1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
|
-----------------------------------------------------------------------------
-- |
-- Module : Documentation.SBV.Examples.Puzzles.Rabbits
-- Copyright : (c) Levent Erkok
-- License : BSD3
-- Maintainer: erkokl@gmail.com
-- Stability : experimental
--
-- A puzzle, attributed to Lewis Caroll:
--
-- - All rabbits, that are not greedy, are black
-- - No old rabbits are free from greediness
-- - Therefore: Some black rabbits are not old
--
-- What's implicit here is that there is a rabbit that must be not-greedy;
-- which we add to our constraints.
-----------------------------------------------------------------------------
{-# LANGUAGE DeriveAnyClass #-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE TemplateHaskell #-}
{-# OPTIONS_GHC -Wall -Werror #-}
module Documentation.SBV.Examples.Puzzles.Rabbits where
import Data.SBV
-- | A universe of rabbits
data Rabbit
-- | Make rabbits symbolically available.
mkUninterpretedSort ''Rabbit
-- | Identify those rabbits that are greedy. Note that we leave the predicate uninterpreted.
greedy :: SRabbit -> SBool
greedy = uninterpret "greedy"
-- | Identify those rabbits that are black. Note that we leave the predicate uninterpreted.
black :: SRabbit -> SBool
black = uninterpret "black"
-- | Identify those rabbits that are old. Note that we leave the predicate uninterpreted.
old :: SRabbit -> SBool
old = uninterpret "old"
-- | Express the puzzle.
rabbits :: Predicate
rabbits = do -- All rabbits that are not greedy are black
constrain $ \(Forall x) -> sNot (greedy x) .=> black x
-- No old rabbits are free from greediness
constrain $ \(Forall x) -> old x .=> greedy x
-- There is at least one non-greedy rabbit
constrain $ \(Exists x) -> sNot (greedy x)
-- Therefore, there must be a black rabbit that's not old:
pure $ quantifiedBool $ \(Exists x) -> black x .&& sNot (old x)
-- | Prove the claim. We have:
--
-- >>> rabbitsAreOK
-- Q.E.D.
rabbitsAreOK :: IO ThmResult
rabbitsAreOK = prove rabbits
|