1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
|
-----------------------------------------------------------------------------
-- |
-- Module : Documentation.SBV.Examples.Crypto.AES
-- Copyright : (c) Levent Erkok
-- License : BSD3
-- Maintainer: erkokl@gmail.com
-- Stability : experimental
--
-- An implementation of AES (Advanced Encryption Standard), using SBV.
-- For details on AES, see <http://en.wikipedia.org/wiki/Advanced_Encryption_Standard>.
--
-- We do a T-box implementation, which leads to good C code as we can take
-- advantage of look-up tables. Note that we make virtually no attempt to
-- optimize our Haskell code. The concern here is not with getting Haskell running
-- fast at all. The idea is to program the T-Box implementation as naturally and clearly
-- as possible in Haskell, and have SBV's code-generator generate fast C code automatically.
-- Therefore, we merely use ordinary Haskell lists as our data-structures, and do not
-- bother with any unboxing or strictness annotations. Thus, we achieve the separation
-- of concerns: Correctness via clarity and simplicity and proofs on the Haskell side,
-- performance by relying on SBV's code generator. If necessary, the generated code
-- can be FFI'd back into Haskell to complete the loop.
--
-- All 3 valid key sizes (128, 192, and 256) as required by the FIPS-197 standard
-- are supported.
-----------------------------------------------------------------------------
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE ParallelListComp #-}
{-# OPTIONS_GHC -Wall -Werror -Wno-incomplete-uni-patterns #-}
module Documentation.SBV.Examples.Crypto.AES where
import Control.Monad (void, when)
import Data.SBV
import Data.SBV.Tools.CodeGen
import Data.SBV.Tools.Polynomial
import Data.List (transpose)
import Data.Maybe (fromJust)
import Numeric (showHex)
import Test.QuickCheck hiding (verbose)
-- $setup
-- >>> -- For doctest purposes only:
-- >>> import Data.SBV
-----------------------------------------------------------------------------
-- * Formalizing GF(2^8)
-----------------------------------------------------------------------------
-- | An element of the Galois Field 2^8, which are essentially polynomials with
-- maximum degree 7. They are conveniently represented as values between 0 and 255.
type GF28 = SWord 8
-- | Multiplication in GF(2^8). This is simple polynomial multiplication, followed
-- by the irreducible polynomial @x^8+x^4+x^3+x^1+1@. We simply use the 'pMult'
-- function exported by SBV to do the operation.
gf28Mult :: GF28 -> GF28 -> GF28
gf28Mult x y = pMult (x, y, [8, 4, 3, 1, 0])
-- | Exponentiation by a constant in GF(2^8). The implementation uses the usual
-- square-and-multiply trick to speed up the computation.
gf28Pow :: GF28 -> Int -> GF28
gf28Pow n = pow
where sq x = x `gf28Mult` x
pow 0 = 1
pow i
| odd i = n `gf28Mult` sq (pow (i `shiftR` 1))
| True = sq (pow (i `shiftR` 1))
-- | Computing inverses in GF(2^8). By the mathematical properties of GF(2^8)
-- and the particular irreducible polynomial used @x^8+x^5+x^3+x^1+1@, it
-- turns out that raising to the 254 power gives us the multiplicative inverse.
-- Of course, we can prove this using SBV:
--
-- >>> prove $ \x -> x ./= 0 .=> x `gf28Mult` gf28Inverse x .== 1
-- Q.E.D.
--
-- Note that we exclude @0@ in our theorem, as it does not have a
-- multiplicative inverse.
gf28Inverse :: GF28 -> GF28
gf28Inverse x = x `gf28Pow` 254
-----------------------------------------------------------------------------
-- * Implementing AES
-----------------------------------------------------------------------------
-----------------------------------------------------------------------------
-- ** Types and basic operations
-----------------------------------------------------------------------------
-- | AES state. The state consists of four 32-bit words, each of which is in turn treated
-- as four GF28's, i.e., 4 bytes. The T-Box implementation keeps the four-bytes together
-- for efficient representation.
type State = [SWord 32]
-- | The key, which can be 128, 192, or 256 bits. Represented as a sequence of 32-bit words.
type Key = [SWord 32]
-- | The key schedule. AES executes in rounds, and it treats first and last round keys slightly
-- differently than the middle ones. We reflect that choice by being explicit about it in our type.
-- The length of the middle list of keys depends on the key-size, which in turn determines
-- the number of rounds.
type KS = (Key, [Key], Key)
-- | Rotating a state row by a fixed amount to the right.
rotR :: [GF28] -> Int -> [GF28]
rotR [a, b, c, d] 1 = [d, a, b, c]
rotR [a, b, c, d] 2 = [c, d, a, b]
rotR [a, b, c, d] 3 = [b, c, d, a]
rotR xs i = error $ "rotR: Unexpected input: " ++ show (xs, i)
-----------------------------------------------------------------------------
-- ** The key schedule
-----------------------------------------------------------------------------
-- | Definition of round-constants, as specified in Section 5.2 of the AES standard.
roundConstants :: [GF28]
roundConstants = 0 : [ gf28Pow 2 (k-1) | k <- [1 .. ] ]
-- | The @InvMixColumns@ transformation, as described in Section 5.3.3 of the standard. Note
-- that this transformation is only used explicitly during key-expansion in the T-Box implementation
-- of AES.
invMixColumns :: State -> State
invMixColumns state = map fromBytes $ transpose $ mmult (map toBytes state)
where dot f = foldr1 xor . zipWith ($) f
mmult n = [map (dot r) n | r <- [ [mE, mB, mD, m9]
, [m9, mE, mB, mD]
, [mD, m9, mE, mB]
, [mB, mD, m9, mE]
]]
-- table-lookup versions of gf28Mult with the constants used in invMixColumns
mE = select mETable 0
mB = select mBTable 0
mD = select mDTable 0
m9 = select m9Table 0
mETable = map (gf28Mult 0xE) [0..255]
mBTable = map (gf28Mult 0xB) [0..255]
mDTable = map (gf28Mult 0xD) [0..255]
m9Table = map (gf28Mult 0x9) [0..255]
-- | Key expansion. Starting with the given key, returns an infinite sequence of
-- words, as described by the AES standard, Section 5.2, Figure 11.
keyExpansion :: Int -> Key -> [Key]
keyExpansion nk key = chop4 keys
where keys :: [SWord 32]
keys = key ++ [nextWord i prev old | i <- [nk ..] | prev <- drop (nk-1) keys | old <- keys]
nextWord :: Int -> SWord 32 -> SWord 32 -> SWord 32
nextWord i prev old
| i `mod` nk == 0 = old `xor` subWordRcon (prev `rotateL` 8) (roundConstants !! (i `div` nk))
| i `mod` nk == 4 && nk > 6 = old `xor` subWordRcon prev 0
| True = old `xor` prev
subWordRcon :: SWord 32 -> GF28 -> SWord 32
subWordRcon w rc = fromBytes [a `xor` rc, b, c, d]
where [a, b, c, d] = map sbox $ toBytes w
-----------------------------------------------------------------------------
-- ** The S-box transformation
-----------------------------------------------------------------------------
-- | The values of the AES S-box table. Note that we describe the S-box programmatically
-- using the mathematical construction given in Section 5.1.1 of the standard. However,
-- the code-generation will turn this into a mere look-up table, as it is just a
-- constant table, all computation being done at \"compile-time\".
sboxTable :: [GF28]
sboxTable = [xformByte (gf28Inverse b) | b <- [0 .. 255]]
where xformByte :: GF28 -> GF28
xformByte b = foldr xor 0x63 [b `rotateR` i | i <- [0, 4, 5, 6, 7]]
-- | The sbox transformation. We simply select from the sbox table. Note that we
-- are obliged to give a default value (here @0@) to be used if the index is out-of-bounds
-- as required by SBV's 'select' function. However, that will never happen since
-- the table has all 256 elements in it.
sbox :: GF28 -> GF28
sbox = select sboxTable 0
-----------------------------------------------------------------------------
-- ** The inverse S-box transformation
-----------------------------------------------------------------------------
-- | The values of the inverse S-box table. Again, the construction is programmatic.
unSBoxTable :: [GF28]
unSBoxTable = [gf28Inverse (xformByte b) | b <- [0 .. 255]]
where xformByte :: GF28 -> GF28
xformByte b = foldr xor 0x05 [b `rotateR` i | i <- [2, 5, 7]]
-- | The inverse s-box transformation.
unSBox :: GF28 -> GF28
unSBox = select unSBoxTable 0
-- | Prove that the 'sbox' and 'unSBox' are inverses. We have:
--
-- >>> prove sboxInverseCorrect
-- Q.E.D.
--
sboxInverseCorrect :: GF28 -> SBool
sboxInverseCorrect x = unSBox (sbox x) .== x .&& sbox (unSBox x) .== x
-----------------------------------------------------------------------------
-- ** AddRoundKey transformation
-----------------------------------------------------------------------------
-- | Adding the round-key to the current state. We simply exploit the fact
-- that addition is just xor in implementing this transformation.
addRoundKey :: Key -> State -> State
addRoundKey = zipWith xor
-----------------------------------------------------------------------------
-- ** Tables for T-Box encryption
-----------------------------------------------------------------------------
-- | T-box table generation function for encryption
t0Func :: GF28 -> [GF28]
t0Func a = [s `gf28Mult` 2, s, s, s `gf28Mult` 3] where s = sbox a
-- | First look-up table used in encryption
t0 :: GF28 -> SWord 32
t0 = select t0Table 0 where t0Table = [fromBytes (t0Func a) | a <- [0..255]]
-- | Second look-up table used in encryption
t1 :: GF28 -> SWord 32
t1 = select t1Table 0 where t1Table = [fromBytes (t0Func a `rotR` 1) | a <- [0..255]]
-- | Third look-up table used in encryption
t2 :: GF28 -> SWord 32
t2 = select t2Table 0 where t2Table = [fromBytes (t0Func a `rotR` 2) | a <- [0..255]]
-- | Fourth look-up table used in encryption
t3 :: GF28 -> SWord 32
t3 = select t3Table 0 where t3Table = [fromBytes (t0Func a `rotR` 3) | a <- [0..255]]
-----------------------------------------------------------------------------
-- ** Tables for T-Box decryption
-----------------------------------------------------------------------------
-- | T-box table generating function for decryption
u0Func :: GF28 -> [GF28]
u0Func a = [s `gf28Mult` 0xE, s `gf28Mult` 0x9, s `gf28Mult` 0xD, s `gf28Mult` 0xB] where s = unSBox a
-- | First look-up table used in decryption
u0 :: GF28 -> SWord 32
u0 = select t0Table 0 where t0Table = [fromBytes (u0Func a) | a <- [0..255]]
-- | Second look-up table used in decryption
u1 :: GF28 -> SWord 32
u1 = select t1Table 0 where t1Table = [fromBytes (u0Func a `rotR` 1) | a <- [0..255]]
-- | Third look-up table used in decryption
u2 :: GF28 -> SWord 32
u2 = select t2Table 0 where t2Table = [fromBytes (u0Func a `rotR` 2) | a <- [0..255]]
-- | Fourth look-up table used in decryption
u3 :: GF28 -> SWord 32
u3 = select t3Table 0 where t3Table = [fromBytes (u0Func a `rotR` 3) | a <- [0..255]]
-----------------------------------------------------------------------------
-- ** AES rounds
-----------------------------------------------------------------------------
-- | Generic round function. Given the function to perform one round, a key-schedule,
-- and a starting state, it performs the AES rounds.
doRounds :: (Bool -> State -> Key -> State) -> KS -> State -> State
doRounds rnd (ikey, rkeys, fkey) sIn = rnd True (last rs) fkey
where s0 = ikey `addRoundKey` sIn
rs = s0 : [rnd False s k | s <- rs | k <- rkeys ]
-- | One encryption round. The first argument indicates whether this is the final round
-- or not, in which case the construction is slightly different.
aesRound :: Bool -> State -> Key -> State
aesRound isFinal s key = d `addRoundKey` key
where d = map (f isFinal) [0..3]
a = map toBytes s
f True j = fromBytes [ sbox (a !! ((j+0) `mod` 4) !! 0)
, sbox (a !! ((j+1) `mod` 4) !! 1)
, sbox (a !! ((j+2) `mod` 4) !! 2)
, sbox (a !! ((j+3) `mod` 4) !! 3)
]
f False j = e0 `xor` e1 `xor` e2 `xor` e3
where e0 = t0 (a !! ((j+0) `mod` 4) !! 0)
e1 = t1 (a !! ((j+1) `mod` 4) !! 1)
e2 = t2 (a !! ((j+2) `mod` 4) !! 2)
e3 = t3 (a !! ((j+3) `mod` 4) !! 3)
-- | One decryption round. Similar to the encryption round, the first argument
-- indicates whether this is the final round or not.
aesInvRound :: Bool -> State -> Key -> State
aesInvRound isFinal s key = d `addRoundKey` key
where d = map (f isFinal) [0..3]
a = map toBytes s
f True j = fromBytes [ unSBox (a !! ((j+0) `mod` 4) !! 0)
, unSBox (a !! ((j+3) `mod` 4) !! 1)
, unSBox (a !! ((j+2) `mod` 4) !! 2)
, unSBox (a !! ((j+1) `mod` 4) !! 3)
]
f False j = e0 `xor` e1 `xor` e2 `xor` e3
where e0 = u0 (a !! ((j+0) `mod` 4) !! 0)
e1 = u1 (a !! ((j+3) `mod` 4) !! 1)
e2 = u2 (a !! ((j+2) `mod` 4) !! 2)
e3 = u3 (a !! ((j+1) `mod` 4) !! 3)
-----------------------------------------------------------------------------
-- * AES API
-----------------------------------------------------------------------------
-- | Key schedule. Given a 128, 192, or 256 bit key, expand it to get key-schedules
-- for encryption and decryption. The key is given as a sequence of 32-bit words.
-- (4 elements for 128-bits, 6 for 192, and 8 for 256.) Compare this function to 'aesInvKeySchedule'
-- which can calculate the key-expansion for decryption on the fly, as opposed to calculating
-- the forward key-expansion first.
aesKeySchedule :: Key -> (KS, KS)
aesKeySchedule key
| nk `elem` [4, 6, 8]
= (encKS, decKS)
| True
= error "aesKeySchedule: Invalid key size"
where nk = length key
nr = nk + 6
encKS@(f, m, l) = (head rKeys, take (nr-1) (tail rKeys), rKeys !! nr)
decKS = (l, map invMixColumns (reverse m), f)
rKeys = keyExpansion nk key
-- | Block encryption. The first argument is the plain-text, which must have
-- precisely 4 elements, for a total of 128-bits of input. The second
-- argument is the key-schedule to be used, obtained by a call to 'aesKeySchedule'.
-- The output will always have 4 32-bit words, which is the cipher-text.
aesEncrypt :: [SWord 32] -> KS -> [SWord 32]
aesEncrypt pt encKS
| length pt == 4
= doRounds aesRound encKS pt
| True
= error "aesEncrypt: Invalid plain-text size"
-- | Block decryption. The arguments are the same as in 'aesEncrypt', except
-- the first argument is the cipher-text and the output is the corresponding
-- plain-text.
aesDecrypt :: [SWord 32] -> KS -> [SWord 32]
aesDecrypt ct decKS
| length ct == 4
= doRounds aesInvRound decKS ct
| True
= error "aesDecrypt: Invalid cipher-text size"
-----------------------------------------------------------------------------
-- * On-the-fly decryption
-- ${ontheflyintro}
-----------------------------------------------------------------------------
{- $ontheflyintro
While regular encryption can be fused with key-generation, the standard method of AES
decryption has to perform the key-expansion before decryption starts. This can be undesirable
as it necessarily serializes the action of key-expansion before decryption. An
alternative is to do on-the-fly decryption: We can expand the key in reverse, and thus
need not save the key-schedule. One downside of this approach, however, is that we need
to keep the "unwound" key: That is, instead of the common key used for encryption and
decryption, we need to hold on to the final value of key-expansion, so it can be run
in reverse. In this section, we implement on-the-fly decryption using this idea.
-}
-- | Inverse key expansion. Starting from the final round key, unwinds key generation operation
-- to construct keys for the previous rounds. Used in on-the-fly decryption.
invKeyExpansion :: Int -> Key -> [Key]
invKeyExpansion nk rkey = map reverse (chop4 keys)
where keys :: [SWord 32]
keys = rkey ++ [invNextWord i prev old | i <- reverse [0 .. remaining - 1] | prev <- drop 1 keys | old <- keys]
totalWords = 4 * (nk + 6 + 1)
remaining = totalWords - nk
invNextWord :: Int -> SWord 32 -> SWord 32 -> SWord 32
invNextWord i prev old
| i `mod` nk == 0 = old `xor` subWordRcon (prev `rotateL` 8) (roundConstants !! (1 + i `div` nk))
| i `mod` nk == 4 && nk > 6 = old `xor` subWordRcon prev 0
| True = old `xor` prev
subWordRcon :: SWord 32 -> GF28 -> SWord 32
subWordRcon w rc = fromBytes [a `xor` rc, b, c, d]
where [a, b, c, d] = map sbox $ toBytes w
-- | AES inverse key schedule. Starting from the last-round key, construct the sequence of keys
-- that can be used for doing on-the-fly decryption. Compare this function to 'aesKeySchedule' which
-- returns both encryption and decryption schedules: In this case, we don't calculate the encryption
-- sequence, hence we can fuse this function with the decryption operation.
aesInvKeySchedule :: Key -> KS
aesInvKeySchedule key
| nk `elem` [4, 6, 8]
= decKS
| True
= error "aesInvKeySchedule: Invalid key size"
where nk = length key
nr = nk + 6
decKS = (head rKeys, take (nr-1) (tail rKeys), rKeys !! nr)
rKeys = invKeyExpansion nk key
-- | Block decryption, starting from the unwound key. That is, start from the final key.
-- Also; we don't use the T-box implementation. Just pure AES inverse cipher.
aesDecryptUnwoundKey :: [SWord 32] -> KS -> [SWord 32]
aesDecryptUnwoundKey ct decKS
| length ct == 4
= doRounds aesInvRoundRegular decKS ct
| True
= error "aesDecrypt: Invalid cipher-text size"
where aesInvRoundRegular isFinal s key = u
where u :: State
u = map (f isFinal) [0 .. 3]
where a = map toBytes s
kbs = map toBytes key
f True j = fromBytes [ unSBox (a !! ((j+0) `mod` 4) !! 0)
, unSBox (a !! ((j+3) `mod` 4) !! 1)
, unSBox (a !! ((j+2) `mod` 4) !! 2)
, unSBox (a !! ((j+1) `mod` 4) !! 3)
] `xor` (key !! j)
f False j = e0 `xor` e1 `xor` e2 `xor` e3
where e0 = otfU0 $ unSBox (a !! ((j+0) `mod` 4) !! 0) `xor` (kbs !! j !! 0)
e1 = otfU1 $ unSBox (a !! ((j+3) `mod` 4) !! 1) `xor` (kbs !! j !! 1)
e2 = otfU2 $ unSBox (a !! ((j+2) `mod` 4) !! 2) `xor` (kbs !! j !! 2)
e3 = otfU3 $ unSBox (a !! ((j+1) `mod` 4) !! 3) `xor` (kbs !! j !! 3)
otfU0Func b = [b `gf28Mult` 0xE, b `gf28Mult` 0x9, b `gf28Mult` 0xD, b `gf28Mult` 0xB]
otfU0 = select t0Table 0 where t0Table = [fromBytes (otfU0Func a) | a <- [0..255]]
otfU1 = select t1Table 0 where t1Table = [fromBytes (otfU0Func a `rotR` 1) | a <- [0..255]]
otfU2 = select t2Table 0 where t2Table = [fromBytes (otfU0Func a `rotR` 2) | a <- [0..255]]
otfU3 = select t3Table 0 where t3Table = [fromBytes (otfU0Func a `rotR` 3) | a <- [0..255]]
-----------------------------------------------------------------------------
-- * Test vectors
-----------------------------------------------------------------------------
-- | Common plain text for test vectors
commonPT :: [SWord 32]
commonPT = [0x00112233, 0x44556677, 0x8899aabb, 0xccddeeff]
-- | Key for 128-bit encryption test
aes128Key :: Key
aes128Key = [0x00010203, 0x04050607, 0x08090a0b, 0x0c0d0e0f]
-- | Key for 192-bit encryption test
aes192Key :: Key
aes192Key = aes128Key ++ [0x10111213, 0x14151617]
-- | Key for 256-bit encryption test
aes256Key :: Key
aes256Key = aes192Key ++ [0x18191a1b, 0x1c1d1e1f]
-- | Expected cipher-text for 128-bit encryption
aes128CT :: [SWord 32]
aes128CT = [0x69c4e0d8, 0x6a7b0430, 0xd8cdb780, 0x70b4c55a]
-- | Expected cipher-text for 192-bit encryption
aes192CT :: [SWord 32]
aes192CT = [0xdda97ca4, 0x864cdfe0, 0x6eaf70a0, 0xec0d7191]
-- | Expected cipher-text for 256-bit encryption
aes256CT :: [SWord 32]
aes256CT = [0x8ea2b7ca, 0x516745bf, 0xeafc4990, 0x4b496089]
-- | Calculate the 128-bit final-round key from on-the-fly decryption key schedule
aes128InvKey :: Key
aes128InvKey = extractFinalKey aes128Key
-- | Calculate the 192-bit final-round key from on-the-fly decryption key schedule
aes192InvKey :: Key
aes192InvKey = extractFinalKey aes192Key
-- | Calculate the 192-bit final-round key from on-the-fly decryption key schedule. Compare this
-- to 'aes192InvKey': Typically we just need the final 6-blocks, but it is advantageous to have
-- the entire last 8-blocks even for 192-bit keys. That is, e store the final 256-bits of key-expansion
-- for speed purposes for both 192 and 256 bit versions. (But only the final 128 bits for the 128-bit version.)
aes192InvKeyExtended :: Key
aes192InvKeyExtended = extractFinalKeyExtended aes192Key
-- | Calculate the 256-bit final-round key from on-the-fly decryption key schedule
aes256InvKey :: Key
aes256InvKey = extractFinalKey aes256Key
-- | Extract the final key for on-the-fly decryption. This will extract exactly the number of blocks we need.
extractFinalKey :: [SWord 32] -> [SWord 32]
extractFinalKey initKey = take nk (extractFinalKeyExtended initKey)
where nk = length initKey
-- | Extract the extended key for on-the-fly decryption. This will extract 4-blocks for 128-bit decryption,
-- but 256 bit for both 192 and 256-bit variants
extractFinalKeyExtended :: [SWord 32] -> [SWord 32]
extractFinalKeyExtended initKey = take feed (concatMap reverse (chop4 (take feed roundKeys)))
where nk = length initKey
feed | nk == 4 = 4
| True = 8
((f, m, l), _) = aesKeySchedule initKey
roundKeys = l ++ concat (reverse m) ++ f
-----------------------------------------------------------------------------
-- ** 128-bit enc/dec test
-----------------------------------------------------------------------------
-- | 128-bit encryption test, from Appendix C.1 of the AES standard:
--
-- >>> map hex8 t128Enc
-- ["69c4e0d8","6a7b0430","d8cdb780","70b4c55a"]
t128Enc :: [SWord 32]
t128Enc = aesEncrypt commonPT ks
where (ks, _) = aesKeySchedule aes128Key
-- | 128-bit decryption test, from Appendix C.1 of the AES standard:
--
-- >>> map hex8 t128Dec
-- ["00112233","44556677","8899aabb","ccddeeff"]
t128Dec :: [SWord 32]
t128Dec = aesDecrypt aes128CT ks
where (_, ks) = aesKeySchedule aes128Key
-----------------------------------------------------------------------------
-- ** 192-bit enc/dec test
-----------------------------------------------------------------------------
-- | 192-bit encryption test, from Appendix C.2 of the AES standard:
--
-- >>> map hex8 t192Enc
-- ["dda97ca4","864cdfe0","6eaf70a0","ec0d7191"]
t192Enc :: [SWord 32]
t192Enc = aesEncrypt commonPT ks
where (ks, _) = aesKeySchedule aes192Key
-- | 192-bit decryption test, from Appendix C.2 of the AES standard:
--
-- >>> map hex8 t192Dec
-- ["00112233","44556677","8899aabb","ccddeeff"]
--
t192Dec :: [SWord 32]
t192Dec = aesDecrypt aes192CT ks
where (_, ks) = aesKeySchedule aes192Key
-----------------------------------------------------------------------------
-- ** 256-bit enc/dec test
-----------------------------------------------------------------------------
-- | 256-bit encryption, from Appendix C.3 of the AES standard:
--
-- >>> map hex8 t256Enc
-- ["8ea2b7ca","516745bf","eafc4990","4b496089"]
t256Enc :: [SWord 32]
t256Enc = aesEncrypt commonPT ks
where (ks, _) = aesKeySchedule aes256Key
-- | 256-bit decryption, from Appendix C.3 of the AES standard:
--
-- >>> map hex8 t256Dec
-- ["00112233","44556677","8899aabb","ccddeeff"]
t256Dec :: [SWord 32]
t256Dec = aesDecrypt aes256CT ks
where (_, ks) = aesKeySchedule aes256Key
-- | Various tests for round-trip properties. We have:
--
-- >>> runAESTests False
-- GOOD: Key generation AES128
-- GOOD: Key generation AES192
-- GOOD: Key generation AES256
-- GOOD: Encryption AES128
-- GOOD: Decryption AES128
-- GOOD: Decryption-OTF AES128
-- GOOD: Encryption AES192
-- GOOD: Decryption AES192
-- GOOD: Decryption-OTF AES192
-- GOOD: Encryption AES256
-- GOOD: Decryption AES256
-- GOOD: Decryption-OTF AES256
runAESTests :: Bool -> IO ()
runAESTests runQC = do
testInvKeyExpansion
check "AES128" aes128Key aes128InvKey aes128CT
check "AES192" aes192Key aes192InvKey aes192CT
check "AES256" aes256Key aes256InvKey aes256CT
-- Quick-check tests are rather slow. So only run when requested.
when runQC $ do
putStrLn "Quick-check AES128 roundtrip" >> quickCheck roundTrip128
putStrLn "Quick-check AES192 roundtrip" >> quickCheck roundTrip192
putStrLn "Quick-check AES256 roundtrip" >> quickCheck roundTrip256
where check :: String -> Key -> Key -> [SWord 32] -> IO ()
check what key invKey ctExpected = do eq ("Encryption " ++ what) ctExpected ctGot
eq ("Decryption " ++ what) commonPT ptGot
eq ("Decryption-OTF " ++ what) commonPT ptGotInv
where (encKS, decKS) = aesKeySchedule key
ctGot = aesEncrypt commonPT encKS
ptGot = aesDecrypt ctExpected decKS
ptGotInv = aesDecryptUnwoundKey ctExpected (aesInvKeySchedule invKey)
eq tag expected got
| length expected /= length got
= error $ unlines [ "BAD!: " ++ tag
, "Comparing different sized lists:"
, "Expected: " ++ show expected
, "Got : " ++ show got
]
| map extract expected == map extract got
= putStrLn $ "GOOD: " ++ tag
| True
= error $ unlines [ "BAD!: " ++ tag
, "Expected: " ++ unwords (map hex8 expected)
, "Got : " ++ unwords (map hex8 got)
]
where extract :: SWord 32 -> Integer
extract = fromIntegral . fromJust . unliteral
testInvKeyExpansion :: IO ()
testInvKeyExpansion = do goTestInvKey "128" aes128Key
goTestInvKey "192" aes192Key
goTestInvKey "256" aes256Key
goTestInvKey what k = do
let nk = length k
nr = nk + 6
feed = case nk of
4 -> 4
_ -> 8
((f, m, l), _) = aesKeySchedule k
required = l ++ concat (reverse m) ++ f
invKeySchedule = take (nr+1) $ invKeyExpansion nk (take nk (concatMap reverse (chop4 (take feed required))))
obtained = concat invKeySchedule
expected = map (fromJust . unliteral) required
result = map (fromJust . unliteral) obtained
sh i a b
| a == b = pad ++ show i ++ " " ++ disp a
| True = pad ++ show i ++ " " ++ disp a ++ " |vs| " ++ disp b
where pad = if i < 10 then " " else ""
disp = unwords . map (hex8 . literal)
lexpected = length expected
lresult = length result
when (lexpected /= lresult) $
error $ what ++ ": BAD! Mismatching lengths: " ++ show (lexpected, lresult)
let debugging = False
if expected == result
then if debugging
then putStrLn $ unlines $ ("Size " ++ what ++ ": Good") : zipWith3 sh [(0::Int)..] (chop4 expected) (chop4 result)
else putStrLn $ "GOOD: Key generation AES" ++ what
else error $ unlines $ ("Size " ++ what ++ ": BAD!") : zipWith3 sh [(0::Int)..] (chop4 expected) (chop4 result)
roundTrip128 (i0, i1, i2, i3) (k0, k1, k2, k3) = roundTrip [i0, i1, i2, i3] [k0, k1, k2, k3]
roundTrip192 (i0, i1, i2, i3) (k0, k1, k2, k3, k4, k5) = roundTrip [i0, i1, i2, i3] [k0, k1, k2, k3, k4, k5]
roundTrip256 (i0, i1, i2, i3) (k0, k1, k2, k3, k4, k5, k6, k7) = roundTrip [i0, i1, i2, i3] [k0, k1, k2, k3, k4, k5, k6, k7]
roundTrip :: [SWord32] -> [SWord32] -> SBool
roundTrip ptIn keyIn = pt .== pt' .&& pt .== pt''
where pt = map toSized ptIn
key = map toSized keyIn
(encKS, decKS) = aesKeySchedule key
ct = aesEncrypt pt encKS
pt' = aesDecrypt ct decKS
pt'' = aesDecryptUnwoundKey ct (aesInvKeySchedule (extractFinalKey key))
-----------------------------------------------------------------------------
-- * Verification
-- ${verifIntro}
-----------------------------------------------------------------------------
{- $verifIntro
While SMT based technologies can prove correct many small properties fairly quickly, it would
be naive for them to automatically verify that our AES implementation is correct. (By correct,
we mean decryption followed by encryption yielding the same result.) However, we can state
this property precisely using SBV, and use quick-check to gain some confidence.
-}
-- | Correctness theorem for 128-bit AES. Ideally, we would run:
--
-- @
-- prove aes128IsCorrect
-- @
--
-- to get a proof automatically. Unfortunately, while SBV will successfully generate the proof
-- obligation for this theorem and ship it to the SMT solver, it would be naive to expect the SMT-solver
-- to finish that proof in any reasonable time with the currently available SMT solving technologies.
-- Instead, we can issue:
--
-- @
-- quickCheck aes128IsCorrect
-- @
--
-- and get some degree of confidence in our code. Similar predicates can be easily constructed for 192, and
-- 256 bit cases as well.
aes128IsCorrect :: (SWord 32, SWord 32, SWord 32, SWord 32) -- ^ plain-text words
-> (SWord 32, SWord 32, SWord 32, SWord 32) -- ^ key-words
-> SBool -- ^ True if round-trip gives us plain-text back
aes128IsCorrect (i0, i1, i2, i3) (k0, k1, k2, k3) = pt .== pt'
where pt = [i0, i1, i2, i3]
key = [k0, k1, k2, k3]
(encKS, decKS) = aesKeySchedule key
ct = aesEncrypt pt encKS
pt' = aesDecrypt ct decKS
-----------------------------------------------------------------------------
-- * Code generation
-- ${codeGenIntro}
-----------------------------------------------------------------------------
{- $codeGenIntro
We have emphasized that our T-Box implementation in Haskell was guided by clarity and correctness, not
performance. Indeed, our implementation is hardly the fastest AES implementation in Haskell. However,
we can use it to automatically generate straight-line C-code that can run fairly fast.
For the purposes of illustration, we only show here how to generate code for a 128-bit AES block-encrypt
function, that takes 8 32-bit words as an argument. The first 4 are the 128-bit input, and the final
four are the 128-bit key. The impact of this is that the generated function would expand the key for
each block of encryption, a needless task unless we change the key in every block. In a more serious application,
we would instead generate code for both the 'aesKeySchedule' and the 'aesEncrypt' functions, thus reusing the
key-schedule over many applications of the encryption call. (Unfortunately doing this is rather cumbersome right
now, since Haskell does not support fixed-size lists.)
-}
-- | Code generation for 128-bit AES encryption.
--
-- The following sample from the generated code-lines show how T-Boxes are rendered as C arrays:
--
-- @
-- static const SWord32 table1[] = {
-- 0xc66363a5UL, 0xf87c7c84UL, 0xee777799UL, 0xf67b7b8dUL,
-- 0xfff2f20dUL, 0xd66b6bbdUL, 0xde6f6fb1UL, 0x91c5c554UL,
-- 0x60303050UL, 0x02010103UL, 0xce6767a9UL, 0x562b2b7dUL,
-- 0xe7fefe19UL, 0xb5d7d762UL, 0x4dababe6UL, 0xec76769aUL,
-- ...
-- }
-- @
--
-- The generated program has 5 tables (one sbox table, and 4-Tboxes), all converted to fast C arrays. Here
-- is a sample of the generated straightline C-code:
--
-- @
-- const SWord8 s1915 = (SWord8) s1912;
-- const SWord8 s1916 = table0[s1915];
-- const SWord16 s1917 = (((SWord16) s1914) << 8) | ((SWord16) s1916);
-- const SWord32 s1918 = (((SWord32) s1911) << 16) | ((SWord32) s1917);
-- const SWord32 s1919 = s1844 ^ s1918;
-- const SWord32 s1920 = s1903 ^ s1919;
-- @
--
-- The GNU C-compiler does a fine job of optimizing this straightline code to generate a fairly efficient C implementation.
cgAES128BlockEncrypt :: IO ()
cgAES128BlockEncrypt = compileToC Nothing "aes128BlockEncrypt" $ do
pt <- cgInputArr 4 "pt" -- plain-text as an array of 4 Word32's
key <- cgInputArr 4 "key" -- key as an array of 4 Word32s
-- Use the test values from Appendix C.1 of the AES standard as the driver values
cgSetDriverValues $ map (fromIntegral . fromJust . unliteral) $ commonPT ++ aes128Key
let (encKs, _) = aesKeySchedule key
cgOutputArr "ct" $ aesEncrypt pt encKs
-----------------------------------------------------------------------------
-- * C-library generation
-- ${libraryIntro}
-----------------------------------------------------------------------------
{- $libraryIntro
The 'cgAES128BlockEncrypt' example shows how to generate code for 128-bit AES encryption. As the generated
function performs encryption on a given block, it performs key expansion as necessary. However, this is
not quite practical: We would like to expand the key only once, and encrypt the stream of plain-text blocks using
the same expanded key (potentially using some crypto-mode), until we decide to change the key. In this
section, we show how to use SBV to instead generate a library of functions that can be used in such a scenario.
The generated library is a typical @.a@ archive, that can be linked using the C-compiler as usual.
-}
-- | Components of the AES implementation that the library is generated from. For each case, we provide
-- the driver values from the AES test-vectors.
aesLibComponents :: Int -> [(String, [Integer], SBVCodeGen ())]
aesLibComponents sz = [ ("aes" ++ show sz ++ "KeySchedule", keyDriverVals, keySchedule)
, ("aes" ++ show sz ++ "BlockEncrypt", encDriverVals, enc)
, ("aes" ++ show sz ++ "BlockDecrypt", decDriverVals, dec)
, ("aes" ++ show sz ++ "InvKeySchedule", invKeyDriverVals, invKeySchedule)
, ("aes" ++ show sz ++ "OTFDecrypt", invDecDriverVals, otfDec)
]
where badSize = error $ "aesLibComponents: Size must be one of 128, 192, or 256; received: " ++ show sz
-- key-schedule
nk
| sz == 128 = 4
| sz == 192 = 6
| sz == 256 = 8
| True = badSize
-- We get 4*(nr+1) keys, where nr = nk + 6
nr = nk + 6
xk = 4 * (nr + 1)
(keyDriverVals, invKeyDriverVals, encDriverVals, decDriverVals, invDecDriverVals)
| sz == 128 = (keyDriver aes128Key, keyDriver aes128InvKey, encDriver commonPT aes128Key, decDriver aes128CT aes128Key, invDecDriver aes128CT aes128InvKey)
| sz == 192 = (keyDriver aes192Key, keyDriver aes192InvKey, encDriver commonPT aes192Key, decDriver aes192CT aes192Key, invDecDriver aes192CT aes192InvKey)
| sz == 256 = (keyDriver aes256Key, keyDriver aes256InvKey, encDriver commonPT aes256Key, decDriver aes256CT aes256Key, invDecDriver aes256CT aes256InvKey)
| True = badSize
where keyDriver key = map cvt $ concatMap reverse (chop4 key)
encDriver pt key = map cvt $ pt ++ flatten (fst (aesKeySchedule key))
decDriver ct key = map cvt $ ct ++ flatten (snd (aesKeySchedule key))
invDecDriver ct key = map cvt $ ct ++ flatten (aesInvKeySchedule key)
flatten (f, mid, l) = f ++ concat mid ++ l
cvt = fromIntegral . fromJust . unliteral
keySchedule = do key <- cgInputArr nk "key" -- key
let (encKS, decKS) = aesKeySchedule key
cgOutputArr "encKS" (ksToXKey encKS)
cgOutputArr "decKS" (ksToXKey decKS)
invKeySchedule = do key <- cgInputArr nk "key" -- key
let decKS = aesInvKeySchedule (concatMap reverse (chop4 key))
cgOutputArr "decKS" (ksToXKey decKS)
-- encryption
enc = do pt <- cgInputArr 4 "pt" -- plain-text
xkey <- cgInputArr xk "xkey" -- expanded key
cgOutputArr "ct" $ aesEncrypt pt (xkeyToKS xkey)
-- decryption
dec = do pt <- cgInputArr 4 "ct" -- cipher-text
xkey <- cgInputArr xk "xkey" -- expanded key
cgOutputArr "pt" $ aesDecrypt pt (xkeyToKS xkey)
-- on-the-fly decryption
otfDec = do ct <- cgInputArr 4 "ct" -- cipher-text
xkey <- cgInputArr xk "xkey" -- expanded key
cgOutputArr "pt" $ aesDecryptUnwoundKey ct (xkeyToKS xkey)
-- Transforming back and forth from our KS type to a flat array used by the generated C code
-- Turn a series of expanded keys to our internal KS type
xkeyToKS :: [SWord 32] -> KS
xkeyToKS xs = (f, m, l)
where f = take 4 xs -- first round key
m = chop4 (take (xk - 8) (drop 4 xs)) -- middle rounds
l = drop (xk - 4) xs -- last round key
-- Turn a KS to a series of expanded key words
ksToXKey :: KS -> [SWord 32]
ksToXKey (f, m, l) = f ++ concat m ++ l
-- | Generate code for AES functionality; given the key size.
cgAESLibrary :: Int -> Maybe FilePath -> IO ()
cgAESLibrary sz mbd
| sz `elem` [128, 192, 256] = void $ compileToCLib mbd nm [(fnm, configure dvals f) | (fnm, dvals, f) <- aesLibComponents sz]
| True = error $ "cgAESLibrary: Size must be one of 128, 192, or 256, received: " ++ show sz
where nm = "aes" ++ show sz ++ "Lib"
configure dvals code = cgSetDriverValues dvals >> code
-- | Generate a C library, containing functions for performing 128-bit enc/dec/key-expansion.
-- A note on performance: In a very rough speed test, the generated code was able to do
-- 6.3 million block encryptions per second on a decent MacBook Pro. On the same machine, OpenSSL
-- reports 8.2 million block encryptions per second. So, the generated code is about 25% slower
-- as compared to the highly optimized OpenSSL implementation. (Note that the speed test was done
-- somewhat simplistically, so these numbers should be considered very rough estimates.)
cgAES128Library :: IO ()
cgAES128Library = cgAESLibrary 128 Nothing
--------------------------------------------------------------------------------------------
-- | For doctest purposes only
hex8 :: (SymVal a, Show a, Integral a) => SBV a -> String
hex8 v = replicate (8 - length s) '0' ++ s
where s = flip showHex "" . fromJust . unliteral $ v
-- | Chunk in groups of 4. (This function must be in some standard library, where?)
chop4 :: [a] -> [[a]]
chop4 [] = []
chop4 xs = let (f, r) = splitAt 4 xs in f : chop4 r
{- HLint ignore aesRound "Use head" -}
{- HLint ignore aesInvRound "Use head" -}
{- HLint ignore aesDecryptUnwoundKey "Use head" -}
|