1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
|
-----------------------------------------------------------------------------
-- |
-- Module : Data.SBV.Utils.CrackNum
-- Copyright : (c) Levent Erkok
-- License : BSD3
-- Maintainer: erkokl@gmail.com
-- Stability : experimental
--
-- Crack internal representation for numeric types
-----------------------------------------------------------------------------
{-# LANGUAGE NamedFieldPuns #-}
{-# OPTIONS_GHC -Wall -Werror -Wno-incomplete-uni-patterns #-}
module Data.SBV.Utils.CrackNum (
crackNum
) where
import Data.SBV.Core.Concrete
import Data.SBV.Core.Kind
import Data.SBV.Core.SizedFloats
import Data.SBV.Utils.Numeric
import Data.SBV.Utils.PrettyNum (showFloatAtBase)
import Data.Char (intToDigit, toUpper, isSpace)
import Data.Bits
import Data.List
import LibBF hiding (Zero, bfToString)
import Numeric
-- | A class for cracking things deeper, if we know how.
class CrackNum a where
-- | Convert an item to possibly bit-level description, if possible.
crackNum :: a -> Maybe String
-- | CVs are easy to crack
instance CrackNum CV where
crackNum cv = case kindOf cv of
-- Maybe one day we'll have a use for these, currently cracking them
-- any further seems overkill
KBool {} -> Nothing
KUnbounded {} -> Nothing
KReal {} -> Nothing
KUserSort {} -> Nothing
KChar {} -> Nothing
KString {} -> Nothing
KList {} -> Nothing
KSet {} -> Nothing
KTuple {} -> Nothing
KMaybe {} -> Nothing
KEither {} -> Nothing
KRational {} -> Nothing
-- Actual crackables
KFloat{} -> Just $ let CFloat f = cvVal cv in float f
KDouble{} -> Just $ let CDouble d = cvVal cv in float d
KFP{} -> Just $ let CFP f = cvVal cv in float f
KBounded sg sz -> Just $ let CInteger i = cvVal cv in int sg sz i
-- How far off the screen we want displayed? Somewhat experimentally found.
tab :: String
tab = replicate 18 ' '
-- Make splits of 4, top one has the remainder
split4 :: Int -> [Int]
split4 n
| m == 0 = rest
| True = m : rest
where (d, m) = n `divMod` 4
rest = replicate d 4
-- Convert bits to the corresponding integer.
getVal :: [Bool] -> Integer
getVal = foldl (\s b -> 2 * s + if b then 1 else 0) 0
-- Show in hex, but pay attention to how wide a field it should be in
mkHex :: [Bool] -> String
mkHex bin = map toUpper $ showHex (getVal bin) ""
-- | Show a sized word/int in detail
int :: Bool -> Int -> Integer -> String
int signed sz v = intercalate "\n" $ ruler ++ info
where splits = split4 sz
ruler = map (tab ++) $ mkRuler sz splits
bitRep :: [[Bool]]
bitRep = split splits [v `testBit` i | i <- reverse [0 .. sz - 1]]
flatHex = concatMap mkHex bitRep
iprec
| signed = "Signed " ++ show sz ++ "-bit 2's complement integer"
| True = "Unsigned " ++ show sz ++ "-bit word"
signBit = v `testBit` (sz-1)
s | signed && signBit = "-"
| True = ""
av = abs v
info = [ " Binary layout: " ++ unwords [concatMap (\b -> if b then "1" else "0") is | is <- bitRep]
, " Hex layout: " ++ unwords (split (split4 (length flatHex)) flatHex)
, " Type: " ++ iprec
]
++ [ " Sign: " ++ if signBit then "Negative" else "Positive" | signed]
++ [ " Binary: " ++ s ++ "0b" ++ showIntAtBase 2 intToDigit av ""
, " Octal: " ++ s ++ "0o" ++ showOct av ""
, " Decimal: " ++ show v
, " Hex: " ++ s ++ "0x" ++ showHex av ""
]
-- | What kind of Float is this?
data FPKind = Zero Bool -- with sign
| Infty Bool -- with sign
| NaN
| Subnormal
| Normal
deriving Eq
-- | Show instance for Kind, not for reading back!
instance Show FPKind where
show Zero{} = "FP_ZERO"
show Infty{} = "FP_INFINITE"
show NaN = "FP_NAN"
show Subnormal = "FP_SUBNORMAL"
show Normal = "FP_NORMAL"
-- | Find out what kind this float is. We specifically ask
-- the caller to provide if the number is zero, neg-inf, and pos-inf. Why?
-- Because the FP type doesn't have those recognizers that also work with Float/Double.
getKind :: RealFloat a => a -> FPKind
getKind fp
| fp == 0 = Zero (isNegativeZero fp)
| isInfinite fp = Infty (fp < 0)
| isNaN fp = NaN
| isDenormalized fp = Subnormal
| True = Normal
-- Show the value in different bases
showAtBases :: FPKind -> (String, String, String, String) -> Either String (String, String, String, String)
showAtBases k bvs = case k of
Zero False -> Right ("0b0.0", "0o0.0", "0.0", "0x0")
Zero True -> Right ("-0b0.0", "-0o0.0", "-0.0", "-0o0")
Infty False -> Left "Infinity"
Infty True -> Left "-Infinity"
NaN -> Left "NaN"
Subnormal -> Right (dropSuffixes bvs)
Normal -> Right (dropSuffixes bvs)
where dropSuffixes (a, b, c, d) = (bfRemoveRedundantExp a, bfRemoveRedundantExp b, bfRemoveRedundantExp c, bfRemoveRedundantExp d)
-- | Float data for display purposes
data FloatData = FloatData { prec :: String
, eb :: Int
, sb :: Int
, bits :: Integer
, fpKind :: FPKind
, fpVals :: Either String (String, String, String, String)
}
-- | A simple means to organize different bits and pieces of float data
-- for display purposes
class HasFloatData a where
getFloatData :: a -> FloatData
-- | Float instance
instance HasFloatData Float where
getFloatData f = FloatData {
prec = "Single"
, eb = 8
, sb = 24
, bits = fromIntegral (floatToWord f)
, fpKind = k
, fpVals = showAtBases k (showFloatAtBase 2 f "", showFloatAtBase 8 f "", show f, showFloatAtBase 16 f "")
}
where k = getKind f
-- | Double instance
instance HasFloatData Double where
getFloatData d = FloatData {
prec = "Double"
, eb = 11
, sb = 53
, bits = fromIntegral (doubleToWord d)
, fpKind = k
, fpVals = showAtBases k (showFloatAtBase 2 d "", showFloatAtBase 8 d "", show d, showFloatAtBase 16 d "")
}
where k = getKind d
-- | Find the exponent values, (exponent value, exponent as stored, bias)
getExponentData :: FloatData -> (Integer, Integer, Integer)
getExponentData FloatData{eb, sb, bits, fpKind} = (expValue, expStored, bias)
where -- | Bias is 2^(eb-1) - 1
bias :: Integer
bias = (2 :: Integer) ^ ((fromIntegral eb :: Integer) - 1) - 1
-- | Exponent as stored is simply bit extraction
expStored = getVal [bits `testBit` i | i <- reverse [sb-1 .. sb+eb-2]]
-- | Exponent value is stored exponent - bias, unless the number is subnormal. In that case it is 1 - bias
expValue = case fpKind of
Subnormal -> 1 - bias
_ -> expStored - bias
-- | FP instance
instance HasFloatData FP where
getFloatData v@(FP eb sb f) = FloatData {
prec = case (eb, sb) of
( 5, 11) -> "Half (5 exponent bits, 10 significand bits.)"
( 8, 24) -> "Single (8 exponent bits, 23 significand bits.)"
(11, 53) -> "Double (11 exponent bits, 52 significand bits.)"
(15, 113) -> "Quad (15 exponent bits, 112 significand bits.)"
( _, _) -> show eb ++ " exponent bits, " ++ show (sb-1) ++ " significand bit" ++ if sb > 2 then "s" else ""
, eb = eb
, sb = sb
, bits = bfToBits (mkBFOpts eb sb NearEven) f
, fpKind = k
, fpVals = showAtBases k (bfToString 2 True True v, bfToString 8 True True v, bfToString 10 True False v, bfToString 16 True True v)
}
where opts = mkBFOpts eb sb NearEven
k | bfIsZero f = Zero (bfIsNeg f)
| bfIsInf f = Infty (bfIsNeg f)
| bfIsNaN f = NaN
| bfIsSubnormal opts f = Subnormal
| True = Normal
-- | Show a float in detail
float :: HasFloatData a => a -> String
float f = intercalate "\n" $ ruler ++ legend : info
where fd@FloatData{prec, eb, sb, bits, fpKind, fpVals} = getFloatData f
splits = [1, eb, sb]
ruler = map (tab ++) $ mkRuler (eb + sb) splits
legend = tab ++ "S " ++ mkTag ('E' : show eb) eb ++ " " ++ mkTag ('S' : show (sb-1)) (sb-1)
mkTag t len = take len $ replicate ((len - length t) `div` 2) '-' ++ t ++ repeat '-'
allBits :: [Bool]
allBits = [bits `testBit` i | i <- reverse [0 .. eb + sb - 1]]
flatHex = concatMap mkHex (split (split4 (eb + sb)) allBits)
sign = bits `testBit` (eb+sb-1)
(exponentVal, storedExponent, bias) = getExponentData fd
esInfo = "Stored: " ++ show storedExponent ++ ", Bias: " ++ show bias
isSubNormal = case fpKind of
Subnormal -> True
_ -> False
info = [ " Binary layout: " ++ unwords [concatMap (\b -> if b then "1" else "0") is | is <- split splits allBits]
, " Hex layout: " ++ unwords (split (split4 (length flatHex)) flatHex)
, " Precision: " ++ prec
, " Sign: " ++ if sign then "Negative" else "Positive"
]
++ [ " Exponent: " ++ show exponentVal ++ " (Subnormal, with fixed exponent value. " ++ esInfo ++ ")" | isSubNormal ]
++ [ " Exponent: " ++ show exponentVal ++ " (" ++ esInfo ++ ")" | not isSubNormal]
++ [ " Classification: " ++ show fpKind]
++ (case fpVals of
Left val -> [ " Value: " ++ val]
Right (bval, oval, dval, hval) -> [ " Binary: " ++ bval
, " Octal: " ++ oval
, " Decimal: " ++ dval
, " Hex: " ++ hval
])
++ [ " Note: Representation for NaN's is not unique" | fpKind == NaN]
-- | Build a ruler with given split points
mkRuler :: Int -> [Int] -> [String]
mkRuler n splits = map (trimRight . unwords . split splits . trim Nothing) $ transpose $ map pad $ reverse [0 .. n-1]
where len = length (show (n-1))
pad i = reverse $ take len $ reverse (show i) ++ repeat '0'
trim _ "" = ""
trim mbPrev (c:cs)
| mbPrev == Just c = ' ' : trim mbPrev cs
| True = c : trim (Just c) cs
trimRight = reverse . dropWhile isSpace . reverse
split :: [Int] -> [a] -> [[a]]
split _ [] = []
split [] xs = [xs]
split (i:is) xs = case splitAt i xs of
(pre, []) -> [pre]
(pre, post) -> pre : split is post
|