1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
|
-----------------------------------------------------------------------------
-- |
-- Module : Data.SBV.RegExp
-- Copyright : (c) Levent Erkok
-- License : BSD3
-- Maintainer: erkokl@gmail.com
-- Stability : experimental
--
-- A collection of regular-expression related utilities. The recommended
-- workflow is to import this module qualified as the names of the functions
-- are specifically chosen to be common identifiers. Also, it is recommended
-- you use the @OverloadedStrings@ extension to allow literal strings to be
-- used as symbolic-strings and regular-expressions when working with
-- this module.
-----------------------------------------------------------------------------
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE Rank2Types #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeApplications #-}
{-# OPTIONS_GHC -Wall -Werror #-}
module Data.SBV.RegExp (
-- * Regular expressions
-- $regexpeq
RegExp(..)
-- * Matching
-- $matching
, RegExpMatchable(..)
-- * Constructing regular expressions
-- ** Basics
, everything, nothing, anyChar
-- ** Literals
, exactly
-- ** A class of characters
, oneOf
-- ** Spaces
, newline, whiteSpaceNoNewLine, whiteSpace
-- ** Separators
, tab, punctuation
-- ** Letters
, asciiLetter, asciiLower, asciiUpper
-- ** Digits
, digit, octDigit, hexDigit
-- ** Numbers
, decimal, octal, hexadecimal, floating
-- ** Identifiers
, identifier
) where
import Prelude hiding (length, take, elem, notElem, head)
import qualified Prelude as P
import qualified Data.List as L
import Data.SBV.Core.Data
import Data.SBV.Core.Model () -- instances only
import Data.SBV.String
import qualified Data.Char as C
import Data.Proxy
-- For testing only
import Data.SBV.Char
-- $setup
-- >>> -- For doctest purposes only:
-- >>> import Data.SBV
-- >>> import Data.SBV.Char
-- >>> import Data.SBV.String
-- >>> import Prelude hiding (length, take, elem, notElem, head)
-- >>> :set -XOverloadedStrings
-- >>> :set -XScopedTypeVariables
-- | Matchable class. Things we can match against a 'RegExp'.
--
-- For instance, you can generate valid-looking phone numbers like this:
--
-- >>> :set -XOverloadedStrings
-- >>> let dig09 = Range '0' '9'
-- >>> let dig19 = Range '1' '9'
-- >>> let pre = dig19 * Loop 2 2 dig09
-- >>> let post = dig19 * Loop 3 3 dig09
-- >>> let phone = pre * "-" * post
-- >>> sat $ \s -> (s :: SString) `match` phone
-- Satisfiable. Model:
-- s0 = "200-8000" :: String
class RegExpMatchable a where
-- | @`match` s r@ checks whether @s@ is in the language generated by @r@.
match :: a -> RegExp -> SBool
-- | Matching a character simply means the singleton string matches the regex.
instance RegExpMatchable SChar where
match = match . singleton
-- | Matching symbolic strings.
instance RegExpMatchable SString where
match input regExp = lift1 (StrInRe regExp) (Just (go regExp P.null)) input
where -- This isn't super efficient, but it gets the job done.
go :: RegExp -> (String -> Bool) -> String -> Bool
go (Literal l) k s = l `L.isPrefixOf` s && k (P.drop (P.length l) s)
go All _ _ = True
go AllChar k s = not (P.null s) && k (P.drop 1 s)
go None _ _ = False
go (Range _ _) _ [] = False
go (Range a b) k (c:cs) = a <= c && c <= b && k cs
go (Conc []) k s = k s
go (Conc (r:rs)) k s = go r (go (Conc rs) k) s
go (KStar r) k s = k s || go r (smaller (P.length s) (go (KStar r) k)) s
go (KPlus r) k s = go (Conc [r, KStar r]) k s
go (Opt r) k s = k s || go r k s
go (Comp r) k s = not $ go r k s
go (Diff r1 r2) k s = go r1 k s && not (go r2 k s)
go (Loop i j r) k s = go (Conc (replicate i r P.++ replicate (j - i) (Opt r))) k s
go (Power n r) k s = go (Loop n n r) k s
go (Union []) _ _ = False
go (Union [x]) k s = go x k s
go (Union (x:xs)) k s = go x k s || go (Union xs) k s
go (Inter a b) k s = go a k s && go b k s
-- In the KStar case, make sure the continuation is called with something
-- smaller to avoid infinite recursion!
smaller orig k inp = P.length inp < orig && k inp
-- | Match everything, universal acceptor.
--
-- >>> prove $ \(s :: SString) -> s `match` everything
-- Q.E.D.
everything :: RegExp
everything = All
-- | Match nothing, universal rejector.
--
-- >>> prove $ \(s :: SString) -> sNot (s `match` nothing)
-- Q.E.D.
nothing :: RegExp
nothing = None
-- | Match any character, i.e., strings of length 1
--
-- >>> prove $ \(s :: SString) -> s `match` anyChar .<=> length s .== 1
-- Q.E.D.
anyChar :: RegExp
anyChar = AllChar
-- | A literal regular-expression, matching the given string exactly. Note that
-- with @OverloadedStrings@ extension, you can simply use a Haskell
-- string to mean the same thing, so this function is rarely needed.
--
-- >>> prove $ \(s :: SString) -> s `match` exactly "LITERAL" .<=> s .== "LITERAL"
-- Q.E.D.
exactly :: String -> RegExp
exactly = Literal
-- | Helper to define a character class.
--
-- >>> prove $ \(c :: SChar) -> c `match` oneOf "ABCD" .<=> sAny (c .==) (map literal "ABCD")
-- Q.E.D.
oneOf :: String -> RegExp
oneOf xs = Union [exactly [x] | x <- xs]
-- | Recognize a newline. Also includes carriage-return and form-feed.
--
-- >>> newline
-- (re.union (str.to.re "\n") (str.to.re "\r") (str.to.re "\f"))
-- >>> prove $ \c -> c `match` newline .=> isSpaceL1 c
-- Q.E.D.
newline :: RegExp
newline = oneOf "\n\r\f"
-- | Recognize a tab.
--
-- >>> tab
-- (str.to.re "\t")
-- >>> prove $ \c -> c `match` tab .=> c .== literal '\t'
-- Q.E.D.
tab :: RegExp
tab = oneOf "\t"
-- | Lift a char function to a regular expression that recognizes it.
liftPredL1 :: (Char -> Bool) -> RegExp
liftPredL1 predicate = oneOf $ filter predicate (map C.chr [0 .. 255])
-- | Recognize white-space, but without a new line.
--
-- >>> prove $ \c -> c `match` whiteSpaceNoNewLine .=> c `match` whiteSpace .&& c ./= literal '\n'
-- Q.E.D.
whiteSpaceNoNewLine :: RegExp
whiteSpaceNoNewLine = liftPredL1 (\c -> C.isSpace c && c `P.notElem` ("\n" :: String))
-- | Recognize white space.
--
-- >>> prove $ \c -> c `match` whiteSpace .=> isSpaceL1 c
-- Q.E.D.
whiteSpace :: RegExp
whiteSpace = liftPredL1 C.isSpace
-- | Recognize a punctuation character.
--
-- >>> prove $ \c -> c `match` punctuation .=> isPunctuationL1 c
-- Q.E.D.
punctuation :: RegExp
punctuation = liftPredL1 C.isPunctuation
-- | Recognize an alphabet letter, i.e., @A@..@Z@, @a@..@z@.
asciiLetter :: RegExp
asciiLetter = asciiLower + asciiUpper
-- | Recognize an ASCII lower case letter
--
-- >>> asciiLower
-- (re.range "a" "z")
-- >>> prove $ \c -> (c :: SChar) `match` asciiLower .=> c `match` asciiLetter
-- Q.E.D.
-- >>> prove $ \c -> c `match` asciiLower .=> toUpperL1 c `match` asciiUpper
-- Q.E.D.
-- >>> prove $ \c -> c `match` asciiLetter .=> toLowerL1 c `match` asciiLower
-- Q.E.D.
asciiLower :: RegExp
asciiLower = Range 'a' 'z'
-- | Recognize an upper case letter
--
-- >>> asciiUpper
-- (re.range "A" "Z")
-- >>> prove $ \c -> (c :: SChar) `match` asciiUpper .=> c `match` asciiLetter
-- Q.E.D.
-- >>> prove $ \c -> c `match` asciiUpper .=> toLowerL1 c `match` asciiLower
-- Q.E.D.
-- >>> prove $ \c -> c `match` asciiLetter .=> toUpperL1 c `match` asciiUpper
-- Q.E.D.
asciiUpper :: RegExp
asciiUpper = Range 'A' 'Z'
-- | Recognize a digit. One of @0@..@9@.
--
-- >>> digit
-- (re.range "0" "9")
-- >>> prove $ \c -> c `match` digit .<=> let v = digitToInt c in 0 .<= v .&& v .< 10
-- Q.E.D.
-- >>> prove $ \c -> sNot ((c::SChar) `match` (digit - digit))
-- Q.E.D.
digit :: RegExp
digit = Range '0' '9'
-- | Recognize an octal digit. One of @0@..@7@.
--
-- >>> octDigit
-- (re.range "0" "7")
-- >>> prove $ \c -> c `match` octDigit .<=> let v = digitToInt c in 0 .<= v .&& v .< 8
-- Q.E.D.
-- >>> prove $ \(c :: SChar) -> c `match` octDigit .=> c `match` digit
-- Q.E.D.
octDigit :: RegExp
octDigit = Range '0' '7'
-- | Recognize a hexadecimal digit. One of @0@..@9@, @a@..@f@, @A@..@F@.
--
-- >>> hexDigit
-- (re.union (re.range "0" "9") (re.range "a" "f") (re.range "A" "F"))
-- >>> prove $ \c -> c `match` hexDigit .<=> let v = digitToInt c in 0 .<= v .&& v .< 16
-- Q.E.D.
-- >>> prove $ \(c :: SChar) -> c `match` digit .=> c `match` hexDigit
-- Q.E.D.
hexDigit :: RegExp
hexDigit = digit + Range 'a' 'f' + Range 'A' 'F'
-- | Recognize a decimal number.
--
-- >>> decimal
-- (re.+ (re.range "0" "9"))
-- >>> prove $ \s -> (s::SString) `match` decimal .=> sNot (s `match` KStar asciiLetter)
-- Q.E.D.
decimal :: RegExp
decimal = KPlus digit
-- | Recognize an octal number. Must have a prefix of the form @0o@\/@0O@.
--
-- >>> octal
-- (re.++ (re.union (str.to.re "0o") (str.to.re "0O")) (re.+ (re.range "0" "7")))
-- >>> prove $ \s -> s `match` octal .=> sAny (.== take 2 s) ["0o", "0O"]
-- Q.E.D.
octal :: RegExp
octal = ("0o" + "0O") * KPlus octDigit
-- | Recognize a hexadecimal number. Must have a prefix of the form @0x@\/@0X@.
--
-- >>> hexadecimal
-- (re.++ (re.union (str.to.re "0x") (str.to.re "0X")) (re.+ (re.union (re.range "0" "9") (re.range "a" "f") (re.range "A" "F"))))
-- >>> prove $ \s -> s `match` hexadecimal .=> sAny (.== take 2 s) ["0x", "0X"]
-- Q.E.D.
hexadecimal :: RegExp
hexadecimal = ("0x" + "0X") * KPlus hexDigit
-- | Recognize a floating point number. The exponent part is optional if a fraction
-- is present. The exponent may or may not have a sign.
--
-- >>> prove $ \s -> s `match` floating .=> length s .>= 3
-- Q.E.D.
floating :: RegExp
floating = withFraction + withoutFraction
where withFraction = decimal * "." * decimal * Opt expt
withoutFraction = decimal * expt
expt = ("e" + "E") * Opt (oneOf "+-") * decimal
-- | For the purposes of this regular expression, an identifier consists of a letter
-- followed by zero or more letters, digits, underscores, and single quotes. The first
-- letter must be lowercase.
--
-- >>> prove $ \s -> s `match` identifier .=> isAsciiLower (head s)
-- Q.E.D.
-- >>> prove $ \s -> s `match` identifier .=> length s .>= 1
-- Q.E.D.
identifier :: RegExp
identifier = asciiLower * KStar (asciiLetter + digit + "_" + "'")
-- | Lift a unary operator over strings.
lift1 :: forall a b. (SymVal a, SymVal b) => StrOp -> Maybe (a -> b) -> SBV a -> SBV b
lift1 w mbOp a
| Just cv <- concEval1 mbOp a
= cv
| True
= SBV $ SVal k $ Right $ cache r
where k = kindOf (Proxy @b)
r st = do sva <- sbvToSV st a
newExpr st k (SBVApp (StrOp w) [sva])
-- | Concrete evaluation for unary ops
concEval1 :: (SymVal a, SymVal b) => Maybe (a -> b) -> SBV a -> Maybe (SBV b)
concEval1 mbOp a = literal <$> (mbOp <*> unliteral a)
-- | Quiet GHC about testing only imports
__unused :: a
__unused = undefined isSpaceL1 length take elem notElem head
{- $matching
A symbolic string or a character ('SString' or 'SChar') can be matched against a regular-expression. Note
that the regular-expression itself is not a symbolic object: It's a fully concrete representation, as
captured by the 'RegExp' class. The 'RegExp' class is an instance of the @IsString@ class, which makes writing
literal matches easier. The 'RegExp' type also has a (somewhat degenerate) 'Num' instance: Concatenation
corresponds to multiplication, union corresponds to addition, and @0@ corresponds to the empty language.
Note that since `match` is a method of 'RegExpMatchable' class, both 'SChar' and 'SString' can be used as
an argument for matching. In practice, this means you might have to disambiguate with a type-ascription
if it is not deducible from context.
>>> prove $ \s -> (s :: SString) `match` "hello" .<=> s .== "hello"
Q.E.D.
>>> prove $ \s -> s `match` Loop 2 5 "xyz" .=> length s .>= 6
Q.E.D.
>>> prove $ \s -> s `match` Loop 2 5 "xyz" .=> length s .<= 15
Q.E.D.
>>> prove $ \s -> s `match` Power 3 "xyz" .=> length s .== 9
Q.E.D.
>>> prove $ \s -> s `match` (exactly "xyz" ^ 3) .=> length s .== 9
Q.E.D.
>>> prove $ \s -> match s (Loop 2 5 "xyz") .=> length s .>= 7
Falsifiable. Counter-example:
s0 = "xyzxyz" :: String
>>> prove $ \s -> (s :: SString) `match` "hello" .=> s `match` ("hello" + "world")
Q.E.D.
>>> prove $ \s -> sNot $ (s::SString) `match` ("so close" * 0)
Q.E.D.
>>> prove $ \c -> (c :: SChar) `match` oneOf "abcd" .=> ord c .>= ord (literal 'a') .&& ord c .<= ord (literal 'd')
Q.E.D.
-}
{- $regexpeq
/A note on Equality/ Regular expressions can be symbolically compared for equality. Note that the regular Haskell 'Eq'
instance and the symbolic version differ in semantics: 'Eq' instance checks for "structural" equality, i.e., that the two regular expressions
are constructed in precisely the same way. The symbolic equality, however, checks for language equality, i.e., that
the regular expressions correspond to the same set of strings. This is a bit unfortunate, but hopefully should not
cause much trouble in practice. Note that the only reason we support symbolic equality is to take advantage of
the internal decision procedures z3 provides for this case: A similar goal can be achieved by showing there is
no string accepted by one but not the other. However, this encoding doesn't perform well in z3.
>>> prove $ ("a" * KStar ("b" * "a")) .== (KStar ("a" * "b") * "a")
Q.E.D.
>>> prove $ ("a" * KStar ("b" * "a")) .== (KStar ("a" * "b") * "c")
Falsifiable
>>> prove $ ("a" * KStar ("b" * "a")) ./= (KStar ("a" * "b") * "c")
Q.E.D.
-}
|