1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
|
-----------------------------------------------------------------------------
-- |
-- Module : Documentation.SBV.Examples.BitPrecise.MultMask
-- Copyright : (c) Levent Erkok
-- License : BSD3
-- Maintainer: erkokl@gmail.com
-- Stability : experimental
--
-- An SBV solution to the bit-precise puzzle of shuffling the bits in a
-- 64-bit word in a custom order. The idea is to take a 64-bit value:
--
-- @1.......2.......3.......4.......5.......6.......7.......8.......@
--
-- And turn it into another 64-bit value, that looks like this:
--
-- @12345678........................................................@
--
-- We do not care what happens to the bits that are represented by dots. The
-- problem is to do this with one mask and one multiplication.
--
-- Apparently this operation has several applications, including in programs
-- that play chess of all things. We use SBV to find the appropriate mask and
-- the multiplier.
--
-- Note that this is an instance of the program synthesis problem, where
-- we "fill in the blanks" given a certain skeleton that satisfy a certain
-- property, using quantified formulas.
-----------------------------------------------------------------------------
{-# OPTIONS_GHC -Wall -Werror #-}
module Documentation.SBV.Examples.BitPrecise.MultMask where
import Data.SBV
import Data.SBV.Control
-- | Find the multiplier and the mask as described. We have:
--
-- >>> maskAndMult
-- Satisfiable. Model:
-- mask = 0x8080808080808080 :: Word64
-- mult = 0x0002040810204081 :: Word64
--
-- That is, any 64 bit value masked by the first and multiplied by the second
-- value above will have its bits at positions @[7,15,23,31,39,47,55,63]@ moved
-- to positions @[56,57,58,59,60,61,62,63]@ respectively.
--
-- NB. Depending on your z3 version, you might also get the following
-- multiplier as the result: 0x8202040810204081. That value works just fine as well!
--
-- NB. Note the custom call to z3 with a specific tactic. A simple call to z3 unfortunately
-- does not terminate quickly.
maskAndMult :: IO ()
maskAndMult = print =<< satWith z3{printBase=16} find
where find = do -- Magic incantation to make the test go fast. See <http://github.com/Z3Prover/z3/issues/5660> for details.
setOption $ OptionKeyword ":smt.ematching" ["false"]
mask <- free "mask"
mult <- free "mult"
constrain $ \(Forall inp) -> let res = (mask .&. inp) * (mult :: SWord64)
in inp `sExtractBits` [7, 15 .. 63] .== res `sExtractBits` [56 .. 63]
|