1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
|
-----------------------------------------------------------------------------
-- |
-- Module : Data.SBV.Utils.PrettyNum
-- Copyright : (c) Levent Erkok
-- License : BSD3
-- Maintainer: erkokl@gmail.com
-- Stability : experimental
--
-- Number representations in hex/bin
-----------------------------------------------------------------------------
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# OPTIONS_GHC -Wall -Werror -Wno-incomplete-uni-patterns #-}
module Data.SBV.Utils.PrettyNum (
PrettyNum(..), readBin, shex, chex, shexI, sbin, sbinI
, showCFloat, showCDouble, showHFloat, showHDouble, showBFloat, showFloatAtBase
, showSMTFloat, showSMTDouble, smtRoundingMode, cvToSMTLib
, showNegativeNumber
) where
import Data.Bits ((.&.), countTrailingZeros)
import Data.Char (intToDigit, ord, chr, toUpper)
import Data.Int (Int8, Int16, Int32, Int64)
import Data.List (isPrefixOf)
import Data.Maybe (fromJust, fromMaybe, listToMaybe)
import Data.Ratio (numerator, denominator)
import Data.Word (Word8, Word16, Word32, Word64)
import qualified Data.Set as Set
import Numeric (showIntAtBase, showHex, readInt, floatToDigits)
import qualified Numeric as N (showHFloat)
import Data.SBV.Core.Data
import Data.SBV.Core.Kind (smtType, smtRoundingMode, showBaseKind)
import Data.SBV.Core.AlgReals (algRealToSMTLib2)
import Data.SBV.Core.SizedFloats (fprToSMTLib2, bfToString)
import Data.SBV.Utils.Lib (stringToQFS)
-- | PrettyNum class captures printing of numbers in hex and binary formats; also supporting negative numbers.
class PrettyNum a where
-- | Show a number in hexadecimal, starting with @0x@ and type.
hexS :: a -> String
-- | Show a number in binary, starting with @0b@ and type.
binS :: a -> String
-- | Show a number in hexadecimal, starting with @0x@ but no type.
hexP :: a -> String
-- | Show a number in binary, starting with @0b@ but no type.
binP :: a -> String
-- | Show a number in hex, without prefix, or types.
hex :: a -> String
-- | Show a number in bin, without prefix, or types.
bin :: a -> String
-- Why not default methods? Because defaults need "Integral a" but Bool is not..
instance PrettyNum Bool where
hexS = show
binS = show
hexP = show
binP = show
hex = show
bin = show
instance PrettyNum String where
hexS = show
binS = show
hexP = show
binP = show
hex = show
bin = show
instance PrettyNum Word8 where
hexS = shex True True (False, 8)
binS = sbin True True (False, 8)
hexP = shex False True (False, 8)
binP = sbin False True (False, 8)
hex = shex False False (False, 8)
bin = sbin False False (False, 8)
instance PrettyNum Int8 where
hexS = shex True True (True, 8)
binS = sbin True True (True, 8)
hexP = shex False True (True, 8)
binP = sbin False True (True, 8)
hex = shex False False (True, 8)
bin = sbin False False (True, 8)
instance PrettyNum Word16 where
hexS = shex True True (False, 16)
binS = sbin True True (False, 16)
hexP = shex False True (False, 16)
binP = sbin False True (False, 16)
hex = shex False False (False, 16)
bin = sbin False False (False, 16)
instance PrettyNum Int16 where
hexS = shex True True (True, 16)
binS = sbin True True (True, 16)
hexP = shex False True (True, 16)
binP = sbin False True (True, 16)
hex = shex False False (True, 16)
bin = sbin False False (True, 16)
instance PrettyNum Word32 where
hexS = shex True True (False, 32)
binS = sbin True True (False, 32)
hexP = shex False True (False, 32)
binP = sbin False True (False, 32)
hex = shex False False (False, 32)
bin = sbin False False (False, 32)
instance PrettyNum Int32 where
hexS = shex True True (True, 32)
binS = sbin True True (True, 32)
hexP = shex False True (True, 32)
binP = sbin False True (True, 32)
hex = shex False False (True, 32)
bin = sbin False False (True, 32)
instance PrettyNum Word64 where
hexS = shex True True (False, 64)
binS = sbin True True (False, 64)
hexP = shex False True (False, 64)
binP = sbin False True (False, 64)
hex = shex False False (False, 64)
bin = sbin False False (False, 64)
instance PrettyNum Int64 where
hexS = shex True True (True, 64)
binS = sbin True True (True, 64)
hexP = shex False True (True, 64)
binP = sbin False True (True, 64)
hex = shex False False (True, 64)
bin = sbin False False (True, 64)
instance PrettyNum Integer where
hexS = shexI True True
binS = sbinI True True
hexP = shexI False True
binP = sbinI False True
hex = shexI False False
bin = sbinI False False
shBKind :: HasKind a => a -> String
shBKind a = " :: " ++ showBaseKind (kindOf a)
instance PrettyNum CV where
hexS cv | isUserSort cv = shows cv $ shBKind cv
| isBoolean cv = hexS (cvToBool cv) ++ shBKind cv
| isFloat cv = let CFloat f = cvVal cv in N.showHFloat f $ shBKind cv
| isDouble cv = let CDouble d = cvVal cv in N.showHFloat d $ shBKind cv
| isFP cv = let CFP f = cvVal cv in bfToString 16 True True f ++ shBKind cv
| isReal cv = let CAlgReal r = cvVal cv in show r ++ shBKind cv
| isString cv = let CString s = cvVal cv in show s ++ shBKind cv
| not (isBounded cv) = let CInteger i = cvVal cv in shexI True True i
| True = let CInteger i = cvVal cv in shex True True (hasSign cv, intSizeOf cv) i
binS cv | isUserSort cv = shows cv $ shBKind cv
| isBoolean cv = binS (cvToBool cv) ++ shBKind cv
| isFloat cv = let CFloat f = cvVal cv in showBFloat f $ shBKind cv
| isDouble cv = let CDouble d = cvVal cv in showBFloat d $ shBKind cv
| isFP cv = let CFP f = cvVal cv in bfToString 2 True True f ++ shBKind cv
| isReal cv = let CAlgReal r = cvVal cv in shows r $ shBKind cv
| isString cv = let CString s = cvVal cv in shows s $ shBKind cv
| not (isBounded cv) = let CInteger i = cvVal cv in sbinI True True i
| True = let CInteger i = cvVal cv in sbin True True (hasSign cv, intSizeOf cv) i
hexP cv | isUserSort cv = show cv
| isBoolean cv = hexS (cvToBool cv)
| isFloat cv = let CFloat f = cvVal cv in show f
| isDouble cv = let CDouble d = cvVal cv in show d
| isFP cv = let CFP f = cvVal cv in bfToString 16 True True f
| isReal cv = let CAlgReal r = cvVal cv in show r
| isString cv = let CString s = cvVal cv in show s
| not (isBounded cv) = let CInteger i = cvVal cv in shexI False True i
| True = let CInteger i = cvVal cv in shex False True (hasSign cv, intSizeOf cv) i
binP cv | isUserSort cv = show cv
| isBoolean cv = binS (cvToBool cv)
| isFloat cv = let CFloat f = cvVal cv in show f
| isDouble cv = let CDouble d = cvVal cv in show d
| isFP cv = let CFP f = cvVal cv in bfToString 2 True True f
| isReal cv = let CAlgReal r = cvVal cv in show r
| isString cv = let CString s = cvVal cv in show s
| not (isBounded cv) = let CInteger i = cvVal cv in sbinI False True i
| True = let CInteger i = cvVal cv in sbin False True (hasSign cv, intSizeOf cv) i
hex cv | isUserSort cv = show cv
| isBoolean cv = hexS (cvToBool cv)
| isFloat cv = let CFloat f = cvVal cv in show f
| isDouble cv = let CDouble d = cvVal cv in show d
| isFP cv = let CFP f = cvVal cv in bfToString 16 False True f
| isReal cv = let CAlgReal r = cvVal cv in show r
| isString cv = let CString s = cvVal cv in show s
| not (isBounded cv) = let CInteger i = cvVal cv in shexI False False i
| True = let CInteger i = cvVal cv in shex False False (hasSign cv, intSizeOf cv) i
bin cv | isUserSort cv = show cv
| isBoolean cv = binS (cvToBool cv)
| isFloat cv = let CFloat f = cvVal cv in show f
| isDouble cv = let CDouble d = cvVal cv in show d
| isFP cv = let CFP f = cvVal cv in bfToString 2 False True f
| isReal cv = let CAlgReal r = cvVal cv in show r
| isString cv = let CString s = cvVal cv in show s
| not (isBounded cv) = let CInteger i = cvVal cv in sbinI False False i
| True = let CInteger i = cvVal cv in sbin False False (hasSign cv, intSizeOf cv) i
instance (SymVal a, PrettyNum a) => PrettyNum (SBV a) where
hexS s = maybe (show s) (hexS :: a -> String) $ unliteral s
binS s = maybe (show s) (binS :: a -> String) $ unliteral s
hexP s = maybe (show s) (hexP :: a -> String) $ unliteral s
binP s = maybe (show s) (binP :: a -> String) $ unliteral s
hex s = maybe (show s) (hex :: a -> String) $ unliteral s
bin s = maybe (show s) (bin :: a -> String) $ unliteral s
-- | Show as a hexadecimal value. First bool controls whether type info is printed
-- while the second boolean controls whether 0x prefix is printed. The tuple is
-- the signedness and the bit-length of the input. The length of the string
-- will /not/ depend on the value, but rather the bit-length.
shex :: (Show a, Integral a) => Bool -> Bool -> (Bool, Int) -> a -> String
shex shType shPre (signed, size) a
| a < 0
= "-" ++ pre ++ pad l (s16 (abs (fromIntegral a :: Integer))) ++ t
| True
= pre ++ pad l (s16 a) ++ t
where t | shType = " :: " ++ (if signed then "Int" else "Word") ++ show size
| True = ""
pre | shPre = "0x"
| True = ""
l = (size + 3) `div` 4
-- | Show as hexadecimal, but for C programs. We have to be careful about
-- printing min-bounds, since C does some funky casting, possibly losing
-- the sign bit. In those cases, we use the defined constants in <stdint.h>.
-- We also properly append the necessary suffixes as needed.
chex :: (Show a, Integral a) => Bool -> Bool -> (Bool, Int) -> a -> String
chex shType shPre (signed, size) a
| Just s <- (signed, size, fromIntegral a) `lookup` specials
= s
| True
= shex shType shPre (signed, size) a ++ suffix
where specials :: [((Bool, Int, Integer), String)]
specials = [ ((True, 8, fromIntegral (minBound :: Int8)), "INT8_MIN" )
, ((True, 16, fromIntegral (minBound :: Int16)), "INT16_MIN")
, ((True, 32, fromIntegral (minBound :: Int32)), "INT32_MIN")
, ((True, 64, fromIntegral (minBound :: Int64)), "INT64_MIN")
]
suffix = case (signed, size) of
(False, 16) -> "U"
(False, 32) -> "UL"
(True, 32) -> "L"
(False, 64) -> "ULL"
(True, 64) -> "LL"
_ -> ""
-- | Show as a hexadecimal value, integer version. Almost the same as shex above
-- except we don't have a bit-length so the length of the string will depend
-- on the actual value.
shexI :: Bool -> Bool -> Integer -> String
shexI shType shPre a
| a < 0
= "-" ++ pre ++ s16 (abs a) ++ t
| True
= pre ++ s16 a ++ t
where t | shType = " :: Integer"
| True = ""
pre | shPre = "0x"
| True = ""
-- | Similar to 'shex'; except in binary.
sbin :: (Show a, Integral a) => Bool -> Bool -> (Bool, Int) -> a -> String
sbin shType shPre (signed,size) a
| a < 0
= "-" ++ pre ++ pad size (s2 (abs (fromIntegral a :: Integer))) ++ t
| True
= pre ++ pad size (s2 a) ++ t
where t | shType = " :: " ++ (if signed then "Int" else "Word") ++ show size
| True = ""
pre | shPre = "0b"
| True = ""
-- | Similar to 'shexI'; except in binary.
sbinI :: Bool -> Bool -> Integer -> String
sbinI shType shPre a
| a < 0
= "-" ++ pre ++ s2 (abs a) ++ t
| True
= pre ++ s2 a ++ t
where t | shType = " :: Integer"
| True = ""
pre | shPre = "0b"
| True = ""
-- | Pad a string to a given length. If the string is longer, then we don't drop anything.
pad :: Int -> String -> String
pad l s = replicate (l - length s) '0' ++ s
-- | Binary printer
s2 :: (Show a, Integral a) => a -> String
s2 v = showIntAtBase 2 dig v "" where dig = fromJust . flip lookup [(0, '0'), (1, '1')]
-- | Hex printer
s16 :: (Show a, Integral a) => a -> String
s16 v = showHex v ""
-- | A more convenient interface for reading binary numbers, also supports negative numbers
readBin :: Num a => String -> a
readBin ('-':s) = -(readBin s)
readBin s = case readInt 2 isDigit cvt s' of
[(a, "")] -> a
_ -> error $ "SBV.readBin: Cannot read a binary number from: " ++ show s
where cvt c = ord c - ord '0'
isDigit = (`elem` "01")
s' | "0b" `isPrefixOf` s = drop 2 s
| True = s
-- | A version of show for floats that generates correct C literals for nan/infinite. NB. Requires "math.h" to be included.
showCFloat :: Float -> String
showCFloat f
| isNaN f = "((float) NAN)"
| isInfinite f, f < 0 = "((float) (-INFINITY))"
| isInfinite f = "((float) INFINITY)"
| True = N.showHFloat f $ "F /* " ++ show f ++ "F */"
-- | A version of show for doubles that generates correct C literals for nan/infinite. NB. Requires "math.h" to be included.
showCDouble :: Double -> String
showCDouble d
| isNaN d = "((double) NAN)"
| isInfinite d, d < 0 = "((double) (-INFINITY))"
| isInfinite d = "((double) INFINITY)"
| True = N.showHFloat d " /* " ++ show d ++ " */"
-- | A version of show for floats that generates correct Haskell literals for nan/infinite
showHFloat :: Float -> String
showHFloat f
| isNaN f = "((0/0) :: Float)"
| isInfinite f, f < 0 = "((-1/0) :: Float)"
| isInfinite f = "((1/0) :: Float)"
| True = show f
-- | A version of show for doubles that generates correct Haskell literals for nan/infinite
showHDouble :: Double -> String
showHDouble d
| isNaN d = "((0/0) :: Double)"
| isInfinite d, d < 0 = "((-1/0) :: Double)"
| isInfinite d = "((1/0) :: Double)"
| True = show d
-- | A version of show for floats that generates correct SMTLib literals using the rounding mode
showSMTFloat :: RoundingMode -> Float -> String
showSMTFloat rm f
| isNaN f = as "NaN"
| isInfinite f, f < 0 = as "-oo"
| isInfinite f = as "+oo"
| isNegativeZero f = as "-zero"
| f == 0 = as "+zero"
| True = "((_ to_fp 8 24) " ++ smtRoundingMode rm ++ " " ++ toSMTLibRational (toRational f) ++ ")"
where as s = "(_ " ++ s ++ " 8 24)"
-- | A version of show for doubles that generates correct SMTLib literals using the rounding mode
showSMTDouble :: RoundingMode -> Double -> String
showSMTDouble rm d
| isNaN d = as "NaN"
| isInfinite d, d < 0 = as "-oo"
| isInfinite d = as "+oo"
| isNegativeZero d = as "-zero"
| d == 0 = as "+zero"
| True = "((_ to_fp 11 53) " ++ smtRoundingMode rm ++ " " ++ toSMTLibRational (toRational d) ++ ")"
where as s = "(_ " ++ s ++ " 11 53)"
-- | Show an SBV rational as an SMTLib value. This is used for faithful rationals.
showSMTRational :: Rational -> String
showSMTRational r = "(SBV.Rational " ++ showNegativeNumber (numerator r) ++ " " ++ showNegativeNumber (denominator r) ++ ")"
-- | Show a rational in SMTLib format. This is used for conversions from regular rationals.
toSMTLibRational :: Rational -> String
toSMTLibRational r
| n < 0
= "(- (/ " ++ show (abs n) ++ ".0 " ++ show d ++ ".0))"
| True
= "(/ " ++ show n ++ ".0 " ++ show d ++ ".0)"
where n = numerator r
d = denominator r
-- | Convert a CV to an SMTLib2 compliant value
cvToSMTLib :: RoundingMode -> CV -> String
cvToSMTLib rm x
| isBoolean x, CInteger w <- cvVal x = if w == 0 then "false" else "true"
| isUserSort x, CUserSort (_, s) <- cvVal x = roundModeConvert s
| isReal x, CAlgReal r <- cvVal x = algRealToSMTLib2 r
| isFloat x, CFloat f <- cvVal x = showSMTFloat rm f
| isDouble x, CDouble d <- cvVal x = showSMTDouble rm d
| isRational x, CRational r <- cvVal x = showSMTRational r
| isFP x, CFP f <- cvVal x = fprToSMTLib2 f
| not (isBounded x), CInteger w <- cvVal x = if w >= 0 then show w else "(- " ++ show (abs w) ++ ")"
| not (hasSign x) , CInteger w <- cvVal x = smtLibHex (intSizeOf x) w
-- signed numbers (with 2's complement representation) is problematic
-- since there's no way to put a bvneg over a positive number to get minBound..
-- Hence, we punt and use binary notation in that particular case
| hasSign x , CInteger w <- cvVal x = if w == negate (2 ^ intSizeOf x)
then mkMinBound (intSizeOf x)
else negIf (w < 0) $ smtLibHex (intSizeOf x) (abs w)
| isChar x , CChar c <- cvVal x = "(_ char " ++ smtLibHex 8 (fromIntegral (ord c)) ++ ")"
| isString x , CString s <- cvVal x = '\"' : stringToQFS s ++ "\""
| isList x , CList xs <- cvVal x = smtLibSeq (kindOf x) xs
| isSet x , CSet s <- cvVal x = smtLibSet (kindOf x) s
| isTuple x , CTuple xs <- cvVal x = smtLibTup (kindOf x) xs
| isMaybe x , CMaybe mc <- cvVal x = smtLibMaybe (kindOf x) mc
| isEither x , CEither ec <- cvVal x = smtLibEither (kindOf x) ec
| True = error $ "SBV.cvtCV: Impossible happened: Kind/Value disagreement on: " ++ show (kindOf x, x)
where roundModeConvert s = fromMaybe s (listToMaybe [smtRoundingMode m | m <- [minBound .. maxBound] :: [RoundingMode], show m == s])
-- Carefully code hex numbers, SMTLib is picky about lengths of hex constants. For the time
-- being, SBV only supports sizes that are multiples of 4, but the below code is more robust
-- in case of future extensions to support arbitrary sizes.
smtLibHex :: Int -> Integer -> String
smtLibHex 1 v = "#b" ++ show v
smtLibHex sz v
| sz `mod` 4 == 0 = "#x" ++ pad (sz `div` 4) (showHex v "")
| True = "#b" ++ pad sz (showBin v "")
where showBin = showIntAtBase 2 intToDigit
negIf :: Bool -> String -> String
negIf True a = "(bvneg " ++ a ++ ")"
negIf False a = a
smtLibSeq :: Kind -> [CVal] -> String
smtLibSeq k [] = "(as seq.empty " ++ smtType k ++ ")"
smtLibSeq (KList ek) xs = let mkSeq [e] = e
mkSeq es = "(seq.++ " ++ unwords es ++ ")"
mkUnit inner = "(seq.unit " ++ inner ++ ")"
in mkSeq (mkUnit . cvToSMTLib rm . CV ek <$> xs)
smtLibSeq k _ = error "SBV.cvToSMTLib: Impossible case (smtLibSeq), received kind: " ++ show k
smtLibSet :: Kind -> RCSet CVal -> String
smtLibSet k set = case set of
RegularSet rs -> Set.foldr' (modify "true") (start "false") rs
ComplementSet rs -> Set.foldr' (modify "false") (start "true") rs
where ke = case k of
KSet ek -> ek
_ -> error $ "SBV.cvToSMTLib: Impossible case (smtLibSet), received kind: " ++ show k
start def = "((as const " ++ smtType k ++ ") " ++ def ++ ")"
modify how e s = "(store " ++ s ++ " " ++ cvToSMTLib rm (CV ke e) ++ " " ++ how ++ ")"
smtLibTup :: Kind -> [CVal] -> String
smtLibTup (KTuple []) _ = "mkSBVTuple0"
smtLibTup (KTuple ks) xs = "(mkSBVTuple" ++ show (length ks) ++ " " ++ unwords (zipWith (\ek e -> cvToSMTLib rm (CV ek e)) ks xs) ++ ")"
smtLibTup k _ = error $ "SBV.cvToSMTLib: Impossible case (smtLibTup), received kind: " ++ show k
dtConstructor fld [] res = "(as " ++ fld ++ " " ++ smtType res ++ ")"
dtConstructor fld args res = "((as " ++ fld ++ " " ++ smtType res ++ ") " ++ unwords args ++ ")"
smtLibMaybe :: Kind -> Maybe CVal -> String
smtLibMaybe km@KMaybe{} Nothing = dtConstructor "nothing_SBVMaybe" [] km
smtLibMaybe km@(KMaybe k) (Just c) = dtConstructor "just_SBVMaybe" [cvToSMTLib rm (CV k c)] km
smtLibMaybe k _ = error $ "SBV.cvToSMTLib: Impossible case (smtLibMaybe), received kind: " ++ show k
smtLibEither :: Kind -> Either CVal CVal -> String
smtLibEither ke@(KEither k _) (Left c) = dtConstructor "left_SBVEither" [cvToSMTLib rm (CV k c)] ke
smtLibEither ke@(KEither _ k) (Right c) = dtConstructor "right_SBVEither" [cvToSMTLib rm (CV k c)] ke
smtLibEither k _ = error $ "SBV.cvToSMTLib: Impossible case (smtLibEither), received kind: " ++ show k
-- anomaly at the 2's complement min value! Have to use binary notation here
-- as there is no positive value we can provide to make the bvneg work.. (see above)
mkMinBound :: Int -> String
mkMinBound i = "#b1" ++ replicate (i-1) '0'
-- | Show a float as a binary
showBFloat :: (Show a, RealFloat a) => a -> ShowS
showBFloat = showFloatAtBase 2
-- | Like Haskell's showHFloat, but uses arbitrary base instead.
-- Note that the exponent is always written in decimal. Let the exponent value be d:
-- If base=10, then we use @e@ to denote the exponent; meaning 10^d
-- If base is a power of 2, then we use @p@ to denote the exponent; meaning 2^d
-- Otherwise, we use @ to denote the exponent, and it means base^d
showFloatAtBase :: (Show a, RealFloat a) => Int -> a -> ShowS
showFloatAtBase base input
| base < 2 = error $ "showFloatAtBase: Received invalid base (must be >= 2): " ++ show base
| True = showString $ fmt input
where fmt x
| isNaN x = "NaN"
| isInfinite x = (if x < 0 then "-" else "") ++ "Infinity"
| x < 0 || isNegativeZero x = '-' : cvt (-x)
| True = cvt x
basePow2 = base .&. (base-1) == 0
lg2Base = countTrailingZeros base -- only used when basePow2 is true
prefix = case base of
2 -> "0b"
8 -> "0o"
10 -> ""
16 -> "0x"
x -> "0<" ++ show x ++ ">"
powChar
| base == 10 = 'e'
| basePow2 = 'p'
| True = '@'
-- why r-1? Because we're shifting the fraction by 1 digit; does reducing the exponent by 1
f2d x = case floatToDigits (fromIntegral base) x of
([], e) -> (0, [], e - 1)
(d:ds, e) -> (d, ds, e - 1)
cvt x
| x == 0 = prefix ++ '0' : powChar : "+0"
| True = prefix ++ toDigit d ++ frac ds ++ pow
where (d, ds, e) = f2d x
pow
| base == 10 = powChar : shSigned e
| basePow2 = powChar : shSigned (e * lg2Base)
| True = powChar : shSigned e
shSigned v
| v < 0 = show v
| True = '+' : show v
-- Given digits, show them except if they're all 0 then drop
frac digits
| all (== 0) digits = ""
| True = "." ++ concatMap toDigit digits
toDigit v = map toUpper d
where d | v <= 15 = [intToDigit v]
| v < 36 = [chr (ord 'a' + v - 10)]
| True = '<' : show v ++ ">"
-- | When we show a negative number in SMTLib, we must properly parenthesize.
showNegativeNumber :: (Show a, Num a, Ord a) => a -> String
showNegativeNumber i
| i < 0 = "(- " ++ show (-i) ++ ")"
| True = show i
|