1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
|
-----------------------------------------------------------------------------
-- |
-- Module : Documentation.SBV.Examples.Uninterpreted.Sort
-- Copyright : (c) Levent Erkok
-- License : BSD3
-- Maintainer: erkokl@gmail.com
-- Stability : experimental
--
-- Demonstrates uninterpreted sorts, together with axioms.
-----------------------------------------------------------------------------
{-# LANGUAGE DeriveAnyClass #-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE TemplateHaskell #-}
{-# OPTIONS_GHC -Wall -Werror #-}
module Documentation.SBV.Examples.Uninterpreted.Sort where
import Data.SBV
-- | A new data-type that we expect to use in an uninterpreted fashion
-- in the backend SMT solver.
data Q
-- | Make 'Q' an uinterpreted sort. This will automatically introduce the
-- type 'SQ' into our environment, which is the symbolic version of the
-- carrier type 'Q'.
mkUninterpretedSort ''Q
-- | Declare an uninterpreted function that works over Q's
f :: SQ -> SQ
f = uninterpret "f"
-- | A satisfiable example, stating that there is an element of the domain
-- 'Q' such that 'f' returns a different element. Note that this is valid only
-- when the domain 'Q' has at least two elements. We have:
--
-- >>> t1
-- Satisfiable. Model:
-- x = Q!val!0 :: Q
-- <BLANKLINE>
-- f :: Q -> Q
-- f _ = Q!val!1
t1 :: IO SatResult
t1 = sat $ do x <- free "x"
return $ f x ./= x
-- | This is a variant on the first example, except we also add an axiom
-- for the sort, stating that the domain 'Q' has only one element. In this case
-- the problem naturally becomes unsat. We have:
--
-- >>> t2
-- Unsatisfiable
t2 :: IO SatResult
t2 = sat $ do x <- free "x"
constrain $ \(Forall a) (Forall b) -> a .== (b :: SQ)
return $ f x ./= x
|