1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
|
-----------------------------------------------------------------------------
-- |
-- Module : Data.SBV.Maybe
-- Copyright : (c) Joel Burget
-- Levent Erkok
-- License : BSD3
-- Maintainer: erkokl@gmail.com
-- Stability : experimental
--
-- Symbolic option type, symbolic version of Haskell's 'Maybe' type.
-----------------------------------------------------------------------------
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE Rank2Types #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeApplications #-}
{-# OPTIONS_GHC -Wall -Werror -fno-warn-orphans #-}
module Data.SBV.Maybe (
-- * Constructing optional values
sJust, sNothing, liftMaybe
-- * Destructing optionals
, maybe
-- * Mapping functions
, map, map2
-- * Scrutinizing the branches of an option
, isNothing, isJust, fromMaybe, fromJust
) where
import Prelude hiding (maybe, map)
import qualified Prelude
import Data.Proxy (Proxy(Proxy))
import Data.SBV.Core.Data
import Data.SBV.Core.Model (ite)
-- $setup
-- >>> -- For doctest purposes only:
-- >>> import Prelude hiding (maybe, map)
-- >>> import Data.SBV
-- | The symbolic 'Nothing'.
--
-- >>> sNothing :: SMaybe Integer
-- Nothing :: SMaybe Integer
sNothing :: forall a. SymVal a => SMaybe a
sNothing = SBV $ SVal k $ Left $ CV k $ CMaybe Nothing
where k = kindOf (Proxy @(Maybe a))
-- | Check if the symbolic value is nothing.
--
-- >>> isNothing (sNothing :: SMaybe Integer)
-- True
-- >>> isNothing (sJust (literal "nope"))
-- False
isNothing :: SymVal a => SMaybe a -> SBool
isNothing = maybe sTrue (const sFalse)
-- | Construct an @SMaybe a@ from an @SBV a@.
--
-- >>> sJust (3 :: SInteger)
-- Just 3 :: SMaybe Integer
sJust :: forall a. SymVal a => SBV a -> SMaybe a
sJust sa
| Just a <- unliteral sa
= literal (Just a)
| True
= SBV $ SVal kMaybe $ Right $ cache res
where ka = kindOf (Proxy @a)
kMaybe = KMaybe ka
res st = do asv <- sbvToSV st sa
newExpr st kMaybe $ SBVApp (MaybeConstructor ka True) [asv]
-- | Check if the symbolic value is not nothing.
--
-- >>> isJust (sNothing :: SMaybe Integer)
-- False
-- >>> isJust (sJust (literal "yep"))
-- True
-- >>> prove $ \x -> isJust (sJust (x :: SInteger))
-- Q.E.D.
isJust :: SymVal a => SMaybe a -> SBool
isJust = maybe sFalse (const sTrue)
-- | Return the value of an optional value. The default is returned if Nothing. Compare to 'fromJust'.
--
-- >>> fromMaybe 2 (sNothing :: SMaybe Integer)
-- 2 :: SInteger
-- >>> fromMaybe 2 (sJust 5 :: SMaybe Integer)
-- 5 :: SInteger
-- >>> prove $ \x -> fromMaybe x (sNothing :: SMaybe Integer) .== x
-- Q.E.D.
-- >>> prove $ \x -> fromMaybe (x+1) (sJust x :: SMaybe Integer) .== x
-- Q.E.D.
fromMaybe :: SymVal a => SBV a -> SMaybe a -> SBV a
fromMaybe def = maybe def id
-- | Return the value of an optional value. The behavior is undefined if
-- passed Nothing, i.e., it can return any value. Compare to 'fromMaybe'.
--
-- >>> fromJust (sJust (literal 'a'))
-- 'a' :: SChar
-- >>> prove $ \x -> fromJust (sJust x) .== (x :: SChar)
-- Q.E.D.
-- >>> sat $ \x -> x .== (fromJust sNothing :: SChar)
-- Satisfiable. Model:
-- s0 = 'A' :: Char
--
-- Note how we get a satisfying assignment in the last case: The behavior
-- is unspecified, thus the SMT solver picks whatever satisfies the
-- constraints, if there is one.
fromJust :: forall a. SymVal a => SMaybe a -> SBV a
fromJust ma
| Just (Just x) <- unliteral ma
= literal x
| True
= SBV $ SVal ka $ Right $ cache res
where ka = kindOf (Proxy @a)
res st = do ms <- sbvToSV st ma
newExpr st ka (SBVApp MaybeAccess [ms])
-- | Construct an @SMaybe a@ from a @Maybe (SBV a)@.
--
-- >>> liftMaybe (Just (3 :: SInteger))
-- Just 3 :: SMaybe Integer
-- >>> liftMaybe (Nothing :: Maybe SInteger)
-- Nothing :: SMaybe Integer
liftMaybe :: SymVal a => Maybe (SBV a) -> SMaybe a
liftMaybe = Prelude.maybe (literal Nothing) sJust
-- | Map over the 'Just' side of a 'Maybe'.
--
-- >>> prove $ \x -> fromJust (map (+1) (sJust x)) .== x+(1::SInteger)
-- Q.E.D.
-- >>> let f = uninterpret "f" :: SInteger -> SBool
-- >>> prove $ \x -> map f (sJust x) .== sJust (f x)
-- Q.E.D.
-- >>> map f sNothing .== sNothing
-- True
map :: forall a b. (SymVal a, SymVal b)
=> (SBV a -> SBV b)
-> SMaybe a
-> SMaybe b
map f = maybe sNothing (sJust . f)
-- | Map over two maybe values.
map2 :: forall a b c. (SymVal a, SymVal b, SymVal c) => (SBV a -> SBV b -> SBV c) -> SMaybe a -> SMaybe b -> SMaybe c
map2 op mx my = ite (isJust mx .&& isJust my)
(sJust (fromJust mx `op` fromJust my))
sNothing
-- | Case analysis for symbolic 'Maybe's. If the value 'isNothing', return the
-- default value; if it 'isJust', apply the function.
--
-- >>> maybe 0 (`sMod` 2) (sJust (3 :: SInteger))
-- 1 :: SInteger
-- >>> maybe 0 (`sMod` 2) (sNothing :: SMaybe Integer)
-- 0 :: SInteger
-- >>> let f = uninterpret "f" :: SInteger -> SBool
-- >>> prove $ \x d -> maybe d f (sJust x) .== f x
-- Q.E.D.
-- >>> prove $ \d -> maybe d f sNothing .== d
-- Q.E.D.
maybe :: forall a b. (SymVal a, SymVal b)
=> SBV b
-> (SBV a -> SBV b)
-> SMaybe a
-> SBV b
maybe brNothing brJust ma
| Just (Just a) <- unliteral ma
= brJust (literal a)
| Just Nothing <- unliteral ma
= brNothing
| True
= SBV $ SVal kb $ Right $ cache res
where ka = kindOf (Proxy @a)
kb = kindOf (Proxy @b)
res st = do mav <- sbvToSV st ma
let justVal = SBV $ SVal ka $ Right $ cache $ \_ -> newExpr st ka $ SBVApp MaybeAccess [mav]
justRes = brJust justVal
br1 <- sbvToSV st brNothing
br2 <- sbvToSV st justRes
-- Do we have a value?
noVal <- newExpr st KBool $ SBVApp (MaybeIs ka False) [mav]
newExpr st kb $ SBVApp Ite [noVal, br1, br2]
-- | Custom 'Num' instance over 'SMaybe'
instance {-# OVERLAPPING #-} (Ord a, SymVal a, Num a) => Num (SBV (Maybe a)) where
(+) = map2 (+)
(-) = map2 (-)
(*) = map2 (*)
abs = map abs
signum = map signum
fromInteger = sJust . fromInteger
|