File: Legato.hs

package info (click to toggle)
haskell-sbv 10.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 8,148 kB
  • sloc: haskell: 31,176; makefile: 4
file content (313 lines) | stat: -rw-r--r-- 12,021 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
-----------------------------------------------------------------------------
-- |
-- Module    : Documentation.SBV.Examples.BitPrecise.Legato
-- Copyright : (c) Levent Erkok
-- License   : BSD3
-- Maintainer: erkokl@gmail.com
-- Stability : experimental
--
-- An encoding and correctness proof of Legato's multiplier in Haskell. Bill Legato came
-- up with an interesting way to multiply two 8-bit numbers on Mostek, as described here:
--   <http://www.cs.utexas.edu/~moore/acl2/workshop-2004/contrib/legato/Weakest-Preconditions-Report.pdf>
--
-- Here's Legato's algorithm, as coded in Mostek assembly:
--
-- @
--    step1 :       LDX #8         ; load X immediate with the integer 8
--    step2 :       LDA #0         ; load A immediate with the integer 0
--    step3 : LOOP  ROR F1         ; rotate F1 right circular through C
--    step4 :       BCC ZCOEF      ; branch to ZCOEF if C = 0
--    step5 :       CLC            ; set C to 0
--    step6 :       ADC F2         ; set A to A+F2+C and C to the carry
--    step7 : ZCOEF ROR A          ; rotate A right circular through C
--    step8 :       ROR LOW        ; rotate LOW right circular through C
--    step9 :       DEX            ; set X to X-1
--    step10:       BNE LOOP       ; branch to LOOP if Z = 0
-- @
--
-- This program came to be known as the Legato's challenge in the community, where
-- the challenge was to prove that it indeed does perform multiplication. This file
-- formalizes the Mostek architecture in Haskell and proves that Legato's algorithm
-- is indeed correct.
-----------------------------------------------------------------------------

{-# LANGUAGE DataKinds      #-}
{-# LANGUAGE DeriveAnyClass #-}
{-# LANGUAGE DeriveGeneric  #-}

{-# OPTIONS_GHC -Wall -Werror #-}

module Documentation.SBV.Examples.BitPrecise.Legato where

import Data.Array (Array, Ix(..), (!), (//), array)

import Data.SBV
import Data.SBV.Tools.CodeGen

import GHC.Generics (Generic)

------------------------------------------------------------------
-- * Mostek architecture
------------------------------------------------------------------

-- | We model only two registers of Mostek that is used in the above algorithm, can add more.
data Register = RegX  | RegA  deriving (Eq, Ord, Ix, Bounded)

-- | The carry flag ('FlagC') and the zero flag ('FlagZ')
data Flag = FlagC | FlagZ deriving (Eq, Ord, Ix, Bounded)

-- | Mostek was an 8-bit machine.
type Value = SWord 8

-- | Convenient synonym for symbolic machine bits.
type Bit = SBool

-- | Register bank
type Registers = Array Register Value

-- | Flag bank
type Flags = Array Flag Bit

-- | We have three memory locations, sufficient to model our problem
data Location = F1   -- ^ multiplicand
              | F2   -- ^ multiplier
              | LO   -- ^ low byte of the result gets stored here
              deriving (Eq, Ord, Ix, Bounded)

-- | Memory is simply an array from locations to values
type Memory = Array Location Value

-- | Abstraction of the machine: The CPU consists of memory, registers, and flags.
-- Unlike traditional hardware, we assume the program is stored in some other memory area that
-- we need not model. (No self modifying programs!)
--
-- 'Mostek' is equipped with an automatically derived 'Mergeable' instance
-- because each field is 'Mergeable'.
data Mostek = Mostek { memory    :: Memory
                     , registers :: Registers
                     , flags     :: Flags
                     } deriving (Generic, Mergeable)

-- | Given a machine state, compute a value out of it
type Extract a = Mostek -> a

-- | Programs are essentially state transformers (on the machine state)
type Program = Mostek -> Mostek

------------------------------------------------------------------
-- * Low-level operations
------------------------------------------------------------------

-- | Get the value of a given register
getReg :: Register -> Extract Value
getReg r m = registers m ! r

-- | Set the value of a given register
setReg :: Register -> Value -> Program
setReg r v m = m {registers = registers m // [(r, v)]}

-- | Get the value of a flag
getFlag :: Flag -> Extract Bit
getFlag f m = flags m ! f

-- | Set the value of a flag
setFlag :: Flag -> Bit -> Program
setFlag f b m = m {flags = flags m // [(f, b)]}

-- | Read memory
peek :: Location -> Extract Value
peek a m = memory m ! a

-- | Write to memory
poke :: Location -> Value -> Program
poke a v m = m {memory = memory m // [(a, v)]}

-- | Checking overflow. In Legato's multiplier the @ADC@ instruction
-- needs to see if the expression x + y + c overflowed, as checked
-- by this function. Note that we verify the correctness of this check
-- separately below in `checkOverflowCorrect`.
checkOverflow :: SWord 8 -> SWord 8 -> SBool -> SBool
checkOverflow x y c = s .< x .|| s .< y .|| s' .< s
  where s  = x + y
        s' = s + ite c 1 0

-- | Correctness theorem for our `checkOverflow` implementation.
--
--   We have:
--
--   >>> checkOverflowCorrect
--   Q.E.D.
checkOverflowCorrect :: IO ThmResult
checkOverflowCorrect = checkOverflow === overflow
  where -- Reference spec for overflow. We do the addition
        -- using 16 bits and check that it's larger than 255
        overflow :: SWord 8 -> SWord 8 -> SBool -> SBool
        overflow x y c = (0 # x) + (0 # y) + ite c 1 0 .> (255 :: SWord 16)
------------------------------------------------------------------
-- * Instruction set
------------------------------------------------------------------

-- | An instruction is modeled as a 'Program' transformer. We model
-- mostek programs in direct continuation passing style.
type Instruction = Program -> Program

-- | LDX: Set register @X@ to value @v@
ldx :: Value -> Instruction
ldx v k = k . setReg RegX v

-- | LDA: Set register @A@ to value @v@
lda :: Value -> Instruction
lda v k = k . setReg RegA v

-- | CLC: Clear the carry flag
clc :: Instruction
clc k = k . setFlag FlagC sFalse

-- | ROR, memory version: Rotate the value at memory location @a@
-- to the right by 1 bit, using the carry flag as a transfer position.
-- That is, the final bit of the memory location becomes the new carry
-- and the carry moves over to the first bit. This very instruction
-- is one of the reasons why Legato's multiplier is quite hard to understand
-- and is typically presented as a verification challenge.
rorM :: Location -> Instruction
rorM a k m = k . setFlag FlagC c' . poke a v' $ m
  where v  = peek a m
        c  = getFlag FlagC m
        v' = setBitTo (v `rotateR` 1) 7 c
        c' = sTestBit v 0

-- | ROR, register version: Same as 'rorM', except through register @r@.
rorR :: Register -> Instruction
rorR r k m = k . setFlag FlagC c' . setReg r v' $ m
  where v  = getReg r m
        c  = getFlag FlagC m
        v' = setBitTo (v `rotateR` 1) 7 c
        c' = sTestBit v 0

-- | BCC: branch to label @l@ if the carry flag is sFalse
bcc :: Program -> Instruction
bcc l k m = ite (c .== sFalse) (l m) (k m)
  where c = getFlag FlagC m

-- | ADC: Increment the value of register @A@ by the value of memory contents
-- at location @a@, using the carry-bit as the carry-in for the addition.
adc :: Location -> Instruction
adc a k m = k . setFlag FlagZ (v' .== 0) . setFlag FlagC c' . setReg RegA v' $ m
  where v  = peek a m
        ra = getReg RegA m
        c  = getFlag FlagC m
        v' = v + ra + ite c 1 0
        c' = checkOverflow v ra c

-- | DEX: Decrement the value of register @X@
dex :: Instruction
dex k m = k . setFlag FlagZ (x .== 0) . setReg RegX x $ m
  where x = getReg RegX m - 1

-- | BNE: Branch if the zero-flag is sFalse
bne :: Program -> Instruction
bne l k m = ite (z .== sFalse) (l m) (k m)
  where z = getFlag FlagZ m

-- | The 'end' combinator "stops" our program, providing the final continuation
-- that does nothing.
end :: Program
end = id

------------------------------------------------------------------
-- * Legato's algorithm in Haskell/SBV
------------------------------------------------------------------

-- | Multiplies the contents of @F1@ and @F2@, storing the low byte of the result
-- in @LO@ and the high byte of it in register @A@. The implementation is a direct
-- transliteration of Legato's algorithm given at the top, using our notation.
legato :: Program
legato = start
  where start   =    ldx 8
                   $ lda 0
                   $ loop
        loop    =    rorM F1
                   $ bcc zeroCoef
                   $ clc
                   $ adc F2
                   $ zeroCoef
        zeroCoef =   rorR RegA
                   $ rorM LO
                   $ dex
                   $ bne loop
                   $ end

------------------------------------------------------------------
-- * Verification interface
------------------------------------------------------------------
-- | Given values for  F1 and F2, @runLegato@ takes an arbitrary machine state @m@ and
-- returns the high and low bytes of the multiplication.
runLegato :: Mostek -> (Value, Value)
runLegato m = (getReg RegA m', peek LO m')
  where m' = legato m

-- | Helper synonym for capturing relevant bits of Mostek
type InitVals = ( Value      -- Contents of mem location F1
                , Value      -- Contents of mem location F2
                , Value      -- Contents of mem location LO
                , Value      -- Content of Register X
                , Value      -- Content of Register A
                , Bit        -- Value of FlagC
                , Bit        -- Value of FlagZ
                )

-- | Create an instance of the Mostek machine, initialized by the memory and the relevant
-- values of the registers and the flags
initMachine :: InitVals -> Mostek
initMachine (f1, f2, lo, rx, ra, fc, fz) = Mostek { memory    = array (minBound, maxBound) [(F1, f1), (F2, f2), (LO, lo)]
                                                  , registers = array (minBound, maxBound) [(RegX, rx),  (RegA, ra)]
                                                  , flags     = array (minBound, maxBound) [(FlagC, fc), (FlagZ, fz)]
                                                  }

-- | The correctness theorem. For all possible memory configurations, the factors (@x@ and @y@ below), the location
-- of the low-byte result and the initial-values of registers and the flags, this function will return True only if
-- running Legato's algorithm does indeed compute the product of @x@ and @y@ correctly.
legatoIsCorrect :: InitVals -> SBool
legatoIsCorrect initVals@(x, y, _, _, _, _, _) = result .== expected
    where (hi, lo) = runLegato (initMachine initVals)
          -- NB. perform the comparison over 16 bit values to avoid overflow!
          -- If Value changes to be something else, modify this accordingly.
          result, expected :: SWord 16
          result   = 256 * (0 # hi) + (0 # lo)
          expected = (0 # x) * (0 # y)

------------------------------------------------------------------
-- * Verification
------------------------------------------------------------------

-- | The correctness theorem.
correctnessTheorem :: IO ThmResult
correctnessTheorem = proveWith defaultSMTCfg{timing = PrintTiming} $ do
        lo <- sWord "lo"

        x <- sWord  "x"
        y <- sWord  "y"

        regX  <- sWord "regX"
        regA  <- sWord "regA"

        flagC <- sBool "flagC"
        flagZ <- sBool "flagZ"

        return $ legatoIsCorrect (x, y, lo, regX, regA, flagC, flagZ)

------------------------------------------------------------------
-- * C Code generation
------------------------------------------------------------------

-- | Generate a C program that implements Legato's algorithm automatically.
legatoInC :: IO ()
legatoInC = compileToC Nothing "runLegato" $ do
                x <- cgInput "x"
                y <- cgInput "y"
                let (hi, lo) = runLegato (initMachine (x, y, 0, 0, 0, sFalse, sFalse))
                cgOutput "hi" hi
                cgOutput "lo" lo

{- HLint ignore legato "Redundant $"        -}
{- HLint ignore module "Reduce duplication" -}