- Satisfiable. Model:
-- s0 = [0,16] :: [Word16]
listToListAt :: SymVal a => SList a -> SInteger -> SList a
listToListAt s offset = subList s offset 1
-- | @`elemAt` l i@ is the value stored at location @i@, starting at 0. Unspecified if
-- index is out of bounds.
--
-- >>> prove $ \i -> i `inRange` (0, 4) .=> [1,1,1,1,1] `elemAt` i .== (1::SInteger)
-- Q.E.D.
--
-- ->>> prove $ \(l :: SList Integer) i e -> i `inRange` (0, length l - 1) .&& l `elemAt` i .== e .=> indexOf l (singleton e) .<= i
-- Q.E.D.
elemAt :: SymVal a => SList a -> SInteger -> SBV a
elemAt l i
| Just xs <- unliteral l, Just ci <- unliteral i, ci >= 0, ci < genericLength xs, let x = xs `genericIndex` ci
= literal x
| True
= lift2 SeqNth Nothing l i
-- | Short cut for 'elemAt'
(!!) :: SymVal a => SList a -> SInteger -> SBV a
(!!) = elemAt
-- | @`implode` es@ is the list of length @|es|@ containing precisely those
-- elements. Note that there is no corresponding function @explode@, since
-- we wouldn't know the length of a symbolic list.
--
-- >>> prove $ \(e1 :: SInteger) e2 e3 -> length (implode [e1, e2, e3]) .== 3
-- Q.E.D.
-- >>> prove $ \(e1 :: SInteger) e2 e3 -> P.map (elemAt (implode [e1, e2, e3])) (P.map literal [0 .. 2]) .== [e1, e2, e3]
-- Q.E.D.
implode :: SymVal a => [SBV a] -> SList a
implode = P.foldr ((++) . singleton) (literal [])
-- | Prepend an element, the traditional @cons@.
infixr 5 .:
(.:) :: SymVal a => SBV a -> SList a -> SList a
a .: as = singleton a ++ as
-- | Append an element
snoc :: SymVal a => SList a -> SBV a -> SList a
as `snoc` a = as ++ singleton a
-- | Empty list. This value has the property that it's the only list with length 0:
--
-- >>> prove $ \(l :: SList Integer) -> length l .== 0 .<=> l .== nil
-- Q.E.D.
nil :: SymVal a => SList a
nil = []
-- | Append two lists.
--
-- >>> sat $ \x y z -> length x .== 5 .&& length y .== 1 .&& x ++ y ++ z .== [1 .. 12]
-- Satisfiable. Model:
-- s0 = [1,2,3,4,5] :: [Integer]
-- s1 = [6] :: [Integer]
-- s2 = [7,8,9,10,11,12] :: [Integer]
infixr 5 ++
(++) :: SymVal a => SList a -> SList a -> SList a
x ++ y | isConcretelyEmpty x = y
| isConcretelyEmpty y = x
| True = lift2 SeqConcat (Just (P.++)) x y
-- | @`elem` e l@. Does @l@ contain the element @e@?
elem :: (Eq a, SymVal a) => SBV a -> SList a -> SBool
e `elem` l = singleton e `isInfixOf` l
-- | @`notElem` e l@. Does @l@ not contain the element @e@?
notElem :: (Eq a, SymVal a) => SBV a -> SList a -> SBool
e `notElem` l = sNot (e `elem` l)
-- | @`isInfixOf` sub l@. Does @l@ contain the subsequence @sub@?
--
-- >>> prove $ \(l1 :: SList Integer) l2 l3 -> l2 `isInfixOf` (l1 ++ l2 ++ l3)
-- Q.E.D.
-- >>> prove $ \(l1 :: SList Integer) l2 -> l1 `isInfixOf` l2 .&& l2 `isInfixOf` l1 .<=> l1 .== l2
-- Q.E.D.
isInfixOf :: (Eq a, SymVal a) => SList a -> SList a -> SBool
sub `isInfixOf` l
| isConcretelyEmpty sub
= literal True
| True
= lift2 SeqContains (Just (flip L.isInfixOf)) l sub -- NB. flip, since `SeqContains` takes args in rev order!
-- | @`isPrefixOf` pre l@. Is @pre@ a prefix of @l@?
--
-- >>> prove $ \(l1 :: SList Integer) l2 -> l1 `isPrefixOf` (l1 ++ l2)
-- Q.E.D.
-- >>> prove $ \(l1 :: SList Integer) l2 -> l1 `isPrefixOf` l2 .=> subList l2 0 (length l1) .== l1
-- Q.E.D.
isPrefixOf :: (Eq a, SymVal a) => SList a -> SList a -> SBool
pre `isPrefixOf` l
| isConcretelyEmpty pre
= literal True
| True
= lift2 SeqPrefixOf (Just L.isPrefixOf) pre l
-- | @`isSuffixOf` suf l@. Is @suf@ a suffix of @l@?
--
-- >>> prove $ \(l1 :: SList Word16) l2 -> l2 `isSuffixOf` (l1 ++ l2)
-- Q.E.D.
-- >>> prove $ \(l1 :: SList Word16) l2 -> l1 `isSuffixOf` l2 .=> subList l2 (length l2 - length l1) (length l1) .== l1
-- Q.E.D.
isSuffixOf :: (Eq a, SymVal a) => SList a -> SList a -> SBool
suf `isSuffixOf` l
| isConcretelyEmpty suf
= literal True
| True
= lift2 SeqSuffixOf (Just L.isSuffixOf) suf l
-- | @`take` len l@. Corresponds to Haskell's `take` on symbolic lists.
--
-- >>> prove $ \(l :: SList Integer) i -> i .>= 0 .=> length (take i l) .<= i
-- Q.E.D.
take :: SymVal a => SInteger -> SList a -> SList a
take i l = ite (i .<= 0) (literal [])
$ ite (i .>= length l) l
$ subList l 0 i
-- | @`drop` len s@. Corresponds to Haskell's `drop` on symbolic-lists.
--
-- >>> prove $ \(l :: SList Word16) i -> length (drop i l) .<= length l
-- Q.E.D.
-- >>> prove $ \(l :: SList Word16) i -> take i l ++ drop i l .== l
-- Q.E.D.
drop :: SymVal a => SInteger -> SList a -> SList a
drop i s = ite (i .>= ls) (literal [])
$ ite (i .<= 0) s
$ subList s i (ls - i)
where ls = length s
-- | @`subList` s offset len@ is the sublist of @s@ at offset @offset@ with length @len@.
-- This function is under-specified when the offset is outside the range of positions in @s@ or @len@
-- is negative or @offset+len@ exceeds the length of @s@.
--
-- >>> prove $ \(l :: SList Integer) i -> i .>= 0 .&& i .< length l .=> subList l 0 i ++ subList l i (length l - i) .== l
-- Q.E.D.
-- >>> sat $ \i j -> subList [1..5] i j .== ([2..4] :: SList Integer)
-- Satisfiable. Model:
-- s0 = 1 :: Integer
-- s1 = 3 :: Integer
-- >>> sat $ \i j -> subList [1..5] i j .== ([6..7] :: SList Integer)
-- Unsatisfiable
subList :: SymVal a => SList a -> SInteger -> SInteger -> SList a
subList l offset len
| Just c <- unliteral l -- a constant list
, Just o <- unliteral offset -- a constant offset
, Just sz <- unliteral len -- a constant length
, let lc = genericLength c -- length of the list
, let valid x = x >= 0 && x <= lc -- predicate that checks valid point
, valid o -- offset is valid
, sz >= 0 -- length is not-negative
, valid $ o + sz -- we don't overrun
= literal $ genericTake sz $ genericDrop o c
| True -- either symbolic, or something is out-of-bounds
= lift3 SeqSubseq Nothing l offset len
-- | @`replace` l src dst@. Replace the first occurrence of @src@ by @dst@ in @s@
--
-- >>> prove $ \l -> replace [1..5] l [6..10] .== [6..10] .=> l .== ([1..5] :: SList Word8)
-- Q.E.D.
-- >>> prove $ \(l1 :: SList Integer) l2 l3 -> length l2 .> length l1 .=> replace l1 l2 l3 .== l1
-- Q.E.D.
replace :: (Eq a, SymVal a) => SList a -> SList a -> SList a -> SList a
replace l src dst
| Just b <- unliteral src, P.null b -- If src is null, simply prepend
= dst ++ l
| Just a <- unliteral l
, Just b <- unliteral src
, Just c <- unliteral dst
= literal $ walk a b c
| True
= lift3 SeqReplace Nothing l src dst
where walk haystack needle newNeedle = go haystack -- note that needle is guaranteed non-empty here.
where go [] = []
go i@(c:cs)
| needle `L.isPrefixOf` i = newNeedle P.++ genericDrop (genericLength needle :: Integer) i
| True = c : go cs
-- | @`indexOf` l sub@. Retrieves first position of @sub@ in @l@, @-1@ if there are no occurrences.
-- Equivalent to @`offsetIndexOf` l sub 0@.
--
-- ->>> prove $ \(l :: SList Int8) i -> i .> 0 .&& i .< length l .=> indexOf l (subList l i 1) .<= i
-- Q.E.D.
--
-- >>> prove $ \(l1 :: SList Word16) l2 -> length l2 .> length l1 .=> indexOf l1 l2 .== -1
-- Q.E.D.
indexOf :: (Eq a, SymVal a) => SList a -> SList a -> SInteger
indexOf s sub = offsetIndexOf s sub 0
-- | @`offsetIndexOf` l sub offset@. Retrieves first position of @sub@ at or
-- after @offset@ in @l@, @-1@ if there are no occurrences.
--
-- >>> prove $ \(l :: SList Int8) sub -> offsetIndexOf l sub 0 .== indexOf l sub
-- Q.E.D.
-- >>> prove $ \(l :: SList Int8) sub i -> i .>= length l .&& length sub .> 0 .=> offsetIndexOf l sub i .== -1
-- Q.E.D.
-- >>> prove $ \(l :: SList Int8) sub i -> i .> length l .=> offsetIndexOf l sub i .== -1
-- Q.E.D.
offsetIndexOf :: (Eq a, SymVal a) => SList a -> SList a -> SInteger -> SInteger
offsetIndexOf s sub offset
| Just c <- unliteral s -- a constant list
, Just n <- unliteral sub -- a constant search pattern
, Just o <- unliteral offset -- at a constant offset
, o >= 0, o <= genericLength c -- offset is good
= case [i | (i, t) <- P.zip [o ..] (L.tails (genericDrop o c)), n `L.isPrefixOf` t] of
(i:_) -> literal i
_ -> -1
| True
= lift3 SeqIndexOf Nothing s sub offset
-- | @`reverse` s@ reverses the sequence.
--
-- NB. We can define @reverse@ in terms of @foldl@ as: @foldl (\soFar elt -> singleton elt ++ soFar) []@
-- But in my experiments, I found that this definition performs worse instead of the recursive definition
-- SBV generates for reverse calls. So we're keeping it intact.
--
-- >>> sat $ \(l :: SList Integer) -> reverse l .== literal [3, 2, 1]
-- Satisfiable. Model:
-- s0 = [1,2,3] :: [Integer]
-- >>> prove $ \(l :: SList Word32) -> reverse l .== [] .<=> null l
-- Q.E.D.
reverse :: SymVal a => SList a -> SList a
reverse l
| Just l' <- unliteral l
= literal (P.reverse l')
| True
= SBV $ SVal k $ Right $ cache r
where k = kindOf l
r st = do sva <- sbvToSV st l
newExpr st k (SBVApp (SeqOp (SBVReverse k)) [sva])
-- | @`map` op s@ maps the operation on to sequence.
--
-- >>> map (+1) [1 .. 5 :: Integer]
-- [2,3,4,5,6] :: [SInteger]
-- >>> map (+1) [1 .. 5 :: WordN 8]
-- [2,3,4,5,6] :: [SWord8]
-- >>> map singleton [1 .. 3 :: Integer]
-- [[1],[2],[3]] :: [[SInteger]]
-- >>> import Data.SBV.Tuple
-- >>> import GHC.Exts (fromList)
-- >>> map (\t -> t^._1 + t^._2) (fromList [(x, y) | x <- [1..3], y <- [4..6]] :: SList (Integer, Integer))
-- [5,6,7,6,7,8,7,8,9] :: [SInteger]
--
-- Of course, SBV's 'map' can also be reused in reverse:
--
-- >>> sat $ \l -> map (+1) l .== [1,2,3 :: Integer]
-- Satisfiable. Model:
-- s0 = [0,1,2] :: [Integer]
map :: forall a b. (SymVal a, SymVal b) => (SBV a -> SBV b) -> SList a -> SList b
map op l
| Just l' <- unliteral l, Just concResult <- concreteMap l'
= literal concResult
| True
= SBV $ SVal k $ Right $ cache r
where concreteMap l' = case P.map (unliteral . op . literal) l' of
xs | P.any isNothing xs -> Nothing
| True -> Just (catMaybes xs)
k = kindOf (Proxy @(SList b))
r st = do sva <- sbvToSV st l
lam <- lambdaStr st (kindOf (Proxy @b)) op
newExpr st k (SBVApp (SeqOp (SeqMap lam)) [sva])
-- | @`mapi` op s@ maps the operation on to sequence, with the counter given at each element, starting
-- at the given value. In Haskell terms, it is:
--
-- @
-- mapi :: (Integer -> a -> b) -> Integer -> [a] -> [b]
-- mapi f i xs = zipWith f [i..] xs
-- @
--
-- Note that `mapi` is definable in terms of `Data.SBV.List.zipWith`, with extra coding. The reason why SBV provides
-- this function natively is because it maps to a native function in the underlying solver. So, hopefully it'll perform
-- better in terms being decidable.
--
-- >>> mapi (+) 10 [1 .. 5 :: Integer]
-- [11,13,15,17,19] :: [SInteger]
mapi :: forall a b. (SymVal a, SymVal b) => (SInteger -> SBV a -> SBV b) -> SInteger -> SList a -> SList b
mapi op i l
| Just l' <- unliteral l, Just i' <- unliteral i, Just concResult <- concMapi i' l'
= literal concResult
| True
= SBV $ SVal k $ Right $ cache r
where concMapi b xs = case P.zipWith (\o e -> unliteral (op (literal o) (literal e))) [b ..] xs of
vs | P.any isNothing vs -> Nothing
| True -> Just (catMaybes vs)
k = kindOf (Proxy @(SList b))
r st = do svi <- sbvToSV st i
svl <- sbvToSV st l
lam <- lambdaStr st (kindOf (Proxy @b)) op
newExpr st k (SBVApp (SeqOp (SeqMapI lam)) [svi, svl])
-- | @`foldl` op base s@ folds the from the left.
--
-- >>> foldl (+) 0 [1 .. 5 :: Integer]
-- 15 :: SInteger
-- >>> foldl (*) 1 [1 .. 5 :: Integer]
-- 120 :: SInteger
-- >>> foldl (\soFar elt -> singleton elt ++ soFar) ([] :: SList Integer) [1 .. 5 :: Integer]
-- [5,4,3,2,1] :: [SInteger]
--
-- Again, we can use 'Data.SBV.List.foldl' in the reverse too:
--
-- >>> sat $ \l -> foldl (\soFar elt -> singleton elt ++ soFar) ([] :: SList Integer) l .== [5, 4, 3, 2, 1 :: Integer]
-- Satisfiable. Model:
-- s0 = [1,2,3,4,5] :: [Integer]
foldl :: (SymVal a, SymVal b) => (SBV b -> SBV a -> SBV b) -> SBV b -> SList a -> SBV b
foldl op base l
| Just l' <- unliteral l, Just base' <- unliteral base, Just concResult <- concreteFoldl base' l'
= literal concResult
| True
= SBV $ SVal k $ Right $ cache r
where concreteFoldl b [] = Just b
concreteFoldl b (e:es) = case unliteral (op (literal b) (literal e)) of
Nothing -> Nothing
Just b' -> concreteFoldl b' es
k = kindOf base
r st = do svb <- sbvToSV st base
svl <- sbvToSV st l
lam <- lambdaStr st k op
newExpr st k (SBVApp (SeqOp (SeqFoldLeft lam)) [svb, svl])
-- | @`foldli` op i base s@ folds the sequence, with the counter given at each element, starting
-- at the given value. In Haskell terms, it is:
--
-- @
-- foldli :: (Integer -> b -> a -> b) -> Integer -> b -> [a] -> b
-- foldli f c e xs = foldl (\b (i, a) -> f i b a) e (zip [c..] xs)
-- @
--
-- While this function is rather odd looking, it maps directly to the implementation in the underlying solver,
-- and proofs involving it might have better decidability.
--
-- >>> foldli (\i b a -> i+b+a) 10 0 [1 .. 5 :: Integer]
-- 75 :: SInteger
foldli :: (SymVal a, SymVal b) => (SInteger -> SBV b -> SBV a -> SBV b) -> SInteger -> SBV b -> SList a -> SBV b
foldli op baseI baseE l
| Just l' <- unliteral l, Just baseI' <- unliteral baseI, Just baseE' <- unliteral baseE, Just concResult <- concreteFoldli baseI' baseE' l'
= literal concResult
| True
= SBV $ SVal k $ Right $ cache r
where concreteFoldli _ b [] = Just b
concreteFoldli c b (e:es) = case unliteral (op (literal c) (literal b) (literal e)) of
Nothing -> Nothing
Just b' -> concreteFoldli (c+1) b' es
k = kindOf baseE
r st = do svi <- sbvToSV st baseI
sve <- sbvToSV st baseE
sva <- sbvToSV st l
lam <- lambdaStr st k op
newExpr st k (SBVApp (SeqOp (SeqFoldLeftI lam)) [svi, sve, sva])
-- | @`foldr` op base s@ folds the sequence from the right.
--
-- >>> foldr (+) 0 [1 .. 5 :: Integer]
-- 15 :: SInteger
-- >>> foldr (*) 1 [1 .. 5 :: Integer]
-- 120 :: SInteger
-- >>> foldr (\elt soFar -> soFar ++ singleton elt) ([] :: SList Integer) [1 .. 5 :: Integer]
-- [5,4,3,2,1] :: [SInteger]
foldr :: (SymVal a, SymVal b) => (SBV a -> SBV b -> SBV b) -> SBV b -> SList a -> SBV b
foldr op b = foldl (flip op) b . reverse
-- | @`foldri` op base i s@ folds the sequence from the right, with the counter given at each element, starting
-- at the given value. This function is provided as a parallel to `foldli`.
foldri :: (SymVal a, SymVal b) => (SBV a -> SBV b -> SInteger -> SBV b) -> SBV b -> SInteger -> SList a -> SBV b
foldri op baseE baseI = foldli (\a b i -> op i b a) baseI baseE . reverse
-- | @`zip` xs ys@ zips the lists to give a list of pairs. The length of the final list is
-- the minumum of the lengths of the given lists.
--
-- >>> zip [1..10::Integer] [11..20::Integer]
-- [(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,17),(8,18),(9,19),(10,20)] :: [(SInteger, SInteger)]
-- >>> import Data.SBV.Tuple
-- >>> foldr (+) 0 (map (\t -> t^._1+t^._2::SInteger) (zip [1..10::Integer] [10, 9..1::Integer]))
-- 110 :: SInteger
zip :: (SymVal a, SymVal b) => SList a -> SList b -> SList (a, b)
zip xs ys = map (\t -> tuple (t^._2, ys `elemAt` (t^._1)))
(mapi (curry tuple) 0 (take (length ys) xs))
-- | @`zipWith` f xs ys@ zips the lists to give a list of pairs, applying the function to each pair of elements.
-- The length of the final list is the minumum of the lengths of the given lists.
--
-- >>> zipWith (+) [1..10::Integer] [11..20::Integer]
-- [12,14,16,18,20,22,24,26,28,30] :: [SInteger]
-- >>> foldr (+) 0 (zipWith (+) [1..10::Integer] [10, 9..1::Integer])
-- 110 :: SInteger
zipWith :: (SymVal a, SymVal b, SymVal c) => (SBV a -> SBV b -> SBV c) -> SList a -> SList b -> SList c
zipWith f xs ys = map (\t -> f (t^._2) (ys `elemAt` (t^._1)))
(mapi (curry tuple) 0 (take (length ys) xs))
-- | Concatenate list of lists.
--
-- NB. Concat is typically defined in terms of foldr. Here we prefer foldl, since the underlying solver
-- primitive is foldl: Otherwise, we'd induce an extra call to reverse.
--
-- >>> concat [[1..3::Integer], [4..7], [8..10]]
-- [1,2,3,4,5,6,7,8,9,10] :: [SInteger]
concat :: SymVal a => SList [a] -> SList a
concat = foldl (++) []
-- | Check all elements satisfy the predicate.
--
-- >>> let isEven x = x `sMod` 2 .== 0
-- >>> all isEven [2, 4, 6, 8, 10 :: Integer]
-- True
-- >>> all isEven [2, 4, 6, 1, 8, 10 :: Integer]
-- False
all :: SymVal a => (SBV a -> SBool) -> SList a -> SBool
all f = foldl (\sofar e -> sofar .&& f e) sTrue
-- | Check some element satisfies the predicate.
-- --
-- >>> let isEven x = x `sMod` 2 .== 0
-- >>> any (sNot . isEven) [2, 4, 6, 8, 10 :: Integer]
-- False
-- >>> any isEven [2, 4, 6, 1, 8, 10 :: Integer]
-- True
any :: SymVal a => (SBV a -> SBool) -> SList a -> SBool
any f = foldl (\sofar e -> sofar .|| f e) sFalse
-- | @filter f xs@ filters the list with the given predicate.
--
-- >>> filter (\x -> x `sMod` 2 .== 0) [1 .. 10 :: Integer]
-- [2,4,6,8,10] :: [SInteger]
-- >>> filter (\x -> x `sMod` 2 ./= 0) [1 .. 10 :: Integer]
-- [1,3,5,7,9] :: [SInteger]
filter :: SymVal a => (SBV a -> SBool) -> SList a -> SList a
filter f = foldl (\sofar e -> sofar ++ ite (f e) (singleton e) []) []
-- | Lift a unary operator over lists.
lift1 :: forall a b. (SymVal a, SymVal b) => SeqOp -> Maybe (a -> b) -> SBV a -> SBV b
lift1 w mbOp a
| Just cv <- concEval1 mbOp a
= cv
| True
= SBV $ SVal k $ Right $ cache r
where k = kindOf (Proxy @b)
r st = do sva <- sbvToSV st a
newExpr st k (SBVApp (SeqOp w) [sva])
-- | Lift a binary operator over lists.
lift2 :: forall a b c. (SymVal a, SymVal b, SymVal c) => SeqOp -> Maybe (a -> b -> c) -> SBV a -> SBV b -> SBV c
lift2 w mbOp a b
| Just cv <- concEval2 mbOp a b
= cv
| True
= SBV $ SVal k $ Right $ cache r
where k = kindOf (Proxy @c)
r st = do sva <- sbvToSV st a
svb <- sbvToSV st b
newExpr st k (SBVApp (SeqOp w) [sva, svb])
-- | Lift a ternary operator over lists.
lift3 :: forall a b c d. (SymVal a, SymVal b, SymVal c, SymVal d) => SeqOp -> Maybe (a -> b -> c -> d) -> SBV a -> SBV b -> SBV c -> SBV d
lift3 w mbOp a b c
| Just cv <- concEval3 mbOp a b c
= cv
| True
= SBV $ SVal k $ Right $ cache r
where k = kindOf (Proxy @d)
r st = do sva <- sbvToSV st a
svb <- sbvToSV st b
svc <- sbvToSV st c
newExpr st k (SBVApp (SeqOp w) [sva, svb, svc])
-- | Concrete evaluation for unary ops
concEval1 :: (SymVal a, SymVal b) => Maybe (a -> b) -> SBV a -> Maybe (SBV b)
concEval1 mbOp a = literal <$> (mbOp <*> unliteral a)
-- | Concrete evaluation for binary ops
concEval2 :: (SymVal a, SymVal b, SymVal c) => Maybe (a -> b -> c) -> SBV a -> SBV b -> Maybe (SBV c)
concEval2 mbOp a b = literal <$> (mbOp <*> unliteral a <*> unliteral b)
-- | Concrete evaluation for ternary ops
concEval3 :: (SymVal a, SymVal b, SymVal c, SymVal d) => Maybe (a -> b -> c -> d) -> SBV a -> SBV b -> SBV c -> Maybe (SBV d)
concEval3 mbOp a b c = literal <$> (mbOp <*> unliteral a <*> unliteral b <*> unliteral c)
-- | Is the list concretely known empty?
isConcretelyEmpty :: SymVal a => SList a -> Bool
isConcretelyEmpty sl | Just l <- unliteral sl = P.null l
| True = False
|