1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
|
-----------------------------------------------------------------------------
-- |
-- Module : Documentation.SBV.Examples.Puzzles.U2Bridge
-- Copyright : (c) Levent Erkok
-- License : BSD3
-- Maintainer: erkokl@gmail.com
-- Stability : experimental
--
-- The famous U2 bridge crossing puzzle: <http://www.braingle.com/brainteasers/515/u2.html>
-----------------------------------------------------------------------------
{-# LANGUAGE DeriveAnyClass #-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE TemplateHaskell #-}
{-# OPTIONS_GHC -Wall -Werror -Wno-incomplete-uni-patterns #-}
module Documentation.SBV.Examples.Puzzles.U2Bridge where
import Control.Monad (unless)
import Control.Monad.State (State, runState, put, get, gets, modify, evalState)
import Data.List(sortOn)
import GHC.Generics (Generic)
import Data.SBV
-------------------------------------------------------------
-- * Modeling the puzzle
-------------------------------------------------------------
-- | U2 band members. We want to translate this to SMT-Lib as a data-type, and hence the
-- call to mkSymbolicEnumeration.
data U2Member = Bono | Edge | Adam | Larry
-- | Make 'U2Member' a symbolic value.
mkSymbolicEnumeration ''U2Member
-- | Model time using 32 bits
type Time = Word32
-- | Symbolic variant for time
type STime = SBV Time
-- | Crossing times for each member of the band
crossTime :: U2Member -> Time
crossTime Bono = 1
crossTime Edge = 2
crossTime Adam = 5
crossTime Larry = 10
-- | The symbolic variant.. The duplication is unfortunate.
sCrossTime :: SU2Member -> STime
sCrossTime m = ite (m .== sBono) (literal (crossTime Bono))
$ ite (m .== sEdge) (literal (crossTime Edge))
$ ite (m .== sAdam) (literal (crossTime Adam))
(literal (crossTime Larry)) -- Must be Larry
-- | Location of the flash
data Location = Here | There
-- | Make 'Location' a symbolic value.
mkSymbolicEnumeration ''Location
-- | The status of the puzzle after each move
--
-- This type is equipped with an automatically derived 'Mergeable' instance
-- because each field is 'Mergeable'. A 'Generic' instance must also be derived
-- for this to work, and the @DeriveAnyClass@ language extension must be
-- enabled. The derived 'Mergeable' instance simply walks down the structure
-- field by field and merges each one. An equivalent hand-written 'Mergeable'
-- instance is provided in a comment below.
data Status = Status { time :: STime -- ^ elapsed time
, flash :: SLocation -- ^ location of the flash
, lBono :: SLocation -- ^ location of Bono
, lEdge :: SLocation -- ^ location of Edge
, lAdam :: SLocation -- ^ location of Adam
, lLarry :: SLocation -- ^ location of Larry
} deriving (Generic, Mergeable)
-- The derived Mergeable instance is equivalent to the following:
--
-- instance Mergeable Status where
-- symbolicMerge f t s1 s2 = Status { time = symbolicMerge f t (time s1) (time s2)
-- , flash = symbolicMerge f t (flash s1) (flash s2)
-- , lBono = symbolicMerge f t (lBono s1) (lBono s2)
-- , lEdge = symbolicMerge f t (lEdge s1) (lEdge s2)
-- , lAdam = symbolicMerge f t (lAdam s1) (lAdam s2)
-- , lLarry = symbolicMerge f t (lLarry s1) (lLarry s2)
-- }
-- | Start configuration, time elapsed is 0 and everybody is here
start :: Status
start = Status { time = 0
, flash = sHere
, lBono = sHere
, lEdge = sHere
, lAdam = sHere
, lLarry = sHere
}
-- | A puzzle move is modeled as a state-transformer
type Move a = State Status a
-- | Mergeable instance for 'Move' simply pushes the merging the data after run of each branch
-- starting from the same state.
instance Mergeable a => Mergeable (Move a) where
symbolicMerge f t a b
= do s <- get
let (ar, s1) = runState a s
(br, s2) = runState b s
put $ symbolicMerge f t s1 s2
return $ symbolicMerge f t ar br
-- | Read the state via an accessor function
peek :: (Status -> a) -> Move a
peek = gets
-- | Given an arbitrary member, return his location
whereIs :: SU2Member -> Move SLocation
whereIs p = ite (p .== sBono) (peek lBono)
$ ite (p .== sEdge) (peek lEdge)
$ ite (p .== sAdam) (peek lAdam)
(peek lLarry)
-- | Transferring the flash to the other side
xferFlash :: Move ()
xferFlash = modify $ \s -> s{flash = ite (flash s .== sHere) sThere sHere}
-- | Transferring a person to the other side
xferPerson :: SU2Member -> Move ()
xferPerson p = do ~[lb, le, la, ll] <- mapM peek [lBono, lEdge, lAdam, lLarry]
let move l = ite (l .== sHere) sThere sHere
lb' = ite (p .== sBono) (move lb) lb
le' = ite (p .== sEdge) (move le) le
la' = ite (p .== sAdam) (move la) la
ll' = ite (p .== sLarry) (move ll) ll
modify $ \s -> s{lBono = lb', lEdge = le', lAdam = la', lLarry = ll'}
-- | Increment the time, when only one person crosses
bumpTime1 :: SU2Member -> Move ()
bumpTime1 p = modify $ \s -> s{time = time s + sCrossTime p}
-- | Increment the time, when two people cross together
bumpTime2 :: SU2Member -> SU2Member -> Move ()
bumpTime2 p1 p2 = modify $ \s -> s{time = time s + sCrossTime p1 `smax` sCrossTime p2}
-- | Symbolic version of 'Control.Monad.when'
whenS :: SBool -> Move () -> Move ()
whenS t a = ite t a (return ())
-- | Move one member, remembering to take the flash
move1 :: SU2Member -> Move ()
move1 p = do f <- peek flash
l <- whereIs p
-- only do the move if the person and the flash are at the same side
whenS (f .== l) $ do bumpTime1 p
xferFlash
xferPerson p
-- | Move two members, again with the flash
move2 :: SU2Member -> SU2Member -> Move ()
move2 p1 p2 = do f <- peek flash
l1 <- whereIs p1
l2 <- whereIs p2
-- only do the move if both people and the flash are at the same side
whenS (f .== l1 .&& f .== l2) $ do bumpTime2 p1 p2
xferFlash
xferPerson p1
xferPerson p2
-------------------------------------------------------------
-- * Actions
-------------------------------------------------------------
-- | A move action is a sequence of triples. The first component is symbolically
-- True if only one member crosses. (In this case the third element of the triple
-- is irrelevant.) If the first component is (symbolically) False, then both members
-- move together
type Actions = [(SBool, SU2Member, SU2Member)]
-- | Run a sequence of given actions.
run :: Actions -> Move [Status]
run = mapM step
where step (b, p1, p2) = ite b (move1 p1) (move2 p1 p2) >> get
-------------------------------------------------------------
-- * Recognizing valid solutions
-------------------------------------------------------------
-- | Check if a given sequence of actions is valid, i.e., they must all
-- cross the bridge according to the rules and in less than 17 seconds
isValid :: Actions -> SBool
isValid as = time end .<= 17 .&& sAll check as .&& zigZag (cycle [sThere, sHere]) (map flash states) .&& sAll (.== sThere) [lBono end, lEdge end, lAdam end, lLarry end]
where check (s, p1, p2) = (sNot s .=> p1 .> p2) -- for two person moves, ensure first person is "larger"
.&& (s .=> p2 .== sBono) -- for one person moves, ensure second person is always "bono"
states = evalState (run as) start
end = last states
zigZag reqs locs = sAnd $ zipWith (.==) locs reqs
-------------------------------------------------------------
-- * Solving the puzzle
-------------------------------------------------------------
-- | See if there is a solution that has precisely @n@ steps
solveN :: Int -> IO Bool
solveN n = do putStrLn $ "Checking for solutions with " ++ show n ++ " move" ++ plu n ++ "."
let genAct = do b <- free_
p1 <- free_
p2 <- free_
return (b, p1, p2)
res <- allSat $ isValid `fmap` mapM (const genAct) [1..n]
cnt <- displayModels (sortOn show) disp res
if cnt == 0 then return False
else do putStrLn $ "Found: " ++ show cnt ++ " solution" ++ plu cnt ++ " with " ++ show n ++ " move" ++ plu n ++ "."
return True
where plu v = if v == 1 then "" else "s"
disp :: Int -> (Bool, [(Bool, U2Member, U2Member)]) -> IO ()
disp i (_, ss)
| lss /= n = error $ "Expected " ++ show n ++ " results; got: " ++ show lss
| True = do putStrLn $ "Solution #" ++ show i ++ ": "
go False 0 ss
return ()
where lss = length ss
go _ t [] = putStrLn $ "Total time: " ++ show t
go l t ((True, a, _):rest) = do putStrLn $ sh2 t ++ shL l ++ show a
go (not l) (t + crossTime a) rest
go l t ((False, a, b):rest) = do putStrLn $ sh2 t ++ shL l ++ show a ++ ", " ++ show b
go (not l) (t + crossTime a `max` crossTime b) rest
sh2 t = let s = show t in if length s < 2 then ' ' : s else s
shL False = " --> "
shL True = " <-- "
-- | Solve the U2-bridge crossing puzzle, starting by testing solutions with
-- increasing number of steps, until we find one. We have:
--
-- >>> solveU2
-- Checking for solutions with 1 move.
-- Checking for solutions with 2 moves.
-- Checking for solutions with 3 moves.
-- Checking for solutions with 4 moves.
-- Checking for solutions with 5 moves.
-- Solution #1:
-- 0 --> Edge, Bono
-- 2 <-- Bono
-- 3 --> Larry, Adam
-- 13 <-- Edge
-- 15 --> Edge, Bono
-- Total time: 17
-- Solution #2:
-- 0 --> Edge, Bono
-- 2 <-- Edge
-- 4 --> Larry, Adam
-- 14 <-- Bono
-- 15 --> Edge, Bono
-- Total time: 17
-- Found: 2 solutions with 5 moves.
--
-- Finding all possible solutions to the puzzle.
solveU2 :: IO ()
solveU2 = go 1
where go i = do p <- solveN i
unless p $ go (i+1)
|