1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
|
-----------------------------------------------------------------------------
-- |
-- Module : Data.SBV.Utils.SExpr
-- Copyright : (c) Levent Erkok
-- License : BSD3
-- Maintainer: erkokl@gmail.com
-- Stability : experimental
--
-- Parsing of S-expressions (mainly used for parsing SMT-Lib get-value output)
-----------------------------------------------------------------------------
{-# LANGUAGE BangPatterns #-}
{-# OPTIONS_GHC -Wall -Werror #-}
module Data.SBV.Utils.SExpr (SExpr(..), parenDeficit, parseSExpr, parseSExprFunction, makeHaskellFunction) where
import Data.Bits (setBit, testBit)
import Data.Char (isDigit, ord, isSpace)
import Data.Either (partitionEithers)
import Data.List (isPrefixOf, nubBy, intercalate)
import Data.Maybe (fromMaybe, listToMaybe)
import Data.Word (Word32, Word64)
import Control.Monad (foldM)
import Numeric (readInt, readSigned, readDec, readHex, fromRat)
import Data.SBV.Core.AlgReals
import Data.SBV.Core.SizedFloats
import Data.SBV.Core.Data (nan, infinity, RoundingMode(..))
import Data.SBV.Utils.Numeric (fpIsEqualObjectH, wordToFloat, wordToDouble)
-- | ADT S-Expression format, suitable for representing get-model output of SMT-Lib
data SExpr = ECon String
| ENum (Integer, Maybe Int) -- Second argument is how wide the field was in bits, if known. Useful in FP parsing.
| EReal AlgReal
| EFloat Float
| EFloatingPoint FP
| EDouble Double
| EApp [SExpr]
deriving Show
-- | Extremely simple minded tokenizer, good for our use model.
tokenize :: String -> [String]
tokenize inp = go inp []
where go "" sofar = reverse sofar
go (c:cs) sofar
| isSpace c = go (dropWhile isSpace cs) sofar
go ('(':cs) sofar = go cs ("(" : sofar)
go (')':cs) sofar = go cs (")" : sofar)
go (':':':':cs) sofar = go cs ("::" : sofar)
go (':':cs) sofar = case break (`elem` stopper) cs of
(pre, rest) -> go rest ((':':pre) : sofar)
go ('|':r) sofar = case span (/= '|') r of
(pre, '|':rest) -> go rest (pre : sofar)
(pre, rest) -> go rest (pre : sofar)
go ('"':r) sofar = go rest (finalStr : sofar)
where grabString [] acc = (reverse acc, []) -- Strictly speaking, this is the unterminated string case; but let's ignore
grabString ('"' :'"':cs) acc = grabString cs ('"' :acc)
grabString ('"':cs) acc = (reverse acc, cs)
grabString (c:cs) acc = grabString cs (c:acc)
(str, rest) = grabString r []
finalStr = '"' : str ++ "\""
go cs sofar = case span (`notElem` stopper) cs of
(pre, post) -> go post (pre : sofar)
-- characters that can stop the current token
-- it is *crucial* that this list contains every character
-- we can match in one of the previous cases!
stopper = " \t\n():|\""
-- | The balance of parens in this string. If 0, this means it's a legit line!
parenDeficit :: String -> Int
parenDeficit = go 0 . tokenize
where go :: Int -> [String] -> Int
go !balance [] = balance
go !balance ("(" : rest) = go (balance+1) rest
go !balance (")" : rest) = go (balance-1) rest
go !balance (_ : rest) = go balance rest
-- | Parse a string into an SExpr, potentially failing with an error message
parseSExpr :: String -> Either String SExpr
parseSExpr inp = do (sexp, extras) <- parse inpToks
if null extras
then case sexp of
EApp [ECon "error", ECon er] -> Left $ "Solver returned an error: " ++ er
_ -> return sexp
else die "Extra tokens after valid input"
where inpToks = tokenize inp
die w = Left $ "SBV.Provers.SExpr: Failed to parse S-Expr: " ++ w
++ "\n*** Input : <" ++ inp ++ ">"
parse [] = die "ran out of tokens"
parse ("(":toks) = do (f, r) <- parseApp toks []
f' <- cvt (EApp f)
return (f', r)
parse (")":_) = die "extra tokens after close paren"
parse [tok] = do t <- pTok tok
return (t, [])
parse _ = die "ill-formed s-expr"
parseApp [] _ = die "failed to grab s-expr application"
parseApp (")":toks) sofar = return (reverse sofar, toks)
parseApp ("(":toks) sofar = do (f, r) <- parse ("(":toks)
parseApp r (f : sofar)
parseApp (tok:toks) sofar = do t <- pTok tok
parseApp toks (t : sofar)
pTok "false" = return $ ENum (0, Nothing)
pTok "true" = return $ ENum (1, Nothing)
pTok ('0':'b':r) = mkNum (Just (length r)) $ readInt 2 (`elem` "01") (\c -> ord c - ord '0') r
pTok ('b':'v':r) | not (null r) && all isDigit r = mkNum Nothing $ readDec (takeWhile (/= '[') r)
pTok ('#':'b':r) = mkNum (Just (length r)) $ readInt 2 (`elem` "01") (\c -> ord c - ord '0') r
pTok ('#':'x':r) = mkNum (Just (4 * length r)) $ readHex r
pTok n | possiblyNum n = if all intChar n then mkNum Nothing $ readSigned readDec n else getReal n
pTok n = return $ ECon (constantMap n)
-- crude, but effective!
possiblyNum s = case s of
"" -> False
('-':c:_) -> isDigit c
(c:_) -> isDigit c
intChar c = c == '-' || isDigit c
mkNum l [(n, "")] = return $ ENum (n, l)
mkNum _ _ = die "cannot read number"
getReal n = return $ EReal $ mkPolyReal (Left (exact, n'))
where exact = not ("?" `isPrefixOf` reverse n)
n' | exact = n
| True = init n
-- simplify numbers and root-obj values
cvt (EApp [ECon "to_int", EReal a]) = return $ EReal a -- ignore the "casting"
cvt (EApp [ECon "to_real", EReal a]) = return $ EReal a -- ignore the "casting"
cvt (EApp [ECon "/", EReal a, EReal b]) = return $ EReal (a / b)
cvt (EApp [ECon "/", EReal a, ENum b]) = return $ EReal (a / fromInteger (fst b))
cvt (EApp [ECon "/", ENum a, EReal b]) = return $ EReal (fromInteger (fst a) / b )
cvt (EApp [ECon "/", ENum a, ENum b]) = return $ EReal (fromInteger (fst a) / fromInteger (fst b))
cvt (EApp [ECon "-", EReal a]) = return $ EReal (-a)
cvt (EApp [ECon "-", ENum a]) = return $ ENum (-(fst a), snd a)
-- bit-vector value as CVC4 prints: (_ bv0 16) for instance
cvt (EApp [ECon "_", ENum a, ENum _b]) = return $ ENum a
cvt (EApp [ECon "root-obj", EApp (ECon "+":trms), ENum k]) = do ts <- mapM getCoeff trms
return $ EReal $ mkPolyReal (Right (fst k, ts))
cvt (EApp [ECon "as", n, EApp [ECon "_", ECon "FloatingPoint", ENum (11, _), ENum (53, _)]]) = getDouble n
cvt (EApp [ECon "as", n, EApp [ECon "_", ECon "FloatingPoint", ENum ( 8, _), ENum (24, _)]]) = getFloat n
cvt (EApp [ECon "as", n, ECon "Float64"]) = getDouble n
cvt (EApp [ECon "as", n, ECon "Float32"]) = getFloat n
-- Deal with CVC4's approximate reals
cvt x@(EApp [ECon "witness", EApp [EApp [ECon v, ECon "Real"]]
, EApp [ECon "or", EApp [ECon "=", ECon v', val], _]]) | v == v' = do
approx <- cvt val
case approx of
ENum (s, _) -> return $ EReal $ mkPolyReal (Left (False, show s))
EReal aval -> case aval of
AlgRational _ r -> return $ EReal $ AlgRational False r
_ -> return $ EReal aval
_ -> die $ "Cannot parse a CVC4 approximate value from: " ++ show x
-- Deal with CVC5's algebraic reals. This is very crude!
cvt x@(EApp (ECon "_" : ECon "real_algebraic_number" : rest)) =
let isComma (ECon ",") = True
isComma _ = False
get (ENum (n, _)) = return $ fromIntegral n
get (EReal (AlgRational True r)) = return r
get (EFloat f) = return $ toRational f
get (EDouble d) = return $ toRational d
get t = die $ "Cannot get a CVC5 real-algebraic bound from: " ++ show t
in case drop 1 (dropWhile (not . isComma) rest) of
[EApp [n1, n2], _] -> do low <- get n1
high <- get n2
return $ EReal $ AlgInterval (OpenPoint low) (OpenPoint high)
_ -> die $ "Cannot parse a CVC5 real-algebraic number from: " ++ show x
-- NB. Note the lengths on the mantissa for the following two are 23/52; not 24/53!
cvt (EApp [ECon "fp", ENum (s, Just 1), ENum ( e, Just 8), ENum (m, Just 23)]) = return $ EFloat $ getTripleFloat s e m
cvt (EApp [ECon "fp", ENum (s, Just 1), ENum ( e, Just 11), ENum (m, Just 52)]) = return $ EDouble $ getTripleDouble s e m
cvt (EApp [ECon "fp", ENum (s, Just 1), ENum ( e, Just eb), ENum (m, Just sb)]) = return $ EFloatingPoint $ fpFromRawRep (s == 1) (e, eb) (m, sb+1)
cvt (EApp [ECon "_", ECon "NaN", ENum ( 8, _), ENum (24, _)]) = return $ EFloat nan
cvt (EApp [ECon "_", ECon "NaN", ENum (11, _), ENum (53, _)]) = return $ EDouble nan
cvt (EApp [ECon "_", ECon "NaN", ENum (eb, _), ENum (sb, _)]) = return $ EFloatingPoint $ fpNaN (fromIntegral eb) (fromIntegral sb)
cvt (EApp [ECon "_", ECon "+oo", ENum ( 8, _), ENum (24, _)]) = return $ EFloat infinity
cvt (EApp [ECon "_", ECon "+oo", ENum (11, _), ENum (53, _)]) = return $ EDouble infinity
cvt (EApp [ECon "_", ECon "+oo", ENum (eb, _), ENum (sb, _)]) = return $ EFloatingPoint $ fpInf False (fromIntegral eb) (fromIntegral sb)
cvt (EApp [ECon "_", ECon "-oo", ENum ( 8, _), ENum (24, _)]) = return $ EFloat $ -infinity
cvt (EApp [ECon "_", ECon "-oo", ENum (11, _), ENum (53, _)]) = return $ EDouble $ -infinity
cvt (EApp [ECon "_", ECon "-oo", ENum (eb, _), ENum (sb, _)]) = return $ EFloatingPoint $ fpInf True (fromIntegral eb) (fromIntegral sb)
cvt (EApp [ECon "_", ECon "+zero", ENum ( 8, _), ENum (24, _)]) = return $ EFloat 0
cvt (EApp [ECon "_", ECon "+zero", ENum (11, _), ENum (53, _)]) = return $ EDouble 0
cvt (EApp [ECon "_", ECon "+zero", ENum (eb, _), ENum (sb, _)]) = return $ EFloatingPoint $ fpZero False (fromIntegral eb) (fromIntegral sb)
cvt (EApp [ECon "_", ECon "-zero", ENum ( 8, _), ENum (24, _)]) = return $ EFloat $ -0
cvt (EApp [ECon "_", ECon "-zero", ENum (11, _), ENum (53, _)]) = return $ EDouble $ -0
cvt (EApp [ECon "_", ECon "-zero", ENum (eb, _), ENum (sb, _)]) = return $ EFloatingPoint $ fpZero True (fromIntegral eb) (fromIntegral sb)
cvt x = return x
getCoeff (EApp [ECon "*", ENum k, EApp [ECon "^", ECon "x", ENum p]]) = return (fst k, fst p) -- kx^p
getCoeff (EApp [ECon "*", ENum k, ECon "x" ] ) = return (fst k, 1) -- kx
getCoeff ( EApp [ECon "^", ECon "x", ENum p] ) = return ( 1, fst p) -- x^p
getCoeff ( ECon "x" ) = return ( 1, 1) -- x
getCoeff ( ENum k ) = return (fst k, 0) -- k
getCoeff x = die $ "Cannot parse a root-obj,\nProcessing term: " ++ show x
getDouble (ECon s) = case (s, rdFP (dropWhile (== '+') s)) of
("plusInfinity", _ ) -> return $ EDouble infinity
("minusInfinity", _ ) -> return $ EDouble (-infinity)
("oo", _ ) -> return $ EDouble infinity
("-oo", _ ) -> return $ EDouble (-infinity)
("zero", _ ) -> return $ EDouble 0
("-zero", _ ) -> return $ EDouble (-0)
("NaN", _ ) -> return $ EDouble nan
(_, Just v) -> return $ EDouble v
_ -> die $ "Cannot parse a double value from: " ++ s
getDouble (EApp [_, s, _, _]) = getDouble s
getDouble (EReal r) = return $ EDouble $ fromRat $ toRational r
getDouble x = die $ "Cannot parse a double value from: " ++ show x
getFloat (ECon s) = case (s, rdFP (dropWhile (== '+') s)) of
("plusInfinity", _ ) -> return $ EFloat infinity
("minusInfinity", _ ) -> return $ EFloat (-infinity)
("oo", _ ) -> return $ EFloat infinity
("-oo", _ ) -> return $ EFloat (-infinity)
("zero", _ ) -> return $ EFloat 0
("-zero", _ ) -> return $ EFloat (-0)
("NaN", _ ) -> return $ EFloat nan
(_, Just v) -> return $ EFloat v
_ -> die $ "Cannot parse a float value from: " ++ s
getFloat (EReal r) = return $ EFloat $ fromRat $ toRational r
getFloat (EApp [_, s, _, _]) = getFloat s
getFloat x = die $ "Cannot parse a float value from: " ++ show x
-- | Parses the Z3 floating point formatted numbers like so: 1.321p5/1.2123e9 etc.
rdFP :: (Read a, RealFloat a) => String -> Maybe a
rdFP s = case break (`elem` "pe") s of
(m, 'p':e) -> rd m >>= \m' -> rd e >>= \e' -> return $ m' * ( 2 ** e')
(m, 'e':e) -> rd m >>= \m' -> rd e >>= \e' -> return $ m' * (10 ** e')
(m, "") -> rd m
_ -> Nothing
where rd v = case reads v of
[(n, "")] -> Just n
_ -> Nothing
-- | Convert an (s, e, m) triple to a float value
getTripleFloat :: Integer -> Integer -> Integer -> Float
getTripleFloat s e m = wordToFloat w32
where sign = [s == 1]
expt = [e `testBit` i | i <- [ 7, 6 .. 0]]
mantissa = [m `testBit` i | i <- [22, 21 .. 0]]
positions = [i | (i, b) <- zip [31, 30 .. 0] (sign ++ expt ++ mantissa), b]
w32 = foldr (flip setBit) (0::Word32) positions
-- | Convert an (s, e, m) triple to a float value
getTripleDouble :: Integer -> Integer -> Integer -> Double
getTripleDouble s e m = wordToDouble w64
where sign = [s == 1]
expt = [e `testBit` i | i <- [10, 9 .. 0]]
mantissa = [m `testBit` i | i <- [51, 50 .. 0]]
positions = [i | (i, b) <- zip [63, 62 .. 0] (sign ++ expt ++ mantissa), b]
w64 = foldr (flip setBit) (0::Word64) positions
-- | Special constants of SMTLib2 and their internal translation. Mainly
-- rounding modes for now.
constantMap :: String -> String
constantMap n = fromMaybe n (listToMaybe [to | (from, to) <- special, n `elem` from])
where special = [ (["RNE", "roundNearestTiesToEven"], show RoundNearestTiesToEven)
, (["RNA", "roundNearestTiesToAway"], show RoundNearestTiesToAway)
, (["RTP", "roundTowardPositive"], show RoundTowardPositive)
, (["RTN", "roundTowardNegative"], show RoundTowardNegative)
, (["RTZ", "roundTowardZero"], show RoundTowardZero)
]
-- | Parse a function like value. These come in two flavors: Either in the form of
-- a store-expression or a lambda-expression. So we handle both here.
parseSExprFunction :: SExpr -> Maybe (Either String ([([SExpr], SExpr)], SExpr))
parseSExprFunction e
| Just r <- parseLambdaExpression e = Just (Right r)
| Just r <- parseSetLambda e = Just (Right r)
| Just r <- parseStoreAssociations e = Just r
| True = Nothing -- out-of luck. NB. This is where we would add support for other solvers!
-- | Parse a set-lambda expression, which is literally a lambda function, that might look like this:
-- (lambda ((x!1 String))
-- (or (not (or (= x!1 "o") (= x!1 "l") (= x!1 "e") (= x!1 "h")))
-- (= x!1 "o")
-- (= x!1 "l")
-- (= x!1 "e")
-- (= x!1 "h")))
-- For this, we do a little bit of an interpretative dance to see if we can "construct" the necesary expression.
--
-- In parsed form:
-- EApp [ECon "lambda",EApp [EApp [ECon "x!1",ECon "String"]],EApp [ECon "not",EApp [ECon "or",EApp [ECon "=",ECon "x!1",ECon "\"e\""],EApp [ECon "=",ECon "x!1",ECon "\"l\""]]]]
--
-- This is by no means comprehensive, and is quite crude, but hopefully covers the cases we see in practice.
parseSetLambda :: SExpr -> Maybe ([([SExpr], SExpr)], SExpr)
parseSetLambda funExpr = case funExpr of
EApp [l@(ECon "lambda"), bv@(EApp [EApp [ECon _, _]]), body] -> go (\bd -> EApp [l, bv, bd]) body
_ -> Nothing
where go mkLambda = build
where build (EApp [ECon "not", rest ]) = neg =<< build rest
build (EApp (ECon "or" : rest@(_:_))) = foldM1 disj =<< mapM build rest
build (EApp (ECon "and" : rest@(_:_))) = foldM1 conj =<< mapM build rest
build other = parseLambdaExpression (mkLambda other)
-- We're guaranteed by above construction that foldM1 will never take an empty list (due to rest@(_:_) pattern match.)
foldM1 _ [] = error "Data.SBV.parseSetLambda: Impossible happened; empty arg to foldM1"
foldM1 f (x:xs) = foldM f x xs
checkBool (ENum (1, Nothing)) = True
checkBool (ENum (0, Nothing)) = True
checkBool _ = False
negBool (ENum (1, Nothing)) = ENum (0, Nothing)
negBool _ = ENum (1, Nothing)
orBool t@(ENum (1, Nothing)) _ = t
orBool _ t@(ENum (1, Nothing)) = t
orBool _ _ = ENum (0, Nothing)
andBool f@(ENum (0, Nothing)) _ = f
andBool _ f@(ENum (0, Nothing)) = f
andBool _ _ = ENum (1, Nothing)
neg :: ([([SExpr], SExpr)], SExpr) -> Maybe ([([SExpr], SExpr)], SExpr)
neg (rows, dflt)
| all checkBool (dflt : map snd rows) = Just ([(e, negBool r) | (e, r) <- rows], negBool dflt)
| True = Nothing
disj, conj :: ([([SExpr], SExpr)], SExpr) -> ([([SExpr], SExpr)], SExpr) -> Maybe ([([SExpr], SExpr)], SExpr)
disj = bin orBool
conj = bin andBool
bin f rd1@(rows1, dflt1) rd2@(rows2, dflt2)
| all checkBool (dflt1 : dflt2 : map snd rows1 ++ map snd rows2) = Just (combine f rd1 rd2)
| True = Nothing
-- Since we don't have equality over SExprs (can of worms!), we use "show" equality here. The ice is thin, but it works!
combine f (rows1, dflt1) (rows2, dflt2) = (rows, f dflt1 dflt2)
where rows = map calc $ nubBy (\x y -> show x == show y) (map fst rows1 ++ map fst rows2)
calc :: [SExpr] -> ([SExpr], SExpr)
calc args = (args, f (find rows1 dflt1 args) (find rows2 dflt2 args))
find rs d a = case [r | (v, r) <- rs, show v == show a] of
[] -> d
[x] -> x
x -> error $ unlines [ "Data.SBV.parseSetLambda: Impossible happened while combining rows."
, " First row :" ++ show rows1
, " First dflt :" ++ show dflt1
, " Second row :" ++ show rows2
, " Second dflt:" ++ show dflt2
, " Looking for: " ++ show a
, "Multiple matches found: " ++ show x
]
-- | Parse a lambda expression, most likely z3 specific. There's some guess work
-- involved here regarding how z3 produces lambda-expressions; while we try to
-- be flexible, this is certainly not a full fledged parser. But hopefully it'll
-- cover everything z3 will throw at it.
parseLambdaExpression :: SExpr -> Maybe ([([SExpr], SExpr)], SExpr)
parseLambdaExpression funExpr = case funExpr of
EApp [ECon "lambda", EApp params, body] -> mapM getParam params >>= flip lambda body >>= chainAssigns
_ -> Nothing
where getParam (EApp [ECon v, ECon ty]) = Just (v, ty == "Bool")
getParam (EApp [ECon v, _ ]) = Just (v, False)
getParam _ = Nothing
lambda :: [(String, Bool)] -- Bool is True if this is a boolean variable. Otherwise we don't keep track of the type
-> SExpr -> Maybe [Either ([SExpr], SExpr) SExpr]
lambda params body = reverse <$> go [] body
where true = ENum (1, Nothing)
false = ENum (0, Nothing)
go :: [Either ([SExpr], SExpr) SExpr] -> SExpr -> Maybe [Either ([SExpr], SExpr) SExpr]
go sofar (EApp [ECon "ite", selector, thenBranch, elseBranch])
= do s <- select selector
tB <- go [] thenBranch
case cond s tB of
Just sv -> go (Left sv : sofar) elseBranch
_ -> Nothing
-- Catch cases like: x = a)
go sofar inner@(EApp [ECon "=", _, _])
= go sofar (EApp [ECon "ite", inner, true, false])
-- Catch cases like: not x
go sofar (EApp [ECon "not", inner])
= go sofar (EApp [ECon "ite", inner, false, true])
-- Catch (or x y z..)
go sofar (EApp (ECon "or" : elts))
= let xform [] = false
xform [x] = x
xform (x:xs) = EApp [ECon "ite", x, true, xform xs]
in go sofar $ xform elts
-- Catch (and x y z..)
go sofar (EApp (ECon "and" : elts))
= let xform [] = true
xform [x] = x
xform (x:xs) = EApp [ECon "ite", x, xform xs, false]
in go sofar $ xform elts
-- z3 sometimes puts together a bunch of booleans as final expression,
-- see if we can catch that.
go sofar e
| Just s <- select e
= go (Left (s, true) : sofar) false
-- Otherwise, just treat it as an "unknown" arbitrary expression
-- as the default. It could be something arbitrary of course, but it's
-- too complicated to parse; and hopefully this is good enough.
go sofar e = Just $ Right e : sofar
cond :: [SExpr] -> [Either ([SExpr], SExpr) SExpr] -> Maybe ([SExpr], SExpr)
cond s [Right v] = Just (s, v)
cond _ _ = Nothing
-- select takes the condition of an ite, and returns precisely what match is done to the parameters
select :: SExpr -> Maybe [SExpr]
select e
| Just dict <- build e [] = mapM (`lookup` dict) paramNames
| True = Nothing
where paramNames = map fst params
-- build a dictionary of assignments from the scrutinee
build :: SExpr -> [(String, SExpr)] -> Maybe [(String, SExpr)]
build (EApp (ECon "and" : rest)) sofar = let next _ Nothing = Nothing
next c (Just x) = build c x
in foldr next (Just sofar) rest
build expr sofar | Just (v, r) <- grok expr, v `elem` paramNames = Just $ (v, r) : sofar
| True = Nothing
-- See if we can figure out what z3 is telling us; hopefully this
-- mapping covers everything we can see:
grok (EApp [ECon "=", ECon v, r]) = Just (v, r)
grok (EApp [ECon "=", r, ECon v]) = Just (v, r)
grok (EApp [ECon "not", ECon v]) = Just (v, false) -- boolean negation, require it to be false
grok (ECon v) = case v `lookup` params of
Just True -> Just (v, true) -- boolean identity, require it to be true
_ -> Nothing
-- Tough luck, we couldn't understand:
grok _ = Nothing
-- | Parse a series of associations in the array notation, things that look like:
--
-- (store (store ((as const Array) 12) 3 5 9) 5 6 75)
--
-- This is (most likely) entirely Z3 specific. So, we might have to tweak it for other
-- solvers; though it isn't entirely clear how to do that as we do not know what solver
-- we're using here. The trick is to handle all of possible SExpr's we see.
-- We'll cross that bridge when we get to it.
--
-- NB. In case there's no "constraint" on the UI, Z3 produces the self-referential model:
--
-- (x (_ as-array x))
--
-- So, we specifically handle that here, by returning a Left of that name.
parseStoreAssociations :: SExpr -> Maybe (Either String ([([SExpr], SExpr)], SExpr))
parseStoreAssociations (EApp [ECon "_", ECon "as-array", ECon nm]) = Just $ Left nm
parseStoreAssociations e = Right <$> (chainAssigns =<< vals e)
where vals :: SExpr -> Maybe [Either ([SExpr], SExpr) SExpr]
vals (EApp [EApp [ECon "as", ECon "const", ECon "Array"], defVal]) = return [Right defVal]
vals (EApp [EApp [ECon "as", ECon "const", EApp (ECon "Array" : _)], defVal]) = return [Right defVal]
vals (EApp (ECon "store" : prev : argsVal)) | length argsVal >= 2 = do rest <- vals prev
return $ Left (init argsVal, last argsVal) : rest
vals _ = Nothing
-- | Turn a sequence of left-right chain assignments (condition + free) into a single chain
chainAssigns :: [Either ([SExpr], SExpr) SExpr] -> Maybe ([([SExpr], SExpr)], SExpr)
chainAssigns chain = regroup $ partitionEithers chain
where regroup (vs, [d]) = Just (checkDup vs, d)
regroup _ = Nothing
-- If we get into a case like this:
--
-- (store (store a 1 2) 1 3)
--
-- then we need to drop the 1->2 assignment!
--
-- The way we parse these, the first assignment wins.
checkDup :: [([SExpr], SExpr)] -> [([SExpr], SExpr)]
checkDup [] = []
checkDup (a@(key, _):as) = a : checkDup [r | r@(key', _) <- as, not (key `sameKey` key')]
sameKey :: [SExpr] -> [SExpr] -> Bool
sameKey as bs
| length as == length bs = and $ zipWith same as bs
| True = error $ "Data.SBV: Differing length of key received in chainAssigns: " ++ show (as, bs)
-- We don't want to derive Eq; as this is more careful on floats and such
same :: SExpr -> SExpr -> Bool
same x y = case (x, y) of
(ECon a, ECon b) -> a == b
(ENum (i, _), ENum (j, _)) -> i == j
(EReal a, EReal b) -> algRealStructuralEqual a b
(EFloat f1, EFloat f2) -> fpIsEqualObjectH f1 f2
(EDouble d1, EDouble d2) -> fpIsEqualObjectH d1 d2
(EApp as, EApp bs) -> length as == length bs && and (zipWith same as bs)
(e1, e2) -> if eRank e1 == eRank e2
then error $ "Data.SBV: You've found a bug in SBV! Please report: SExpr(same): " ++ show (e1, e2)
else False
-- Defensive programming: It's too long to list all pair up, so we use this function and
-- GHC's pattern-match completion warning to catch cases we might've forgotten. If
-- you ever get the error line above fire, because you must've disabled the pattern-match
-- completion check warning! Shame on you.
eRank :: SExpr -> Int
eRank ECon{} = 0
eRank ENum{} = 1
eRank EReal{} = 2
eRank EFloat{} = 3
eRank EFloatingPoint{} = 4
eRank EDouble{} = 5
eRank EApp{} = 6
-- Turn
-- "((F (lambda ((x!1 Int)) (+ 3 (* 2 x!1)))))"
--- into
-- "F x = 3 + 2 * x"
-- if we can. We try but don't push too hard! This is only used for display purposes.
--
-- This isn't very fool-proof; can be confused if there are binding constructs etc.
-- Also, the generated text isn't necessarily fully Haskell acceptable.
-- But it seems to do an OK job for most common use cases.
makeHaskellFunction :: String -> String -> Maybe [String] -> Maybe String
makeHaskellFunction resp nm mbArgs
= case parseSExpr resp of
Right (EApp [EApp [ECon o, e]]) | o == nm -> do (args, bd) <- lambda e
return $ unwords (nm : args) ++ " = " ++ bd
_ -> Nothing
where -- infinite supply of names; starting with the ones we're given
preSupply = fromMaybe [] mbArgs
extras = ["x", "y", "z"]
++ [[c] | c <- ['a' .. 'z'], c < 'x']
++ ['x' : show i | i <- [(1::Int) ..]]
mkUnique x | x `elem` preSupply = mkUnique $ x ++ "'"
| True = x
supply = preSupply ++ map mkUnique extras
lambda :: SExpr -> Maybe ([String], String)
lambda (EApp [ECon "lambda", EApp args, bd]) = do as <- mapM getArg args
let env = zip as supply
pure (map snd env, body env bd)
lambda _ = Nothing
getArg (EApp [ECon argName, _]) = Just argName
getArg _ = Nothing
body env = go
where go :: SExpr -> String
go (ECon n) | Just a <- lookup n env = a
| True = n
go (ENum (i, _)) = show i
go (EReal a) = show a
go (EFloat f) = show f
go (EFloatingPoint f) = show f
go (EDouble f) = show f
go (EApp xs) = app (map (wrap . go) xs)
parens x = '(' : x ++ ")"
wrap x | "-" `isPrefixOf` x = parens x
| any isSpace x = parens x
| True = x
mkBin o a b = wrap a ++ " " ++ o ++ " " ++ wrap b
isPlus = (`elem` ["+", "bvadd"])
isTimes = (`elem` ["*", "bvmul"])
isLT = (`elem` ["<", "bvult", "bvslt", "fp.lt" ])
isLTE = (`elem` ["<=", "bvule", "bvsle", "fp.leq"])
isGT = (`elem` [">", "bvugt", "bvsgt", "fp.gt" ])
isGTE = (`elem` [">=", "bvuge", "bvsge", "fp.gte"])
-- Make an application, with some simplifications
app :: [String] -> String
app (o : xs) | isPlus o = intercalate " + " xs
-- multiplication of arbitrary elements, with proviso for multiplication by -1
app [m, "(-1)", x] | isTimes m = '-' : x
app (m : xs) | isTimes m = intercalate " * " xs
-- binary arith ops
app ["-", a, b] = mkBin "-" a b
app ["/", a, b] = mkBin "/" a b
app [o, a, b] | isLT o = mkBin "<" a b
app [o, a, b] | isLTE o = mkBin "<=" a b
app [o, a, b] | isGT o = mkBin ">" a b
app [o, a, b] | isGTE o = mkBin ">=" a b
-- give up, and just do prefix!
app xs = unwords xs
{- HLint ignore chainAssigns "Redundant if" -}
|