File: Set.hs

package info (click to toggle)
haskell-sbv 10.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 8,148 kB
  • sloc: haskell: 31,176; makefile: 4
file content (573 lines) | stat: -rw-r--r-- 19,462 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
-----------------------------------------------------------------------------
-- |
-- Module    : Data.SBV.Set
-- Copyright : (c) Levent Erkok
-- License   : BSD3
-- Maintainer: erkokl@gmail.com
-- Stability : experimental
--
-- A collection of set utilities, useful when working with symbolic sets.
-- To the extent possible, the functions in this module follow those
-- of "Data.Set" so importing qualified is the recommended workflow.
--
-- Note that unlike "Data.Set", SBV sets can be infinite, represented
-- as a complement of some finite set. This means that a symbolic set
-- is either finite, or its complement is finite. (If the underlying
-- domain is finite, then obviously both the set itself and its complement
-- will always be finite.) Therefore, there are some differences in the API
-- from Haskell sets. For instance, you can take the complement of any set,
-- which is something you cannot do in Haskell! Conversely, you cannot compute
-- the size of a symbolic set (as it can be infinite!), nor you can turn
-- it into a list or necessarily enumerate its elements.
--
-- __A note on cardinality__: You can indirectly talk about cardinality: 'Data.SBV.Set.hasSize'
-- can be used to state that the set is finite and has size @k@ for a user-specified symbolic
-- integer @k@.
-----------------------------------------------------------------------------

{-# LANGUAGE Rank2Types          #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeApplications    #-}

{-# OPTIONS_GHC -Wall -Werror #-}

module Data.SBV.Set (
        -- * Constructing sets
          empty, full, universal, singleton, fromList, complement

        -- * Equality of sets
        -- $setEquality

        -- * Insertion and deletion
        , insert, delete

        -- * Query
        , member, notMember, null, isEmpty, isFull, isUniversal, hasSize, isSubsetOf, isProperSubsetOf, disjoint

        -- * Combinations
        , union, unions, intersection, intersections, difference, (\\)

        ) where

import Prelude hiding (null)

import Data.Proxy (Proxy(Proxy))
import qualified Data.Set as Set

import Data.SBV.Core.Data
import Data.SBV.Core.Model () -- instances only
import Data.SBV.Core.Symbolic (SetOp(..))

import qualified Data.Generics.Uniplate.Data as G

-- $setup
-- >>> -- For doctest purposes only:
-- >>> import Prelude hiding(null)
-- >>> import Data.SBV hiding(complement)
-- >>> :set -XScopedTypeVariables

-- | Empty set.
--
-- >>> empty :: SSet Integer
-- {} :: {SInteger}
empty :: forall a. HasKind a => SSet a
empty = SBV $ SVal k $ Left $ CV k $ CSet $ RegularSet Set.empty
  where k = KSet $ kindOf (Proxy @a)

-- | Full set.
--
-- >>> full :: SSet Integer
-- U :: {SInteger}
--
-- Note that the universal set over a type is represented by the letter @U@.
full :: forall a. HasKind a => SSet a
full = SBV $ SVal k $ Left $ CV k $ CSet $ ComplementSet Set.empty
  where k = KSet $ kindOf (Proxy @a)

-- | Synonym for 'full'.
universal :: forall a. HasKind a => SSet a
universal = full

-- | Singleton list.
--
-- >>> singleton 2 :: SSet Integer
-- {2} :: {SInteger}
singleton :: forall a. (Ord a, SymVal a) => SBV a -> SSet a
singleton = (`insert` (empty :: SSet a))

-- | Conversion from a list.
--
-- >>> fromList ([] :: [Integer])
-- {} :: {SInteger}
-- >>> fromList [1,2,3]
-- {1,2,3} :: {SInteger}
-- >>> fromList [5,5,5,12,12,3]
-- {3,5,12} :: {SInteger}
fromList :: forall a. (Ord a, SymVal a) => [a] -> SSet a
fromList = literal . RegularSet . Set.fromList

-- | Complement.
--
-- >>> empty .== complement (full :: SSet Integer)
-- True
--
-- Complementing twice gets us back the original set:
--
-- >>> prove $ \(s :: SSet Integer) -> complement (complement s) .== s
-- Q.E.D.
complement :: forall a. (Ord a, SymVal a) => SSet a -> SSet a
complement ss
  | KChar `elem` G.universe k
  = error $ unlines [ "*** Data.SBV: Set.complement is not available for the type " ++ show k
                    , "***"
                    , "*** See: https://github.com/LeventErkok/sbv/issues/601 for a discussion"
                    , "*** on why SBV does not support this operation at this type."
                    , "***"
                    , "*** Alternative: Use sets of strings instead, though the match isn't perfect."
                    , "*** If you run into this issue, please comment on the above ticket for"
                    , "*** possible improvements."
                    ]
  | Just (RegularSet rs) <- unliteral ss
  = literal $ ComplementSet rs
  | Just (ComplementSet cs) <- unliteral ss
  = literal $ RegularSet cs
  | True
  = SBV $ SVal k $ Right $ cache r
  where k = KSet (kindOf (Proxy @a))

        r st = do svs <- sbvToSV st ss
                  newExpr st k $ SBVApp (SetOp SetComplement) [svs]

-- | Insert an element into a set.
--
-- Insertion is order independent:
--
-- >>> prove $ \x y (s :: SSet Integer) -> x `insert` (y `insert` s) .== y `insert` (x `insert` s)
-- Q.E.D.
--
-- Deletion after insertion is not necessarily identity:
--
-- >>> prove $ \x (s :: SSet Integer) -> x `delete` (x `insert` s) .== s
-- Falsifiable. Counter-example:
--   s0 = 2 :: Integer
--   s1 = U :: {Integer}
--
-- But the above is true if the element isn't in the set to start with:
--
-- >>> prove $ \x (s :: SSet Integer) -> x `notMember` s .=> x `delete` (x `insert` s) .== s
-- Q.E.D.
--
-- Insertion into a full set does nothing:
--
-- >>> prove $ \x -> insert x full .== (full :: SSet Integer)
-- Q.E.D.
insert :: forall a. (Ord a, SymVal a) => SBV a -> SSet a -> SSet a
insert se ss
  -- Case 1: Constant regular set, just add it:
  | Just e <- unliteral se, Just (RegularSet rs) <- unliteral ss
  = literal $ RegularSet $ e `Set.insert` rs

  -- Case 2: Constant complement set, with element in the complement, just remove it:
  | Just e <- unliteral se, Just (ComplementSet cs) <- unliteral ss, e `Set.member` cs
  = literal $ ComplementSet $ e `Set.delete` cs

  -- Otherwise, go symbolic
  | True
  = SBV $ SVal k $ Right $ cache r
  where ka = kindOf (Proxy @a)
        k  = KSet ka

        r st = do svs <- sbvToSV st ss
                  sve <- sbvToSV st se
                  newExpr st k $ SBVApp (SetOp SetInsert) [sve, svs]

-- | Delete an element from a set.
--
-- Deletion is order independent:
--
-- >>> prove $ \x y (s :: SSet Integer) -> x `delete` (y `delete` s) .== y `delete` (x `delete` s)
-- Q.E.D.
--
-- Insertion after deletion is not necessarily identity:
--
-- >>> prove $ \x (s :: SSet Integer) -> x `insert` (x `delete` s) .== s
-- Falsifiable. Counter-example:
--   s0 =       2 :: Integer
--   s1 = U - {2} :: {Integer}
--
-- But the above is true if the element is in the set to start with:
--
-- >>> prove $ \x (s :: SSet Integer) -> x `member` s .=> x `insert` (x `delete` s) .== s
-- Q.E.D.
--
-- Deletion from an empty set does nothing:
--
-- >>> prove $ \x -> delete x empty .== (empty :: SSet Integer)
-- Q.E.D.
delete :: forall a. (Ord a, SymVal a) => SBV a -> SSet a -> SSet a
delete se ss
  -- Case 1: Constant regular set, just remove it:
  | Just e <- unliteral se, Just (RegularSet rs) <- unliteral ss
  = literal $ RegularSet $ e `Set.delete` rs

  -- Case 2: Constant complement set, with element missing in the complement, just add it:
  | Just e <- unliteral se, Just (ComplementSet cs) <- unliteral ss, e `Set.notMember` cs
  = literal $ ComplementSet $ e `Set.insert` cs

  -- Otherwise, go symbolic
  | True
  = SBV $ SVal k $ Right $ cache r
  where ka = kindOf (Proxy @a)
        k  = KSet ka

        r st = do svs <- sbvToSV st ss
                  sve <- sbvToSV st se
                  newExpr st k $ SBVApp (SetOp SetDelete) [sve, svs]

-- | Test for membership.
--
-- >>> prove $ \x -> x `member` singleton (x :: SInteger)
-- Q.E.D.
--
-- >>> prove $ \x (s :: SSet Integer) -> x `member` (x `insert` s)
-- Q.E.D.
--
-- >>> prove $ \x -> x `member` (full :: SSet Integer)
-- Q.E.D.
member :: (Ord a, SymVal a) => SBV a -> SSet a -> SBool
member se ss
  -- Case 1: Constant regular set, just check:
  | Just e <- unliteral se, Just (RegularSet rs) <- unliteral ss
  = literal $ e `Set.member` rs

  -- Case 2: Constant complement set, check for non-member
  | Just e <- unliteral se, Just (ComplementSet cs) <- unliteral ss
  = literal $ e `Set.notMember` cs

  -- Otherwise, go symbolic
  | True
  = SBV $ SVal KBool $ Right $ cache r
  where r st = do svs <- sbvToSV st ss
                  sve <- sbvToSV st se
                  newExpr st KBool $ SBVApp (SetOp SetMember) [sve, svs]

-- | Test for non-membership.
--
-- >>> prove $ \x -> x `notMember` observe "set" (singleton (x :: SInteger))
-- Falsifiable. Counter-example:
--   set = {0} :: {Integer}
--   s0  =   0 :: Integer
--
-- >>> prove $ \x (s :: SSet Integer) -> x `notMember` (x `delete` s)
-- Q.E.D.
--
-- >>> prove $ \x -> x `notMember` (empty :: SSet Integer)
-- Q.E.D.
notMember :: (Ord a, SymVal a) => SBV a -> SSet a -> SBool
notMember se ss = sNot $ member se ss

-- | Is this the empty set?
--
-- >>> null (empty :: SSet Integer)
-- True
--
-- >>> prove $ \x -> null (x `delete` singleton (x :: SInteger))
-- Q.E.D.
--
-- >>> prove $ null (full :: SSet Integer)
-- Falsifiable
--
-- Note how we have to call `Data.SBV.prove` in the last case since dealing
-- with infinite sets requires a call to the solver and cannot be
-- constant folded.
null :: HasKind a => SSet a -> SBool
null = (.== empty)

-- | Synonym for 'Data.SBV.Set.null'.
isEmpty :: HasKind a => SSet a -> SBool
isEmpty = null

-- | Is this the full set?
--
-- >>> prove $ isFull (empty :: SSet Integer)
-- Falsifiable
--
-- >>> prove $ \x -> isFull (observe "set" (x `delete` (full :: SSet Integer)))
-- Falsifiable. Counter-example:
--   set = U - {2} :: {Integer}
--   s0  =       2 :: Integer
--
-- >>> isFull (full :: SSet Integer)
-- True
--
-- Note how we have to call `Data.SBV.prove` in the first case since dealing
-- with infinite sets requires a call to the solver and cannot be
-- constant folded.
isFull :: HasKind a => SSet a -> SBool
isFull = (.== full)

-- | Synonym for 'Data.SBV.Set.isFull'.
isUniversal :: HasKind a => SSet a -> SBool
isUniversal = isFull

-- | Does the set have the given size? It implicitly asserts that the set
-- it is operating on is finite. NB. Only z3 supported this call, and as
-- discussed in http://github.com/Z3Prover/z3/issues/3854, recent versions
-- of z3 doesn't support size calls either. So, you can only use this if you have
-- a sufficiently old version of z3.
--
-- >>> prove $ \i -> hasSize (empty :: SSet Integer) i .== (i .== 0)
-- Q.E.D.
--
-- >>> sat $ \i -> hasSize (full :: SSet Integer) i
-- Unsatisfiable
--
-- The following tests are commented out since z3 no longer supports size:
--
-- > >>> prove $ \a b i j k -> hasSize (a :: SSet Integer) i .&& hasSize (b :: SSet Integer) j .&& hasSize (a `union` b) k .=> k .>= i `smax` j
-- > Q.E.D.
--
-- > >>> prove $ \a b i j k -> hasSize (a :: SSet Integer) i .&& hasSize (b :: SSet Integer) j .&& hasSize (a `intersection` b) k .=> k .<= i `smin` j
-- > Q.E.D.
--
-- > >>> prove $ \a k -> hasSize (a :: SSet Integer) k .=> k .>= 0
-- > Q.E.D.
hasSize :: (Ord a, SymVal a) => SSet a -> SInteger -> SBool
hasSize sa si
  -- Case 1: Constant regular set, see if the size matches
  | Just (RegularSet a) <- unliteral sa
  = literal (fromIntegral (Set.size a)) .== si

  -- Case 2: Constant complement set, will never have finite size
  | Just (ComplementSet _) <- unliteral sa
  = sFalse

  -- Case 3: Integer is constant, and is negative:
  | Just i <- unliteral si, i < 0
  = sFalse

  -- Otherwise, go symbolic
  | True
  = SBV $ SVal KBool $ Right $ cache r
  where r st = do sva <- sbvToSV st sa
                  svi <- sbvToSV st si
                  newExpr st KBool $ SBVApp (SetOp SetHasSize) [sva, svi]

-- | Subset test.
--
-- >>> prove $ empty `isSubsetOf` (full :: SSet Integer)
-- Q.E.D.
--
-- >>> prove $ \x (s :: SSet Integer) -> s `isSubsetOf` (x `insert` s)
-- Q.E.D.
--
-- >>> prove $ \x (s :: SSet Integer) -> (x `delete` s) `isSubsetOf` s
-- Q.E.D.
isSubsetOf :: (Ord a, SymVal a) => SSet a -> SSet a -> SBool
isSubsetOf sa sb
  -- Case 1: Constant regular sets, just check:
  | Just (RegularSet a) <- unliteral sa, Just (RegularSet b) <- unliteral sb
  = literal $ a `Set.isSubsetOf` b

  -- Case 2: Constant complement sets, check in the reverse direction:
  | Just (ComplementSet a) <- unliteral sa, Just (ComplementSet b) <- unliteral sb
  = literal $ b `Set.isSubsetOf` a

  -- Otherwise, go symbolic
  | True
  = SBV $ SVal KBool $ Right $ cache r
  where r st = do sva <- sbvToSV st sa
                  svb <- sbvToSV st sb
                  newExpr st KBool $ SBVApp (SetOp SetSubset) [sva, svb]

-- | Proper subset test.
--
-- >>> prove $ empty `isProperSubsetOf` (full :: SSet Integer)
-- Q.E.D.
--
-- >>> prove $ \x (s :: SSet Integer) -> s `isProperSubsetOf` (x `insert` s)
-- Falsifiable. Counter-example:
--   s0 = 2 :: Integer
--   s1 = U :: {Integer}
--
-- >>> prove $ \x (s :: SSet Integer) -> x `notMember` s .=> s `isProperSubsetOf` (x `insert` s)
-- Q.E.D.
--
-- >>> prove $ \x (s :: SSet Integer) -> (x `delete` s) `isProperSubsetOf` s
-- Falsifiable. Counter-example:
--   s0 =         2 :: Integer
--   s1 = U - {2,3} :: {Integer}
--
-- >>> prove $ \x (s :: SSet Integer) -> x `member` s .=> (x `delete` s) `isProperSubsetOf` s
-- Q.E.D.
isProperSubsetOf :: (Ord a, SymVal a) => SSet a -> SSet a -> SBool
isProperSubsetOf a b = a `isSubsetOf` b .&& a ./= b

-- | Disjoint test.
--
-- >>> disjoint (fromList [2,4,6])   (fromList [1,3])
-- True
-- >>> disjoint (fromList [2,4,6,8]) (fromList [2,3,5,7])
-- False
-- >>> disjoint (fromList [1,2])     (fromList [1,2,3,4])
-- False
-- >>> prove $ \(s :: SSet Integer) -> s `disjoint` complement s
-- Q.E.D.
-- >>> allSat $ \(s :: SSet Integer) -> s `disjoint` s
-- Solution #1:
--   s0 = {} :: {Integer}
-- This is the only solution.
--
-- The last example is particularly interesting: The empty set is the
-- only set where `disjoint` is not reflexive!
--
-- Note that disjointness of a set from its complement is guaranteed
-- by the fact that all types are inhabited; an implicit assumption
-- we have in classic logic which is also enjoyed by Haskell due to
-- the presence of bottom!
disjoint :: (Ord a, SymVal a) => SSet a -> SSet a -> SBool
disjoint a b = a `intersection` b .== empty

-- | Union.
--
-- >>> union (fromList [1..10]) (fromList [5..15]) .== (fromList [1..15] :: SSet Integer)
-- True
-- >>> prove $ \(a :: SSet Integer) b -> a `union` b .== b `union` a
-- Q.E.D.
-- >>> prove $ \(a :: SSet Integer) b c -> a `union` (b `union` c) .== (a `union` b) `union` c
-- Q.E.D.
-- >>> prove $ \(a :: SSet Integer) -> a `union` full .== full
-- Q.E.D.
-- >>> prove $ \(a :: SSet Integer) -> a `union` empty .== a
-- Q.E.D.
-- >>> prove $ \(a :: SSet Integer) -> a `union` complement a .== full
-- Q.E.D.
union :: (Ord a, SymVal a) => SSet a -> SSet a -> SSet a
union sa sb
  -- Case 1: Constant regular sets, just compute
  | Just (RegularSet a) <- unliteral sa, Just (RegularSet b) <- unliteral sb
  = literal $ RegularSet $ a `Set.union` b

  -- Case 2: Constant complement sets, complement the intersection:
  | Just (ComplementSet a) <- unliteral sa, Just (ComplementSet b) <- unliteral sb
  = literal $ ComplementSet $ a `Set.intersection` b

  -- Otherwise, go symbolic
  | True
  = SBV $ SVal k $ Right $ cache r
  where k = kindOf sa
        r st = do sva <- sbvToSV st sa
                  svb <- sbvToSV st sb
                  newExpr st k $ SBVApp (SetOp SetUnion) [sva, svb]

-- | Unions. Equivalent to @'foldr' 'union' 'empty'@.
--
-- >>> prove $ unions [] .== (empty :: SSet Integer)
-- Q.E.D.
unions :: (Ord a, SymVal a) => [SSet a] -> SSet a
unions = foldr union empty

-- | Intersection.
--
-- >>> intersection (fromList [1..10]) (fromList [5..15]) .== (fromList [5..10] :: SSet Integer)
-- True
-- >>> prove $ \(a :: SSet Integer) b -> a `intersection` b .== b `intersection` a
-- Q.E.D.
-- >>> prove $ \(a :: SSet Integer) b c -> a `intersection` (b `intersection` c) .== (a `intersection` b) `intersection` c
-- Q.E.D.
-- >>> prove $ \(a :: SSet Integer) -> a `intersection` full .== a
-- Q.E.D.
-- >>> prove $ \(a :: SSet Integer) -> a `intersection` empty .== empty
-- Q.E.D.
-- >>> prove $ \(a :: SSet Integer) -> a `intersection` complement a .== empty
-- Q.E.D.
-- >>> prove $ \(a :: SSet Integer) b -> a `disjoint` b .=> a `intersection` b .== empty
-- Q.E.D.
intersection :: (Ord a, SymVal a) => SSet a -> SSet a -> SSet a
intersection sa sb
  -- Case 1: Constant regular sets, just compute
  | Just (RegularSet a) <- unliteral sa, Just (RegularSet b) <- unliteral sb
  = literal $ RegularSet $ a `Set.intersection` b

  -- Case 2: Constant complement sets, complement the union:
  | Just (ComplementSet a) <- unliteral sa, Just (ComplementSet b) <- unliteral sb
  = literal $ ComplementSet $ a `Set.union` b

  -- Otherwise, go symbolic
  | True
  = SBV $ SVal k $ Right $ cache r
  where k = kindOf sa
        r st = do sva <- sbvToSV st sa
                  svb <- sbvToSV st sb
                  newExpr st k $ SBVApp (SetOp SetIntersect) [sva, svb]

-- | Intersections. Equivalent to @'foldr' 'intersection' 'full'@. Note that
-- Haskell's 'Data.Set' does not support this operation as it does not have a
-- way of representing universal sets.
--
-- >>> prove $ intersections [] .== (full :: SSet Integer)
-- Q.E.D.
intersections :: (Ord a, SymVal a) => [SSet a] -> SSet a
intersections = foldr intersection full

-- | Difference.
--
-- >>> prove $ \(a :: SSet Integer) -> empty `difference` a .== empty
-- Q.E.D.
-- >>> prove $ \(a :: SSet Integer) -> a `difference` empty .== a
-- Q.E.D.
-- >>> prove $ \(a :: SSet Integer) -> full `difference` a .== complement a
-- Q.E.D.
-- >>> prove $ \(a :: SSet Integer) -> a `difference` a .== empty
-- Q.E.D.
difference :: (Ord a, SymVal a) => SSet a -> SSet a -> SSet a
difference sa sb
  -- Only constant fold the regular case, others are left symbolic
  | Just (RegularSet a) <- unliteral sa, Just (RegularSet b) <- unliteral sb
  = literal $ RegularSet $ a `Set.difference` b

  -- Otherwise, go symbolic
  | True
  = SBV $ SVal k $ Right $ cache r
  where k = kindOf sa
        r st = do sva <- sbvToSV st sa
                  svb <- sbvToSV st sb
                  newExpr st k $ SBVApp (SetOp SetDifference) [sva, svb]

-- | Synonym for 'Data.SBV.Set.difference'.
infixl 9 \\
(\\) :: (Ord a, SymVal a) => SSet a -> SSet a -> SSet a
(\\) = difference

{- $setEquality
We can compare sets for equality:

>>> empty .== (empty :: SSet Integer)
True
>>> full .== (full :: SSet Integer)
True
>>> full ./= (full :: SSet Integer)
False
>>> sat $ \(x::SSet (Maybe Integer)) y z -> distinct [x, y, z]
Satisfiable. Model:
  s0 = {Just 3} :: {Maybe Integer}
  s1 =       {} :: {Maybe Integer}
  s2 =        U :: {Maybe Integer}

However, if we compare two sets that are constructed as regular or in the complement
form, we have to use a proof to establish equality:

>>> prove $ full .== (empty :: SSet Integer)
Falsifiable

The reason for this is that there is no way in Haskell to compare an infinite
set to any other set, as infinite sets are not representable at all! So, we have
to delay the judgment to the SMT solver. If you try to constant fold, you
will get:

>>> full .== (empty :: SSet Integer)
<symbolic> :: SBool

indicating that the result is a symbolic value that needs a decision
procedure to be determined!
-}