1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
|
-----------------------------------------------------------------------------
-- |
-- Module : Data.SBV.Tools.Overflow
-- Copyright : (c) Levent Erkok
-- License : BSD3
-- Maintainer: erkokl@gmail.com
-- Stability : experimental
--
-- Implementation of overflow detection functions.
-- Based on: <http://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/z3prefix.pdf>
-----------------------------------------------------------------------------
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE ImplicitParams #-}
{-# LANGUAGE Rank2Types #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE UndecidableInstances #-}
{-# OPTIONS_GHC -Wall -Werror #-}
module Data.SBV.Tools.Overflow (
-- * Arithmetic overflows
ArithOverflow(..), CheckedArithmetic(..)
-- * Cast overflows
, sFromIntegralO, sFromIntegralChecked
) where
import Data.SBV.Core.Data
import Data.SBV.Core.Kind
import Data.SBV.Core.Model
import Data.SBV.Core.Operations
import Data.SBV.Core.Sized
import GHC.TypeLits
import GHC.Stack
import Data.Int
import Data.Word
import Data.Proxy
-- $setup
-- >>> -- For doctest purposes only:
-- >>> import Data.SBV
-- | Detecting underflow/overflow conditions. For each function,
-- the first result is the condition under which the computation
-- underflows, and the second is the condition under which it
-- overflows.
class ArithOverflow a where
-- | Bit-vector addition. Unsigned addition can only overflow. Signed addition can underflow and overflow.
--
-- A tell tale sign of unsigned addition overflow is when the sum is less than minimum of the arguments.
--
-- >>> prove $ \x y -> snd (bvAddO x (y::SWord16)) .<=> x + y .< x `smin` y
-- Q.E.D.
bvAddO :: a -> a -> (SBool, SBool)
-- | Bit-vector subtraction. Unsigned subtraction can only underflow. Signed subtraction can underflow and overflow.
bvSubO :: a -> a -> (SBool, SBool)
-- | Bit-vector multiplication. Unsigned multiplication can only overflow. Signed multiplication can underflow and overflow.
bvMulO :: a -> a -> (SBool, SBool)
-- | Same as 'bvMulO', except instead of doing the computation internally, it simply sends it off to z3 as a primitive.
-- Obviously, only use if you have the z3 backend! Note that z3 provides this operation only when no logic is set,
-- so make sure to call @setLogic Logic_NONE@ in your program!
bvMulOFast :: a -> a -> (SBool, SBool)
-- | Bit-vector division. Unsigned division neither underflows nor overflows. Signed division can only overflow. In fact, for each
-- signed bitvector type, there's precisely one pair that overflows, when @x@ is @minBound@ and @y@ is @-1@:
--
-- >>> allSat $ \x y -> snd (x `bvDivO` (y::SInt8))
-- Solution #1:
-- s0 = -128 :: Int8
-- s1 = -1 :: Int8
-- This is the only solution.
bvDivO :: a -> a -> (SBool, SBool)
-- | Bit-vector negation. Unsigned negation neither underflows nor overflows. Signed negation can only overflow, when the argument is
-- @minBound@:
--
-- >>> prove $ \x -> x .== minBound .<=> snd (bvNegO (x::SInt16))
-- Q.E.D.
bvNegO :: a -> (SBool, SBool)
instance ArithOverflow SWord8 where {bvAddO = l2 bvAddO; bvSubO = l2 bvSubO; bvMulO = l2 bvMulO; bvMulOFast = l2 bvMulOFast; bvDivO = l2 bvDivO; bvNegO = l1 bvNegO}
instance ArithOverflow SWord16 where {bvAddO = l2 bvAddO; bvSubO = l2 bvSubO; bvMulO = l2 bvMulO; bvMulOFast = l2 bvMulOFast; bvDivO = l2 bvDivO; bvNegO = l1 bvNegO}
instance ArithOverflow SWord32 where {bvAddO = l2 bvAddO; bvSubO = l2 bvSubO; bvMulO = l2 bvMulO; bvMulOFast = l2 bvMulOFast; bvDivO = l2 bvDivO; bvNegO = l1 bvNegO}
instance ArithOverflow SWord64 where {bvAddO = l2 bvAddO; bvSubO = l2 bvSubO; bvMulO = l2 bvMulO; bvMulOFast = l2 bvMulOFast; bvDivO = l2 bvDivO; bvNegO = l1 bvNegO}
instance ArithOverflow SInt8 where {bvAddO = l2 bvAddO; bvSubO = l2 bvSubO; bvMulO = l2 bvMulO; bvMulOFast = l2 bvMulOFast; bvDivO = l2 bvDivO; bvNegO = l1 bvNegO}
instance ArithOverflow SInt16 where {bvAddO = l2 bvAddO; bvSubO = l2 bvSubO; bvMulO = l2 bvMulO; bvMulOFast = l2 bvMulOFast; bvDivO = l2 bvDivO; bvNegO = l1 bvNegO}
instance ArithOverflow SInt32 where {bvAddO = l2 bvAddO; bvSubO = l2 bvSubO; bvMulO = l2 bvMulO; bvMulOFast = l2 bvMulOFast; bvDivO = l2 bvDivO; bvNegO = l1 bvNegO}
instance ArithOverflow SInt64 where {bvAddO = l2 bvAddO; bvSubO = l2 bvSubO; bvMulO = l2 bvMulO; bvMulOFast = l2 bvMulOFast; bvDivO = l2 bvDivO; bvNegO = l1 bvNegO}
instance (KnownNat n, BVIsNonZero n) => ArithOverflow (SWord n) where {bvAddO = l2 bvAddO; bvSubO = l2 bvSubO; bvMulO = l2 bvMulO; bvMulOFast = l2 bvMulOFast; bvDivO = l2 bvDivO; bvNegO = l1 bvNegO}
instance (KnownNat n, BVIsNonZero n) => ArithOverflow (SInt n) where {bvAddO = l2 bvAddO; bvSubO = l2 bvSubO; bvMulO = l2 bvMulO; bvMulOFast = l2 bvMulOFast; bvDivO = l2 bvDivO; bvNegO = l1 bvNegO}
instance ArithOverflow SVal where
bvAddO = signPick2 bvuaddo bvsaddo
bvSubO = signPick2 bvusubo bvssubo
bvMulO = signPick2 bvumulo bvsmulo
bvMulOFast = signPick2 bvumuloFast bvsmuloFast
bvDivO = signPick2 bvudivo bvsdivo
bvNegO = signPick1 bvunego bvsnego
-- | A class of checked-arithmetic operations. These follow the usual arithmetic,
-- except make calls to 'Data.SBV.sAssert' to ensure no overflow/underflow can occur.
-- Use them in conjunction with 'Data.SBV.safe' to ensure no overflow can happen.
class (ArithOverflow (SBV a), Num a, SymVal a) => CheckedArithmetic a where
(+!) :: (?loc :: CallStack) => SBV a -> SBV a -> SBV a
(-!) :: (?loc :: CallStack) => SBV a -> SBV a -> SBV a
(*!) :: (?loc :: CallStack) => SBV a -> SBV a -> SBV a
(/!) :: (?loc :: CallStack) => SBV a -> SBV a -> SBV a
negateChecked :: (?loc :: CallStack) => SBV a -> SBV a
infixl 6 +!, -!
infixl 7 *!, /!
instance CheckedArithmetic Word8 where
(+!) = checkOp2 ?loc "addition" (+) bvAddO
(-!) = checkOp2 ?loc "subtraction" (-) bvSubO
(*!) = checkOp2 ?loc "multiplication" (*) bvMulO
(/!) = checkOp2 ?loc "division" sDiv bvDivO
negateChecked = checkOp1 ?loc "unary negation" negate bvNegO
instance CheckedArithmetic Word16 where
(+!) = checkOp2 ?loc "addition" (+) bvAddO
(-!) = checkOp2 ?loc "subtraction" (-) bvSubO
(*!) = checkOp2 ?loc "multiplication" (*) bvMulO
(/!) = checkOp2 ?loc "division" sDiv bvDivO
negateChecked = checkOp1 ?loc "unary negation" negate bvNegO
instance CheckedArithmetic Word32 where
(+!) = checkOp2 ?loc "addition" (+) bvAddO
(-!) = checkOp2 ?loc "subtraction" (-) bvSubO
(*!) = checkOp2 ?loc "multiplication" (*) bvMulO
(/!) = checkOp2 ?loc "division" sDiv bvDivO
negateChecked = checkOp1 ?loc "unary negation" negate bvNegO
instance CheckedArithmetic Word64 where
(+!) = checkOp2 ?loc "addition" (+) bvAddO
(-!) = checkOp2 ?loc "subtraction" (-) bvSubO
(*!) = checkOp2 ?loc "multiplication" (*) bvMulO
(/!) = checkOp2 ?loc "division" sDiv bvDivO
negateChecked = checkOp1 ?loc "unary negation" negate bvNegO
instance CheckedArithmetic Int8 where
(+!) = checkOp2 ?loc "addition" (+) bvAddO
(-!) = checkOp2 ?loc "subtraction" (-) bvSubO
(*!) = checkOp2 ?loc "multiplication" (*) bvMulO
(/!) = checkOp2 ?loc "division" sDiv bvDivO
negateChecked = checkOp1 ?loc "unary negation" negate bvNegO
instance CheckedArithmetic Int16 where
(+!) = checkOp2 ?loc "addition" (+) bvAddO
(-!) = checkOp2 ?loc "subtraction" (-) bvSubO
(*!) = checkOp2 ?loc "multiplication" (*) bvMulO
(/!) = checkOp2 ?loc "division" sDiv bvDivO
negateChecked = checkOp1 ?loc "unary negation" negate bvNegO
instance CheckedArithmetic Int32 where
(+!) = checkOp2 ?loc "addition" (+) bvAddO
(-!) = checkOp2 ?loc "subtraction" (-) bvSubO
(*!) = checkOp2 ?loc "multiplication" (*) bvMulO
(/!) = checkOp2 ?loc "division" sDiv bvDivO
negateChecked = checkOp1 ?loc "unary negation" negate bvNegO
instance CheckedArithmetic Int64 where
(+!) = checkOp2 ?loc "addition" (+) bvAddO
(-!) = checkOp2 ?loc "subtraction" (-) bvSubO
(*!) = checkOp2 ?loc "multiplication" (*) bvMulO
(/!) = checkOp2 ?loc "division" sDiv bvDivO
negateChecked = checkOp1 ?loc "unary negation" negate bvNegO
instance (KnownNat n, BVIsNonZero n) => CheckedArithmetic (WordN n) where
(+!) = checkOp2 ?loc "addition" (+) bvAddO
(-!) = checkOp2 ?loc "subtraction" (-) bvSubO
(*!) = checkOp2 ?loc "multiplication" (*) bvMulO
(/!) = checkOp2 ?loc "division" sDiv bvDivO
negateChecked = checkOp1 ?loc "unary negation" negate bvNegO
instance (KnownNat n, BVIsNonZero n) => CheckedArithmetic (IntN n) where
(+!) = checkOp2 ?loc "addition" (+) bvAddO
(-!) = checkOp2 ?loc "subtraction" (-) bvSubO
(*!) = checkOp2 ?loc "multiplication" (*) bvMulO
(/!) = checkOp2 ?loc "division" sDiv bvDivO
negateChecked = checkOp1 ?loc "unary negation" negate bvNegO
-- | Zero-extend to given bits
zx :: Int -> SVal -> SVal
zx n a
| n < sa = error $ "Data.SBV: Unexpected zero extension: from: " ++ show (intSizeOf a) ++ " to: " ++ show n
| True = p `svJoin` a
where sa = intSizeOf a
s = hasSign a
p = svInteger (KBounded s (n - sa)) 0
-- | Sign-extend to given bits. Note that we keep the signedness of the argument.
sx :: Int -> SVal -> SVal
sx n a
| n < sa = error $ "Data.SBV: Unexpected sign extension: from: " ++ show (intSizeOf a) ++ " to: " ++ show n
| True = p `svJoin` a
where sa = intSizeOf a
mk = svInteger $ KBounded (hasSign a) (n - sa)
p = svIte (pos a) (mk 0) (mk (-1))
-- | Get the sign-bit
signBit :: SVal -> SVal
signBit x = x `svTestBit` (intSizeOf x - 1)
-- | Is the sign-bit high?
neg :: SVal -> SVal
neg x = signBit x `svEqual` svTrue
-- | Is the sign-bit low?
pos :: SVal -> SVal
pos x = signBit x `svEqual` svFalse
-- | Do these have the same sign?
sameSign :: SVal -> SVal -> SVal
sameSign x y = (pos x `svAnd` pos y) `svOr` (neg x `svAnd` neg y)
-- | Do these have opposing signs?
diffSign :: SVal -> SVal -> SVal
diffSign x y = svNot (sameSign x y)
-- | Check all true
svAll :: [SVal] -> SVal
svAll = foldr svAnd svTrue
-- | Are all the bits between a b (inclusive) zero?
allZero :: Int -> Int -> SBV a -> SVal
allZero m n (SBV x)
| m >= sz || n < 0 || m < n
= error $ "Data.SBV.Tools.Overflow.allZero: Received unexpected parameters: " ++ show (m, n, sz)
| True
= svAll [svTestBit x i `svEqual` svFalse | i <- [m, m-1 .. n]]
where sz = intSizeOf x
-- | Are all the bits between a b (inclusive) one?
allOne :: Int -> Int -> SBV a -> SVal
allOne m n (SBV x)
| m >= sz || n < 0 || m < n
= error $ "Data.SBV.Tools.Overflow.allOne: Received unexpected parameters: " ++ show (m, n, sz)
| True
= svAll [svTestBit x i `svEqual` svTrue | i <- [m, m-1 .. n]]
where sz = intSizeOf x
-- | Unsigned addition. Can only overflow.
bvuaddo :: Int -> SVal -> SVal -> (SVal, SVal)
bvuaddo n x y = (underflow, overflow)
where underflow = svFalse
n' = n+1
overflow = neg $ zx n' x `svPlus` zx n' y
-- | Signed addition.
bvsaddo :: Int -> SVal -> SVal -> (SVal, SVal)
bvsaddo _n x y = (underflow, overflow)
where underflow = svAll [neg x, neg y, pos (x `svPlus` y)]
overflow = svAll [pos x, pos y, neg (x `svPlus` y)]
-- | Unsigned subtraction. Can only underflow.
bvusubo :: Int -> SVal -> SVal -> (SVal, SVal)
bvusubo _n x y = (underflow, overflow)
where underflow = y `svGreaterThan` x
overflow = svFalse
-- | Signed subtraction.
bvssubo :: Int -> SVal -> SVal -> (SVal, SVal)
bvssubo _n x y = (underflow, overflow)
where underflow = svAll [neg x, pos y, pos (x `svMinus` y)]
overflow = svAll [pos x, neg y, neg (x `svMinus` y)]
-- | Unsigned multiplication. Can only overflow.
bvumulo :: Int -> SVal -> SVal -> (SVal, SVal)
bvumulo 0 _ _ = (svFalse, svFalse)
bvumulo n x y = (underflow, overflow)
where underflow = svFalse
n1 = n+1
overflow1 = signBit $ zx n1 x `svTimes` zx n1 y
-- From Z3 sources:
--
-- expr_ref ovf(m()), v(m()), tmp(m());
-- ovf = m().mk_false();
-- v = m().mk_false();
-- for (unsigned i = 1; i < sz; ++i) {
-- mk_or(ovf, a_bits[sz-i], ovf);
-- mk_and(ovf, b_bits[i], tmp);
-- mk_or(tmp, v, v);
-- }
-- overflow2 = v;
--
overflow2 = go 1 svFalse svFalse
where go i ovf v
| i >= n = v
| True = go (i+1) ovf' v'
where ovf' = ovf `svOr` (x `svTestBit` (n-i))
tmp = ovf' `svAnd` (y `svTestBit` i)
v' = tmp `svOr` v
overflow = overflow1 `svOr` overflow2
-- | Signed multiplication.
bvsmulo :: Int -> SVal -> SVal -> (SVal, SVal)
bvsmulo 0 _ _ = (svFalse, svFalse)
bvsmulo n x y = (underflow, overflow)
where underflow = diffSign x y `svAnd` overflowPossible
overflow = sameSign x y `svAnd` overflowPossible
n1 = n+1
overflow1 = (xy1 `svTestBit` n) `svXOr` (xy1 `svTestBit` (n-1))
where xy1 = sx n1 x `svTimes` sx n1 y
-- From Z3 sources:
-- expr_ref v(m()), tmp(m()), a(m()), b(m()), a_acc(m()), sign(m());
-- a_acc = m().mk_false();
-- v = m().mk_false();
-- for (unsigned i = 1; i + 1 < sz; ++i) {
-- mk_xor(b_bits[sz-1], b_bits[i], b);
-- mk_xor(a_bits[sz-1], a_bits[sz-1-i], a);
-- mk_or(a, a_acc, a_acc);
-- mk_and(a_acc, b, tmp);
-- mk_or(tmp, v, v);
-- }
-- overflow2 = v;
overflow2 = go 1 svFalse svFalse
where sY = signBit y
sX = signBit x
go i v a_acc
| i + 1 >= n = v
| True = go (i+1) v' a_acc'
where b = sY `svXOr` (y `svTestBit` i)
a = sX `svXOr` (x `svTestBit` (n-1-i))
a_acc' = a `svOr` a_acc
tmp = a_acc' `svAnd` b
v' = tmp `svOr` v
overflowPossible = overflow1 `svOr` overflow2
-- | Is this a concrete value?
known :: SVal -> Bool
known (SVal _ (Left _)) = True
known _ = False
-- | Unsigned multiplication, fast version using z3 primitives.
bvumuloFast :: Int -> SVal -> SVal -> (SVal, SVal)
bvumuloFast n x y
| known x && known y -- Not particularly fast, but avoids shipping of to the solver
= bvumulo n x y
| True
= (underflow, overflow)
where underflow = fst $ bvumulo n x y -- No internal version for underflow exists (because it can't underflow)
overflow = svMkOverflow Overflow_UMul_OVFL x y
-- | Signed multiplication, fast version using z3 primitives.
bvsmuloFast :: Int -> SVal -> SVal -> (SVal, SVal)
bvsmuloFast n x y
| known x && known y -- Not particularly fast, but avoids shipping of to the solver
= bvsmulo n x y
| True
= (underflow, overflow)
where underflow = svMkOverflow Overflow_SMul_UDFL x y
overflow = svMkOverflow Overflow_SMul_OVFL x y
-- | Unsigned division. Neither underflows, nor overflows.
bvudivo :: Int -> SVal -> SVal -> (SVal, SVal)
bvudivo _ _ _ = (underflow, overflow)
where underflow = svFalse
overflow = svFalse
-- | Signed division. Can only overflow.
bvsdivo :: Int -> SVal -> SVal -> (SVal, SVal)
bvsdivo n x y = (underflow, overflow)
where underflow = svFalse
ones = svInteger (KBounded True n) (-1)
topSet = svInteger (KBounded True n) (2^(n-1))
overflow = svAll [x `svEqual` topSet, y `svEqual` ones]
-- | Unsigned negation. Neither underflows, nor overflows.
bvunego :: Int -> SVal -> (SVal, SVal)
bvunego _ _ = (underflow, overflow)
where underflow = svFalse
overflow = svFalse
-- | Signed negation. Can only overflow.
bvsnego :: Int -> SVal -> (SVal, SVal)
bvsnego n x = (underflow, overflow)
where underflow = svFalse
topSet = svInteger (KBounded True n) (2^(n-1))
overflow = x `svEqual` topSet
-- | Detecting underflow/overflow conditions for casting between bit-vectors. The first output is the result,
-- the second component itself is a pair with the first boolean indicating underflow and the second indicating overflow.
--
-- >>> sFromIntegralO (256 :: SInt16) :: (SWord8, (SBool, SBool))
-- (0 :: SWord8,(False,True))
-- >>> sFromIntegralO (-2 :: SInt16) :: (SWord8, (SBool, SBool))
-- (254 :: SWord8,(True,False))
-- >>> sFromIntegralO (2 :: SInt16) :: (SWord8, (SBool, SBool))
-- (2 :: SWord8,(False,False))
-- >>> prove $ \x -> sFromIntegralO (x::SInt32) .== (sFromIntegral x :: SInteger, (sFalse, sFalse))
-- Q.E.D.
--
-- As the last example shows, converting to `sInteger` never underflows or overflows for any value.
sFromIntegralO :: forall a b. (Integral a, HasKind a, Num a, SymVal a, HasKind b, Num b, SymVal b) => SBV a -> (SBV b, (SBool, SBool))
sFromIntegralO x = case (kindOf x, kindOf (Proxy @b)) of
(KBounded False n, KBounded False m) -> (res, u2u n m)
(KBounded False n, KBounded True m) -> (res, u2s n m)
(KBounded True n, KBounded False m) -> (res, s2u n m)
(KBounded True n, KBounded True m) -> (res, s2s n m)
(KUnbounded, KBounded s m) -> (res, checkBounds s m)
(KBounded{}, KUnbounded) -> (res, (sFalse, sFalse))
(KUnbounded, KUnbounded) -> (res, (sFalse, sFalse))
(kFrom, kTo) -> error $ "sFromIntegralO: Expected bounded-BV types, received: " ++ show (kFrom, kTo)
where res :: SBV b
res = sFromIntegral x
checkBounds :: Bool -> Int -> (SBool, SBool)
checkBounds signed sz = (ix .< literal lb, ix .> literal ub)
where ix :: SInteger
ix = sFromIntegral x
s :: Integer
s = fromIntegral sz
ub :: Integer
ub | signed = 2^(s - 1) - 1
| True = 2^s - 1
lb :: Integer
lb | signed = -ub-1
| True = 0
u2u :: Int -> Int -> (SBool, SBool)
u2u n m = (underflow, overflow)
where underflow = sFalse
overflow
| n <= m = sFalse
| True = SBV $ svNot $ allZero (n-1) m x
u2s :: Int -> Int -> (SBool, SBool)
u2s n m = (underflow, overflow)
where underflow = sFalse
overflow
| m > n = sFalse
| True = SBV $ svNot $ allZero (n-1) (m-1) x
s2u :: Int -> Int -> (SBool, SBool)
s2u n m = (underflow, overflow)
where underflow = SBV $ (unSBV x `svTestBit` (n-1)) `svEqual` svTrue
overflow
| m >= n - 1 = sFalse
| True = SBV $ svAll [(unSBV x `svTestBit` (n-1)) `svEqual` svFalse, svNot $ allZero (n-1) m x]
s2s :: Int -> Int -> (SBool, SBool)
s2s n m = (underflow, overflow)
where underflow
| m > n = sFalse
| True = SBV $ svAll [(unSBV x `svTestBit` (n-1)) `svEqual` svTrue, svNot $ allOne (n-1) (m-1) x]
overflow
| m > n = sFalse
| True = SBV $ svAll [(unSBV x `svTestBit` (n-1)) `svEqual` svFalse, svNot $ allZero (n-1) (m-1) x]
-- | Version of 'sFromIntegral' that has calls to 'Data.SBV.sAssert' for checking no overflow/underflow can happen. Use it with a 'Data.SBV.safe' call.
sFromIntegralChecked :: forall a b. (?loc :: CallStack, Integral a, HasKind a, HasKind b, Num a, SymVal a, HasKind b, Num b, SymVal b) => SBV a -> SBV b
sFromIntegralChecked x = sAssert (Just ?loc) (msg "underflows") (sNot u)
$ sAssert (Just ?loc) (msg "overflows") (sNot o)
r
where kFrom = show $ kindOf x
kTo = show $ kindOf (Proxy @b)
msg c = "Casting from " ++ kFrom ++ " to " ++ kTo ++ " " ++ c
(r, (u, o)) = sFromIntegralO x
-- Helpers
l2 :: (SVal -> SVal -> (SBool, SBool)) -> SBV a -> SBV a -> (SBool, SBool)
l2 f (SBV a) (SBV b) = f a b
l1 :: (SVal -> (SBool, SBool)) -> SBV a -> (SBool, SBool)
l1 f (SBV a) = f a
signPick2 :: (Int -> SVal -> SVal -> (SVal, SVal)) -> (Int -> SVal -> SVal -> (SVal, SVal)) -> (SVal -> SVal -> (SBool, SBool))
signPick2 fu fs a b
| hasSign a = let (u, o) = fs n a b in (SBV u, SBV o)
| True = let (u, o) = fu n a b in (SBV u, SBV o)
where n = intSizeOf a
signPick1 :: (Int -> SVal -> (SVal, SVal)) -> (Int -> SVal -> (SVal, SVal)) -> (SVal -> (SBool, SBool))
signPick1 fu fs a
| hasSign a = let (u, o) = fs n a in (SBV u, SBV o)
| True = let (u, o) = fu n a in (SBV u, SBV o)
where n = intSizeOf a
checkOp1 :: (HasKind a, HasKind b) => CallStack -> String -> (a -> SBV b) -> (a -> (SBool, SBool)) -> a -> SBV b
checkOp1 loc w op cop a = sAssert (Just loc) (msg "underflows") (sNot u)
$ sAssert (Just loc) (msg "overflows") (sNot o)
$ op a
where k = show $ kindOf a
msg c = k ++ " " ++ w ++ " " ++ c
(u, o) = cop a
checkOp2 :: (HasKind a, HasKind c) => CallStack -> String -> (a -> b -> SBV c) -> (a -> b -> (SBool, SBool)) -> a -> b -> SBV c
checkOp2 loc w op cop a b = sAssert (Just loc) (msg "underflows") (sNot u)
$ sAssert (Just loc) (msg "overflows") (sNot o)
$ a `op` b
where k = show $ kindOf a
msg c = k ++ " " ++ w ++ " " ++ c
(u, o) = a `cop` b
|