1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
|
-----------------------------------------------------------------------------
-- |
-- Module : TestSuite.Basics.ArithSolver
-- Copyright : (c) Levent Erkok
-- License : BSD3
-- Maintainer: erkokl@gmail.com
-- Stability : experimental
--
-- Test suite for basic non-concrete arithmetic, i.e., testing all
-- basic arithmetic reasoning using an SMT solver without any
-- constant folding.
-----------------------------------------------------------------------------
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE Rank2Types #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE DataKinds #-}
{-# OPTIONS_GHC -Wall -Werror #-}
module TestSuite.Basics.ArithSolver(tests) where
import Data.SBV.Internals hiding (free, free_)
import Utils.SBVTestFramework
import Data.List (genericIndex, isInfixOf, isPrefixOf, isSuffixOf, genericTake, genericDrop, genericLength)
import qualified Data.Char as C
import qualified Data.SBV.Char as SC
import qualified Data.SBV.String as SS
import qualified Data.SBV.List as SL
-- Test suite
tests :: TestTree
tests =
testGroup "Basics.ArithSolver"
( genExtends
++ genConcats
++ genReals
++ genFloats
++ genDoubles
++ genFPConverts
++ genQRems
++ genBinTest True "+" (+)
++ genBinTest True "-" (-)
++ genBinTest True "*" (*)
++ genUnTest True "negate" negate
++ genUnTest True "abs" abs
++ genUnTest True "signum" signum
++ genBinTest False ".&." (.&.)
++ genBinTest False ".|." (.|.)
++ genBoolTest "<" (<) (.<)
++ genBoolTest "<=" (<=) (.<=)
++ genBoolTest ">" (>) (.>)
++ genBoolTest ">=" (>=) (.>=)
++ genBoolTest "==" (==) (.==)
++ genBoolTest "/=" (/=) (./=)
++ genBinTest False "xor" xor
++ genUnTest False "complement" complement
++ genIntTest False "setBit" setBit
++ genIntTest False "clearBit" clearBit
++ genIntTest False "complementBit" complementBit
++ genIntTest True "shift" shift
++ genIntTest True "shiftL" shiftL
++ genIntTest True "shiftR" shiftR
++ genIntTest True "rotate" rotate
++ genIntTest True "rotateL" rotateL
++ genIntTest True "rotateR" rotateR
++ genShiftRotTest "shiftL_gen" sShiftLeft
++ genShiftRotTest "shiftR_gen" sShiftRight
++ genShiftRotTest "rotateL_gen" sRotateLeft
++ genShiftRotTest "rotateR_gen" sRotateRight
++ genShiftMixSize
++ genBlasts
++ genCounts
++ genIntCasts
++ genChars
++ genStrings
++ genLists
)
genExtends :: [TestTree]
genExtends = map mkTest $ [("signExtend-word", show x, mkThm signExtend x (signExtend (literal x) :: SWord 16)) | x <- wn8s]
++ [("signExtend-int", show x, mkThm signExtend x (signExtend (literal x) :: SInt 16)) | x <- in8s]
++ [("zeroExtend-word", show x, mkThm zeroExtend x (zeroExtend (literal x) :: SWord 16)) | x <- wn8s]
++ [("zeroExtend-int", show x, mkThm zeroExtend x (zeroExtend (literal x) :: SInt 16)) | x <- in8s]
where
mkTest (nm, x, t) = testCase ("genExtends-" ++ nm ++ "." ++ x) (assert t)
mkThm op x sr
| Just r <- unliteral sr
= isTheorem $ do a <- free "x"
constrain $ a .== literal x
return $ literal r .== op a
| True
= return False
genConcats :: [TestTree]
genConcats = map mkTest $ [("word", show x, show y, mkThm2 (#) x y (literal x # literal y)) | x <- wn8s, y <- wn8s]
++ [("int", show x, show y, mkThm2 (#) x y (literal x # literal y)) | x <- in8s, y <- in8s]
where
mkTest (nm, x, y, t) = testCase ("genConcats-" ++ nm ++ "." ++ x ++ "_" ++ y) (assert t)
mkThm2 op x y sr
| Just r <- unliteral sr
= isTheorem $ do [a, b] <- mapM free ["a", "b"]
constrain $ a .== literal x
constrain $ b .== literal y
return $ literal r .== a `op` b
| True
= return False
genBinTest :: Bool -> String -> (forall a. (Num a, Bits a) => a -> a -> a) -> [TestTree]
genBinTest unboundedOK nm op = map mkTest $ [(show x, show y, mkThm2 x y (x `op` y)) | x <- w8s, y <- w8s ]
++ [(show x, show y, mkThm2 x y (x `op` y)) | x <- w16s, y <- w16s]
++ [(show x, show y, mkThm2 x y (x `op` y)) | x <- w32s, y <- w32s]
++ [(show x, show y, mkThm2 x y (x `op` y)) | x <- w64s, y <- w64s]
++ [(show x, show y, mkThm2 x y (x `op` y)) | x <- i8s, y <- i8s ]
++ [(show x, show y, mkThm2 x y (x `op` y)) | x <- i16s, y <- i16s]
++ [(show x, show y, mkThm2 x y (x `op` y)) | x <- i32s, y <- i32s]
++ [(show x, show y, mkThm2 x y (x `op` y)) | x <- i64s, y <- i64s]
++ [(show x, show y, mkThm2 x y (x `op` y)) | unboundedOK, x <- iUBs, y <- iUBs]
where mkTest (x, y, t) = testCase ("genBinTest.arithmetic-" ++ nm ++ "." ++ x ++ "_" ++ y) (assert t)
mkThm2 x y r = isTheorem $ do [a, b] <- mapM free ["x", "y"]
constrain $ a .== literal x
constrain $ b .== literal y
return $ literal r .== a `op` b
genBoolTest :: String -> (forall a. Ord a => a -> a -> Bool) -> (forall a. OrdSymbolic a => a -> a -> SBool) -> [TestTree]
genBoolTest nm op opS = map mkTest $ [(show x, show y, mkThm2 x y (x `op` y)) | x <- w8s, y <- w8s ]
++ [(show x, show y, mkThm2 x y (x `op` y)) | x <- w16s, y <- w16s ]
++ [(show x, show y, mkThm2 x y (x `op` y)) | x <- w32s, y <- w32s ]
++ [(show x, show y, mkThm2 x y (x `op` y)) | x <- w64s, y <- w64s ]
++ [(show x, show y, mkThm2 x y (x `op` y)) | x <- i8s, y <- i8s ]
++ [(show x, show y, mkThm2 x y (x `op` y)) | x <- i16s, y <- i16s ]
++ [(show x, show y, mkThm2 x y (x `op` y)) | x <- i32s, y <- i32s ]
++ [(show x, show y, mkThm2 x y (x `op` y)) | x <- i64s, y <- i64s ]
++ [(show x, show y, mkThm2 x y (x `op` y)) | x <- iUBs, y <- iUBs ]
++ [(show x, show y, mkThm2 x y (x `op` y)) | x <- reducedCS, y <- reducedCS]
++ [(show x, show y, mkThm2 x y (x `op` y)) | x <- ss, y <- ss ]
++ [(show x, show y, mkThm2L x y (x `op` y)) | nm `elem` allowedListComps, x <- sl, y <- sl ]
++ [(show x, show y, mkThm2M x y (x `op` y)) | x <- sm, y <- sm ]
++ [(show x, show y, mkThm2E x y (x `op` y)) | x <- se, y <- se ]
++ [(show x, show y, mkThm2T x y (x `op` y)) | x <- st, y <- st ]
where -- Currently Z3 doesn't allow for list comparisons, so only test equals and distinct
-- And there's no way for us to desugar this like we do for tuple/maybe etc; since the datatype itself is recursive.
allowedListComps = ["==", "/="]
mkTest (x, y, t) = testCase ("genBoolTest.arithmetic-" ++ nm ++ "." ++ x ++ "_" ++ y) (assert t)
mkThm2 x y r = isTheorem $ do [a, b] <- mapM free ["x", "y"]
constrain $ a .== literal x
constrain $ b .== literal y
return $ literal r .== a `opS` b
mkThm2L x y r = isTheorem $ do [a, b :: SList Integer] <- mapM free ["x", "y"]
constrain $ a .== literal x
constrain $ b .== literal y
return $ literal r .== a `opS` b
mkThm2M x y r = isTheorem $ do [a, b :: SMaybe Integer] <- mapM free ["x", "y"]
constrain $ a .== literal x
constrain $ b .== literal y
return $ literal r .== a `opS` b
mkThm2E x y r = isTheorem $ do [a, b :: SEither Integer Integer] <- mapM free ["x", "y"]
constrain $ a .== literal x
constrain $ b .== literal y
return $ literal r .== a `opS` b
mkThm2T x y r = isTheorem $ do [a, b :: STuple Integer Integer] <- mapM free ["x", "y"]
constrain $ a .== literal x
constrain $ b .== literal y
return $ literal r .== a `opS` b
genUnTest :: Bool -> String -> (forall a. (Num a, Bits a) => a -> a) -> [TestTree]
genUnTest unboundedOK nm op = map mkTest $ [(show x, mkThm x (op x)) | x <- w8s ]
++ [(show x, mkThm x (op x)) | x <- w16s]
++ [(show x, mkThm x (op x)) | x <- w32s]
++ [(show x, mkThm x (op x)) | x <- w64s]
++ [(show x, mkThm x (op x)) | x <- i8s ]
++ [(show x, mkThm x (op x)) | x <- i16s]
++ [(show x, mkThm x (op x)) | x <- i32s]
++ [(show x, mkThm x (op x)) | x <- i64s]
++ [(show x, mkThm x (op x)) | unboundedOK, x <- iUBs]
where mkTest (x, t) = testCase ("genUnTest.arithmetic-" ++ nm ++ "." ++ x) (assert t)
mkThm x r = isTheorem $ do a <- free "x"
constrain $ a .== literal x
return $ literal r .== op a
genIntTest :: Bool -> String -> (forall a. (Num a, Bits a) => (a -> Int -> a)) -> [TestTree]
genIntTest overSized nm op = map mkTest $
[("u8", show x, show y, mkThm2 x y (x `op` y)) | x <- w8s, y <- is (intSizeOf x)]
++ [("u16", show x, show y, mkThm2 x y (x `op` y)) | x <- w16s, y <- is (intSizeOf x)]
++ [("u32", show x, show y, mkThm2 x y (x `op` y)) | x <- w32s, y <- is (intSizeOf x)]
++ [("u64", show x, show y, mkThm2 x y (x `op` y)) | x <- w64s, y <- is (intSizeOf x)]
++ [("s8", show x, show y, mkThm2 x y (x `op` y)) | x <- i8s, y <- is (intSizeOf x)]
++ [("s16", show x, show y, mkThm2 x y (x `op` y)) | x <- i16s, y <- is (intSizeOf x)]
++ [("s32", show x, show y, mkThm2 x y (x `op` y)) | x <- i32s, y <- is (intSizeOf x)]
++ [("s64", show x, show y, mkThm2 x y (x `op` y)) | x <- i64s, y <- is (intSizeOf x)]
-- No size based tests for unbounded integers
where is sz = [0 .. sz - 1] ++ extras
where extras
| overSized = map (sz +) ([0 .. 1] ++ [sz, sz+1])
| True = []
mkTest (l, x, y, t) = testCase ("genIntTest.arithmetic-" ++ nm ++ "." ++ l ++ "_" ++ x ++ "_" ++ y) (assert t)
mkThm2 x y r = isTheorem $ do a <- free "x"
constrain $ a .== literal x
return $ literal r .== a `op` y
genShiftRotTest :: String -> (forall a. (SIntegral a, SDivisible (SBV a)) => (SBV a -> SBV a -> SBV a)) -> [TestTree]
genShiftRotTest nm op = map mkTest $
[("u8", show x, show y, mkThm2 x (fromIntegral y) (literal x `op` sFromIntegral (literal y))) | x <- w8s, y <- is (intSizeOf x)]
++ [("u16", show x, show y, mkThm2 x (fromIntegral y) (literal x `op` sFromIntegral (literal y))) | x <- w16s, y <- is (intSizeOf x)]
++ [("u32", show x, show y, mkThm2 x (fromIntegral y) (literal x `op` sFromIntegral (literal y))) | x <- w32s, y <- is (intSizeOf x)]
++ [("u64", show x, show y, mkThm2 x (fromIntegral y) (literal x `op` sFromIntegral (literal y))) | x <- w64s, y <- is (intSizeOf x)]
++ [("s8", show x, show y, mkThm2 x (fromIntegral y) (literal x `op` sFromIntegral (literal y))) | x <- i8s, y <- is (intSizeOf x)]
++ [("s16", show x, show y, mkThm2 x (fromIntegral y) (literal x `op` sFromIntegral (literal y))) | x <- i16s, y <- is (intSizeOf x)]
++ [("s32", show x, show y, mkThm2 x (fromIntegral y) (literal x `op` sFromIntegral (literal y))) | x <- i32s, y <- is (intSizeOf x)]
++ [("s64", show x, show y, mkThm2 x (fromIntegral y) (literal x `op` sFromIntegral (literal y))) | x <- i64s, y <- is (intSizeOf x)]
-- NB. No generic shift/rotate for SMTLib unbounded integers
where is sz = let b :: Word32
b = fromIntegral sz
in [0 .. b - 1] ++ [b, b+1, 2*b, 2*b+1]
mkTest (l, x, y, t) = testCase ("genShiftRotTest.arithmetic-" ++ nm ++ "." ++ l ++ "_" ++ x ++ "_" ++ y) (assert t)
mkThm2 x y sr
| Just r <- unliteral sr
= isTheorem $ do [a, b] <- mapM free ["x", "y"]
constrain $ a .== literal x
constrain $ b .== literal y
return $ literal r .== a `op` b
| True
= return False
-- A few tests for mixed-size shifts
genShiftMixSize :: [TestTree]
genShiftMixSize = map mkTest $ [(show x, show y, "shl_w8_w16", mk sShiftLeft x y (x `shiftL` fromIntegral y)) | x <- w8s, y <- yw16s]
++ [(show x, show y, "shr_w8_w16", mk sShiftRight x y (x `shiftR` fromIntegral y)) | x <- w8s, y <- yw16s]
++ [(show x, show y, "shl_w16_w8", mk sShiftLeft x y (x `shiftL` fromIntegral y)) | x <- w16s, y <- w8s]
++ [(show x, show y, "shr_w16_w8", mk sShiftRight x y (x `shiftR` fromIntegral y)) | x <- w16s, y <- w8s]
++ [(show x, show y, "shl_i8_i16", mk sShiftLeft x y (x `shiftL` fromIntegral y)) | x <- i8s, y <- yi16s]
++ [(show x, show y, "shr_i8_i16", mk sShiftRight x y (x `shiftR` fromIntegral y)) | x <- i8s, y <- yi16s]
++ [(show x, show y, "shl_i16_i8", mk sShiftLeft x y (x `shiftL` fromIntegral y)) | x <- i16s, y <- i8s, y >= 0]
++ [(show x, show y, "shr_i16_i8", mk sShiftRight x y (x `shiftR` fromIntegral y)) | x <- i16s, y <- i8s, y >= 0]
++ [(show x, show y, "shl_w8_i16", mk sShiftLeft x y (x `shiftL` fromIntegral y)) | x <- w8s, y <- yi16s]
++ [(show x, show y, "shr_w8_i16", mk sShiftRight x y (x `shiftR` fromIntegral y)) | x <- w8s, y <- yi16s]
++ [(show x, show y, "shl_w16_i8", mk sShiftLeft x y (x `shiftL` fromIntegral y)) | x <- w16s, y <- i8s, y >= 0]
++ [(show x, show y, "shr_w16_i8", mk sShiftRight x y (x `shiftR` fromIntegral y)) | x <- w16s, y <- i8s, y >= 0]
++ [(show x, show y, "shl_i8_w16", mk sShiftLeft x y (x `shiftL` fromIntegral y)) | x <- i8s, y <- yw16s]
++ [(show x, show y, "shr_i8_w16", mk sShiftRight x y (x `shiftR` fromIntegral y)) | x <- i8s, y <- yw16s]
++ [(show x, show y, "shl_i16_w8", mk sShiftLeft x y (x `shiftL` fromIntegral y)) | x <- i16s, y <- w8s]
++ [(show x, show y, "shr_i16_w8", mk sShiftRight x y (x `shiftR` fromIntegral y)) | x <- i16s, y <- w8s]
where yi16s :: [Int16]
yi16s = [0, 255, 256, 257, maxBound]
yw16s :: [Word16]
yw16s = [0, 255, 256, 257, maxBound]
mkTest (x, y, l, t) = testCase ("genShiftMixSize." ++ l ++ "." ++ x ++ "_" ++ y) (assert t)
mk :: (Eq a, Eq b, SymVal a, SymVal b) => (SBV a -> SBV b -> SBV a) -> a -> b -> a -> IO Bool
mk o x y r
= isTheorem $ do a <- free "x"
b <- free "y"
constrain $ a .== literal x
constrain $ b .== literal y
return $ literal r .== a `o` b
genBlasts :: [TestTree]
genBlasts = map mkTest $ [(show x, mkThm fromBitsLE blastLE x) | x <- w8s ]
++ [(show x, mkThm fromBitsBE blastBE x) | x <- w8s ]
++ [(show x, mkThm fromBitsLE blastLE x) | x <- i8s ]
++ [(show x, mkThm fromBitsBE blastBE x) | x <- i8s ]
++ [(show x, mkThm fromBitsLE blastLE x) | x <- w16s]
++ [(show x, mkThm fromBitsBE blastBE x) | x <- w16s]
++ [(show x, mkThm fromBitsLE blastLE x) | x <- i16s]
++ [(show x, mkThm fromBitsBE blastBE x) | x <- i16s]
++ [(show x, mkThm fromBitsLE blastLE x) | x <- w32s]
++ [(show x, mkThm fromBitsBE blastBE x) | x <- w32s]
++ [(show x, mkThm fromBitsLE blastLE x) | x <- i32s]
++ [(show x, mkThm fromBitsBE blastBE x) | x <- i32s]
++ [(show x, mkThm fromBitsLE blastLE x) | x <- w64s]
++ [(show x, mkThm fromBitsBE blastBE x) | x <- w64s]
++ [(show x, mkThm fromBitsLE blastLE x) | x <- i64s]
++ [(show x, mkThm fromBitsBE blastBE x) | x <- i64s]
where mkTest (x, t) = testCase ("genBlasts.blast-" ++ show x) (assert t)
mkThm from to v = isTheorem $ do a <- free "x"
constrain $ a .== literal v
return $ a .== from (to a)
genCounts :: [TestTree]
genCounts = map mkTest $ [(show x, mkThm (fromBitsLE :: [SBool] -> SWord8 ) blastBE x) | x <- w8s ]
++ [(show x, mkThm (fromBitsBE :: [SBool] -> SWord8 ) blastLE x) | x <- w8s ]
++ [(show x, mkThm (fromBitsLE :: [SBool] -> SInt8 ) blastBE x) | x <- i8s ]
++ [(show x, mkThm (fromBitsBE :: [SBool] -> SInt8 ) blastLE x) | x <- i8s ]
++ [(show x, mkThm (fromBitsLE :: [SBool] -> SWord16) blastBE x) | x <- w16s]
++ [(show x, mkThm (fromBitsBE :: [SBool] -> SWord16) blastLE x) | x <- w16s]
++ [(show x, mkThm (fromBitsLE :: [SBool] -> SInt16 ) blastBE x) | x <- i16s]
++ [(show x, mkThm (fromBitsBE :: [SBool] -> SInt16 ) blastLE x) | x <- i16s]
++ [(show x, mkThm (fromBitsLE :: [SBool] -> SWord32) blastBE x) | x <- w32s]
++ [(show x, mkThm (fromBitsBE :: [SBool] -> SWord32) blastLE x) | x <- w32s]
++ [(show x, mkThm (fromBitsLE :: [SBool] -> SInt32 ) blastBE x) | x <- i32s]
++ [(show x, mkThm (fromBitsBE :: [SBool] -> SInt32 ) blastLE x) | x <- i32s]
++ [(show x, mkThm (fromBitsLE :: [SBool] -> SWord64) blastBE x) | x <- w64s]
++ [(show x, mkThm (fromBitsBE :: [SBool] -> SWord64) blastLE x) | x <- w64s]
++ [(show x, mkThm (fromBitsLE :: [SBool] -> SInt64 ) blastBE x) | x <- i64s]
++ [(show x, mkThm (fromBitsBE :: [SBool] -> SInt64 ) blastLE x) | x <- i64s]
where mkTest (x, t) = testCase ("genCounts.count-" ++ show x) (assert t)
mkThm from to v = isTheorem $ do a <- free "x"
constrain $ a .== literal v
return $ sCountTrailingZeros a .== sCountLeadingZeros (from (to a))
genIntCasts :: [TestTree]
genIntCasts = map mkTest $ cast w8s ++ cast w16s ++ cast w32s ++ cast w64s
++ cast i8s ++ cast i16s ++ cast i32s ++ cast i64s
++ cast iUBs
where mkTest (x, t) = testCase ("sIntCast-" ++ x) (assert t)
cast :: forall a. (Show a, Integral a, SymVal a) => [a] -> [(String, IO Bool)]
cast xs = toWords xs ++ toInts xs
toWords xs = [(show x, mkThm x (fromIntegral x :: Word8 )) | x <- xs]
++ [(show x, mkThm x (fromIntegral x :: Word16)) | x <- xs]
++ [(show x, mkThm x (fromIntegral x :: Word32)) | x <- xs]
++ [(show x, mkThm x (fromIntegral x :: Word64)) | x <- xs]
toInts xs = [(show x, mkThm x (fromIntegral x :: Int8 )) | x <- xs]
++ [(show x, mkThm x (fromIntegral x :: Int16)) | x <- xs]
++ [(show x, mkThm x (fromIntegral x :: Int32)) | x <- xs]
++ [(show x, mkThm x (fromIntegral x :: Int64)) | x <- xs]
++ [(show x, mkThm x (fromIntegral x :: Integer)) | x <- xs]
mkThm v res = isTheorem $ do a <- free "x"
constrain $ a .== literal v
return $ literal res .== sFromIntegral a
genReals :: [TestTree]
genReals = map mkTest $ [("+", show x, show y, mkThm2 (+) x y (x + y)) | x <- rs, y <- rs ]
++ [("-", show x, show y, mkThm2 (-) x y (x - y)) | x <- rs, y <- rs ]
++ [("*", show x, show y, mkThm2 (*) x y (x * y)) | x <- rs, y <- rs ]
++ [("/", show x, show y, mkThm2 (/) x y (x / y)) | x <- rs, y <- rs, y /= 0]
++ [("<", show x, show y, mkThm2 (.<) x y (x < y)) | x <- rs, y <- rs ]
++ [("<=", show x, show y, mkThm2 (.<=) x y (x <= y)) | x <- rs, y <- rs ]
++ [(">", show x, show y, mkThm2 (.>) x y (x > y)) | x <- rs, y <- rs ]
++ [(">=", show x, show y, mkThm2 (.>=) x y (x >= y)) | x <- rs, y <- rs ]
++ [("==", show x, show y, mkThm2 (.==) x y (x == y)) | x <- rs, y <- rs ]
++ [("/=", show x, show y, mkThm2 (./=) x y (x /= y)) | x <- rs, y <- rs ]
where mkTest (nm, x, y, t) = testCase ("genReals.arithmetic-" ++ nm ++ "." ++ x ++ "_" ++ y) (assert t)
mkThm2 op x y r = isTheorem $ do [a, b] <- mapM free ["x", "y"]
constrain $ a .== literal x
constrain $ b .== literal y
return $ literal r .== a `op` b
genFloats :: [TestTree]
genFloats = genIEEE754 "genFloats" fs
genDoubles :: [TestTree]
genDoubles = genIEEE754 "genDoubles" ds
genIEEE754 :: (IEEEFloating a, Show a) => String -> [a] -> [TestTree]
genIEEE754 origin vs = [tst1 ("pred_" ++ nm, x, y) | (nm, x, y) <- preds]
++ [tst1 ("unary_" ++ nm, x, y) | (nm, x, y) <- uns]
++ [tst2 ("binary_" ++ nm, x, y, r) | (nm, x, y, r) <- bins]
where uns = [("abs", show x, mkThm1 abs x (abs x)) | x <- vs]
++ [("negate", show x, mkThm1 negate x (negate x)) | x <- vs]
++ [("signum", show x, mkThm1 signum x (signum x)) | x <- vs]
++ [("fpAbs", show x, mkThm1 fpAbs x (abs x)) | x <- vs]
++ [("fpNeg", show x, mkThm1 fpNeg x (negate x)) | x <- vs]
++ [("fpSqrt", show x, mkThm1 (m fpSqrt) x (sqrt x)) | x <- vs]
++ [("fpRoundToIntegral", show x, mkThm1 (m fpRoundToIntegral) x (fpRoundToIntegralH x)) | x <- vs]
bins = [("+", show x, show y, mkThm2 (+) x y (x + y)) | x <- vs, y <- vs]
++ [("-", show x, show y, mkThm2 (-) x y (x - y)) | x <- vs, y <- vs]
++ [("*", show x, show y, mkThm2 (*) x y (x * y)) | x <- vs, y <- vs]
++ [("/", show x, show y, mkThm2 (/) x y (x / y)) | x <- vs, y <- vs]
++ [("<", show x, show y, mkThm2C False (.<) x y (x < y)) | x <- vs, y <- vs]
++ [("<=", show x, show y, mkThm2C False (.<=) x y (x <= y)) | x <- vs, y <- vs]
++ [(">", show x, show y, mkThm2C False (.>) x y (x > y)) | x <- vs, y <- vs]
++ [(">=", show x, show y, mkThm2C False (.>=) x y (x >= y)) | x <- vs, y <- vs]
++ [("==", show x, show y, mkThm2C False (.==) x y (x == y)) | x <- vs, y <- vs]
++ [("/=", show x, show y, mkThm2C True (./=) x y (x /= y)) | x <- vs, y <- vs]
-- TODO. Can't possibly test fma, unless we FFI out to C. Leave it out for the time being
++ [("fpAdd", show x, show y, mkThm2 (m fpAdd) x y ((+) x y)) | x <- vs, y <- vs]
++ [("fpSub", show x, show y, mkThm2 (m fpSub) x y ((-) x y)) | x <- vs, y <- vs]
++ [("fpMul", show x, show y, mkThm2 (m fpMul) x y ((*) x y)) | x <- vs, y <- vs]
++ [("fpDiv", show x, show y, mkThm2 (m fpDiv) x y ((/) x y)) | x <- vs, y <- vs]
++ [("fpMin", show x, show y, mkThm2 fpMin x y (fpMinH x y)) | x <- vs, y <- vs, not (alt0 x y || alt0 y x)]
++ [("fpMax", show x, show y, mkThm2 fpMax x y (fpMaxH x y)) | x <- vs, y <- vs, not (alt0 x y || alt0 y x)]
++ [("fpIsEqualObject", show x, show y, mkThm2P fpIsEqualObject x y (fpIsEqualObjectH x y)) | x <- vs, y <- vs]
++ [("fpRem", show x, show y, mkThm2 fpRem x y (fpRemH x y)) | x <- vsFPRem, y <- vsFPRem]
-- TODO: For doubles fpRem takes too long, so we only do a subset
vsFPRem
| origin == "genDoubles" = [nan, infinity, 0, 0.5, -infinity, -0, -0.5]
| True = vs
-- fpMin/fpMax: skip +0/-0 case as this is underspecified
alt0 x y = isNegativeZero x && y == 0 && not (isNegativeZero y)
m f = f sRNE
preds = [(pn, show x, mkThmP ps x (pc x)) | (pn, ps, pc) <- predicates, x <- vs]
tst2 (nm, x, y, t) = testCase (origin ++ ".arithmetic-" ++ nm ++ "." ++ x ++ "_" ++ y) (assert t)
tst1 (nm, x, t) = testCase (origin ++ ".arithmetic-" ++ nm ++ "." ++ x) (assert t)
eqF v val
| isNaN val = constrain $ fpIsNaN v
| isNegativeZero val = constrain $ fpIsNegativeZero v
| val == 0 = constrain $ fpIsPositiveZero v
| isInfinite val && val > 0 = constrain $ fpIsInfinite v .&& fpIsPositive v
| isInfinite val && val < 0 = constrain $ fpIsInfinite v .&& fpIsNegative v
| True = constrain $ v .== literal val
-- Quickly pick which solver to use. Currently z3 or mathSAT supports FP
fpProver :: SMTConfig
fpProver = z3 -- mathSAT
fpThm = isTheoremWith fpProver
mkThmP op x r = fpThm $ do a <- free "x"
eqF a x
return $ literal r .== op a
mkThm2P op x y r = fpThm $ do [a, b] <- mapM free ["x", "y"]
eqF a x
eqF b y
return $ literal r .== a `op` b
mkThm1 op x r = fpThm $ do a <- free "x"
eqF a x
return $ literal r `fpIsEqualObject` op a
mkThm2 op x y r = fpThm $ do [a, b] <- mapM free ["x", "y"]
eqF a x
eqF b y
return $ literal r `fpIsEqualObject` (a `op` b)
mkThm2C neq op x y r = fpThm $ do [a, b] <- mapM free ["x", "y"]
eqF a x
eqF b y
return $ if isNaN x || isNaN y
then (if neq then a `op` b else sNot (a `op` b))
else literal r .== a `op` b
predicates :: (IEEEFloating a) => [(String, SBV a -> SBool, a -> Bool)]
predicates = [ ("fpIsNormal", fpIsNormal, fpIsNormalizedH)
, ("fpIsSubnormal", fpIsSubnormal, isDenormalized)
, ("fpIsZero", fpIsZero, (== 0))
, ("fpIsInfinite", fpIsInfinite, isInfinite)
, ("fpIsNaN", fpIsNaN, isNaN)
, ("fpIsNegative", fpIsNegative, \x -> x < 0 || isNegativeZero x)
, ("fpIsPositive", fpIsPositive, \x -> x >= 0 && not (isNegativeZero x))
, ("fpIsNegativeZero", fpIsNegativeZero, isNegativeZero)
, ("fpIsPositiveZero", fpIsPositiveZero, \x -> x == 0 && not (isNegativeZero x))
, ("fpIsPoint", fpIsPoint, \x -> not (isNaN x || isInfinite x))
]
genFPConverts :: [TestTree]
genFPConverts = [tst1 ("fpCast_" ++ nm, x, y) | (nm, x, y) <- converts]
where converts = [("toFP_Int8_ToFloat", show x, mkThmC (m toSFloat) x (fromRational (toRational x))) | x <- i8s ]
++ [("toFP_Int16_ToFloat", show x, mkThmC (m toSFloat) x (fromRational (toRational x))) | x <- i16s]
++ [("toFP_Int32_ToFloat", show x, mkThmC (m toSFloat) x (fromRational (toRational x))) | x <- i32s]
++ [("toFP_Int64_ToFloat", show x, mkThmC (m toSFloat) x (fromRational (toRational x))) | x <- i64s]
++ [("toFP_Word8_ToFloat", show x, mkThmC (m toSFloat) x (fromRational (toRational x))) | x <- w8s ]
++ [("toFP_Word16_ToFloat", show x, mkThmC (m toSFloat) x (fromRational (toRational x))) | x <- w16s]
++ [("toFP_Word32_ToFloat", show x, mkThmC (m toSFloat) x (fromRational (toRational x))) | x <- w32s]
++ [("toFP_Word64_ToFloat", show x, mkThmC (m toSFloat) x (fromRational (toRational x))) | x <- w64s]
++ [("toFP_Float_ToFloat", show x, mkThm1 (m toSFloat) x x ) | x <- fs ]
++ [("toFP_Double_ToFloat", show x, mkThm1 (m toSFloat) x ( fp2fp x )) | x <- ds ]
++ [("toFP_Integer_ToFloat", show x, mkThmC (m toSFloat) x (fromRational (toRational x))) | x <- iUBs]
++ [("toFP_Real_ToFloat", show x, mkThmC (m toSFloat) x (fromRational (toRational x))) | x <- rs ]
++ [("toFP_Int8_ToDouble", show x, mkThmC (m toSDouble) x (fromRational (toRational x))) | x <- i8s ]
++ [("toFP_Int16_ToDouble", show x, mkThmC (m toSDouble) x (fromRational (toRational x))) | x <- i16s]
++ [("toFP_Int32_ToDouble", show x, mkThmC (m toSDouble) x (fromRational (toRational x))) | x <- i32s]
++ [("toFP_Int64_ToDouble", show x, mkThmC (m toSDouble) x (fromRational (toRational x))) | x <- i64s]
++ [("toFP_Word8_ToDouble", show x, mkThmC (m toSDouble) x (fromRational (toRational x))) | x <- w8s ]
++ [("toFP_Word16_ToDouble", show x, mkThmC (m toSDouble) x (fromRational (toRational x))) | x <- w16s]
++ [("toFP_Word32_ToDouble", show x, mkThmC (m toSDouble) x (fromRational (toRational x))) | x <- w32s]
++ [("toFP_Word64_ToDouble", show x, mkThmC (m toSDouble) x (fromRational (toRational x))) | x <- w64s]
++ [("toFP_Float_ToDouble", show x, mkThm1 (m toSDouble) x ( fp2fp x )) | x <- fs ]
++ [("toFP_Double_ToDouble", show x, mkThm1 (m toSDouble) x x ) | x <- ds ]
++ [("toFP_Integer_ToDouble", show x, mkThmC (m toSDouble) x (fromRational (toRational x))) | x <- iUBs]
++ [("toFP_Real_ToDouble", show x, mkThmC (m toSDouble) x (fromRational (toRational x))) | x <- rs ]
-- Conversions from floats are only well-defined if the input is in-bounds. So we just check round-trip for these.
-- Also note that we clamp Int32/Word32/Int64/Word64 conversions further as floats become too sparse to handle those.
++ [("fromFP_Float_ToInt8", show x, mkThmC' (m fromSFloat :: SFloat -> SInt8) x ((round :: Float -> Int8 ) x)) | i <- i8s, let x = fromIntegral i]
++ [("fromFP_Float_ToInt16", show x, mkThmC' (m fromSFloat :: SFloat -> SInt16) x ((round :: Float -> Int16 ) x)) | i <- i16s, let x = fromIntegral i]
++ [("fromFP_Float_ToInt32", show x, mkThmC' (m fromSFloat :: SFloat -> SInt32) x ((round :: Float -> Int32 ) x)) | i <- i16s, let x = fromIntegral i]
++ [("fromFP_Float_ToInt64", show x, mkThmC' (m fromSFloat :: SFloat -> SInt64) x ((round :: Float -> Int64 ) x)) | i <- i16s, let x = fromIntegral i]
++ [("fromFP_Float_ToWord8", show x, mkThmC' (m fromSFloat :: SFloat -> SWord8) x ((round :: Float -> Word8 ) x)) | i <- w8s, let x = fromIntegral i]
++ [("fromFP_Float_ToWord16", show x, mkThmC' (m fromSFloat :: SFloat -> SWord16) x ((round :: Float -> Word16) x)) | i <- w16s, let x = fromIntegral i]
++ [("fromFP_Float_ToWord32", show x, mkThmC' (m fromSFloat :: SFloat -> SWord32) x ((round :: Float -> Word32) x)) | i <- w16s, let x = fromIntegral i]
++ [("fromFP_Float_ToWord64", show x, mkThmC' (m fromSFloat :: SFloat -> SWord64) x ((round :: Float -> Word64) x)) | i <- w16s, let x = fromIntegral i]
++ [("fromFP_Float_ToFloat", show x, mkThm1 (m fromSFloat :: SFloat -> SFloat) x x) | x <- fs]
++ [("fromFP_Float_ToDouble", show x, mkThm1 (m fromSFloat :: SFloat -> SDouble) x ( fp2fp x)) | x <- fs]
-- Neither Z3 nor MathSAT support Float->Integer/Float->Real conversion for the time being; so we skip those. See GitHub issue: #191
-- Conversions from doubles are only well-defined if the input is in-bounds. So we just check round-trip for these.
-- Also note that we clamp Int64/Word64 conversions further as floats become too sparse to handle those.
++ [("fromFP_Double_ToInt8", show x, mkThmC' (m fromSDouble :: SDouble -> SInt8) x ((round :: Double -> Int8 ) x)) | i <- i8s, let x = fromIntegral i]
++ [("fromFP_Double_ToInt16", show x, mkThmC' (m fromSDouble :: SDouble -> SInt16) x ((round :: Double -> Int16 ) x)) | i <- i16s, let x = fromIntegral i]
++ [("fromFP_Double_ToInt32", show x, mkThmC' (m fromSDouble :: SDouble -> SInt32) x ((round :: Double -> Int32 ) x)) | i <- i32s, let x = fromIntegral i]
++ [("fromFP_Double_ToInt64", show x, mkThmC' (m fromSDouble :: SDouble -> SInt64) x ((round :: Double -> Int64 ) x)) | i <- i32s, let x = fromIntegral i]
++ [("fromFP_Double_ToWord8", show x, mkThmC' (m fromSDouble :: SDouble -> SWord8) x ((round :: Double -> Word8 ) x)) | i <- w8s, let x = fromIntegral i]
++ [("fromFP_Double_ToWord16", show x, mkThmC' (m fromSDouble :: SDouble -> SWord16) x ((round :: Double -> Word16) x)) | i <- w16s, let x = fromIntegral i]
++ [("fromFP_Double_ToWord32", show x, mkThmC' (m fromSDouble :: SDouble -> SWord32) x ((round :: Double -> Word32) x)) | i <- w32s, let x = fromIntegral i]
++ [("fromFP_Double_ToWord64", show x, mkThmC' (m fromSDouble :: SDouble -> SWord64) x ((round :: Double -> Word64) x)) | i <- w32s, let x = fromIntegral i]
++ [("fromFP_Double_ToFloat", show x, mkThm1 (m fromSDouble :: SDouble -> SFloat) x ( fp2fp x)) | x <- ds]
++ [("fromFP_Double_ToDouble", show x, mkThm1 (m fromSDouble :: SDouble -> SDouble) x x ) | x <- ds]
-- Neither Z3 nor MathSAT support Double->Integer/Double->Real conversion for the time being; so we skip those. See GitHub issue: #191
++ [("reinterp_Word32_Float", show x, mkThmC sWord32AsSFloat x (wordToFloat x)) | x <- w32s]
++ [("reinterp_Word64_Double", show x, mkThmC sWord64AsSDouble x (wordToDouble x)) | x <- w64s]
++ [("reinterp_Float_Word32", show x, mkThmP sFloatAsSWord32 x (floatToWord x)) | x <- fs, not (isNaN x)] -- Not unique for NaN
++ [("reinterp_Double_Word64", show x, mkThmP sDoubleAsSWord64 x (doubleToWord x)) | x <- ds, not (isNaN x)] -- Not unique for NaN
m f = f sRNE
tst1 (nm, x, t) = testCase ("fpConverts.arithmetic-" ++ nm ++ "." ++ x) (assert t)
eqF v val
| isNaN val = constrain $ fpIsNaN v
| isNegativeZero val = constrain $ fpIsNegativeZero v
| val == 0 = constrain $ fpIsPositiveZero v
| isInfinite val && val > 0 = constrain $ fpIsInfinite v .&& fpIsPositive v
| isInfinite val && val < 0 = constrain $ fpIsInfinite v .&& fpIsNegative v
| True = constrain $ v .== literal val
-- Quickly pick which solver to use. Currently z3 or mathSAT supports FP
fpProver :: SMTConfig
fpProver = z3 -- mathSAT
fpThm = isTheoremWith fpProver
mkThmP op x r = fpThm $ do a <- free "x"
eqF a x
return $ literal r .== op a
mkThm1 op x r = fpThm $ do a <- free "x"
eqF a x
return $ literal r `fpIsEqualObject` op a
mkThmC op x r = fpThm $ do a <- free "x"
constrain $ a .== literal x
return $ literal r `fpIsEqualObject` op a
mkThmC' op x r = fpThm $ do a <- free "x"
eqF a x
return $ literal r .== op a
genQRems :: [TestTree]
genQRems = map mkTest $ [("divMod", show x, show y, mkThm2 sDivMod x y (x `divMod'` y)) | x <- w8s, y <- w8s ]
++ [("divMod", show x, show y, mkThm2 sDivMod x y (x `divMod'` y)) | x <- w16s, y <- w16s]
++ [("divMod", show x, show y, mkThm2 sDivMod x y (x `divMod'` y)) | x <- w32s, y <- w32s]
++ [("divMod", show x, show y, mkThm2 sDivMod x y (x `divMod'` y)) | x <- w64s, y <- w64s]
++ [("divMod", show x, show y, mkThm2 sDivMod x y (x `divMod'` y)) | x <- i8s, y <- i8s , noOverflow x y]
++ [("divMod", show x, show y, mkThm2 sDivMod x y (x `divMod'` y)) | x <- i16s, y <- i16s, noOverflow x y]
++ [("divMod", show x, show y, mkThm2 sDivMod x y (x `divMod'` y)) | x <- i32s, y <- i32s, noOverflow x y]
++ [("divMod", show x, show y, mkThm2 sDivMod x y (x `divMod'` y)) | x <- i64s, y <- i64s, noOverflow x y]
++ [("divMod", show x, show y, mkThm2 sDivMod x y (x `divMod'` y)) | x <- iUBs, y <- iUBs]
++ [("quotRem", show x, show y, mkThm2 sQuotRem x y (x `quotRem'` y)) | x <- w8s, y <- w8s ]
++ [("quotRem", show x, show y, mkThm2 sQuotRem x y (x `quotRem'` y)) | x <- w16s, y <- w16s]
++ [("quotRem", show x, show y, mkThm2 sQuotRem x y (x `quotRem'` y)) | x <- w32s, y <- w32s]
++ [("quotRem", show x, show y, mkThm2 sQuotRem x y (x `quotRem'` y)) | x <- w64s, y <- w64s]
++ [("quotRem", show x, show y, mkThm2 sQuotRem x y (x `quotRem'` y)) | x <- i8s, y <- i8s , noOverflow x y]
++ [("quotRem", show x, show y, mkThm2 sQuotRem x y (x `quotRem'` y)) | x <- i16s, y <- i16s, noOverflow x y]
++ [("quotRem", show x, show y, mkThm2 sQuotRem x y (x `quotRem'` y)) | x <- i32s, y <- i32s, noOverflow x y]
++ [("quotRem", show x, show y, mkThm2 sQuotRem x y (x `quotRem'` y)) | x <- i64s, y <- i64s, noOverflow x y]
++ [("quotRem", show x, show y, mkThm2 sQuotRem x y (x `quotRem'` y)) | x <- iUBs, y <- iUBs]
where divMod' x y = if y == 0 then (0, x) else x `divMod` y
quotRem' x y = if y == 0 then (0, x) else x `quotRem` y
mkTest (nm, x, y, t) = testCase ("genQRems.arithmetic-" ++ nm ++ "." ++ x ++ "_" ++ y) (assert t)
mkThm2 op x y (e1, e2) = isTheorem $ do [a, b] <- mapM free ["x", "y"]
constrain $ a .== literal x
constrain $ b .== literal y
return $ (literal e1, literal e2) .== a `op` b
-- Haskell's divMod and quotRem overflows if x == minBound and y == -1 for signed types; so avoid that case
noOverflow x y = not (x == minBound && y == -1)
genChars :: [TestTree]
genChars = map mkTest $ [("ord", show c, mkThm SC.ord cord c) | c <- cs]
++ [("toLower", show c, mkThm SC.toLowerL1 C.toLower c) | c <- cs]
++ [("toUpper", show c, mkThm SC.toUpperL1 C.toUpper c) | c <- cs, toUpperExceptions c]
++ [("digitToInt", show c, mkThm SC.digitToInt dig2Int c) | c <- cs, digitToIntRange c]
++ [("intToDigit", show c, mkThm SC.intToDigit int2Dig c) | c <- [0 .. 15]]
++ [("isControl", show c, mkThm SC.isControlL1 C.isControl c) | c <- cs]
++ [("isSpace", show c, mkThm SC.isSpaceL1 C.isSpace c) | c <- cs]
++ [("isLower", show c, mkThm SC.isLowerL1 C.isLower c) | c <- cs]
++ [("isUpper", show c, mkThm SC.isUpperL1 C.isUpper c) | c <- cs]
++ [("isAlpha", show c, mkThm SC.isAlphaL1 C.isAlpha c) | c <- cs]
++ [("isAlphaNum", show c, mkThm SC.isAlphaNumL1 C.isAlphaNum c) | c <- cs]
++ [("isPrint", show c, mkThm SC.isPrintL1 C.isPrint c) | c <- cs]
++ [("isDigit", show c, mkThm SC.isDigit C.isDigit c) | c <- cs]
++ [("isOctDigit", show c, mkThm SC.isOctDigit C.isOctDigit c) | c <- cs]
++ [("isHexDigit", show c, mkThm SC.isHexDigit C.isHexDigit c) | c <- cs]
++ [("isLetter", show c, mkThm SC.isLetterL1 C.isLetter c) | c <- cs]
++ [("isMark", show c, mkThm SC.isMarkL1 C.isMark c) | c <- cs]
++ [("isNumber", show c, mkThm SC.isNumberL1 C.isNumber c) | c <- cs]
++ [("isPunctuation", show c, mkThm SC.isPunctuationL1 C.isPunctuation c) | c <- cs]
++ [("isSymbol", show c, mkThm SC.isSymbolL1 C.isSymbol c) | c <- cs]
++ [("isSeparator", show c, mkThm SC.isSeparatorL1 C.isSeparator c) | c <- cs]
++ [("isAscii", show c, mkThm SC.isAscii C.isAscii c) | c <- cs]
++ [("isLatin1", show c, mkThm SC.isLatin1 C.isLatin1 c) | c <- cs]
++ [("isAsciiUpper", show c, mkThm SC.isAsciiUpper C.isAsciiUpper c) | c <- cs]
++ [("isAsciiLower", show c, mkThm SC.isAsciiLower C.isAsciiLower c) | c <- cs]
where toUpperExceptions = (`notElem` "\181\255")
digitToIntRange = (`elem` "0123456789abcdefABCDEF")
cord :: Char -> Integer
cord = fromIntegral . C.ord
dig2Int :: Char -> Integer
dig2Int = fromIntegral . C.digitToInt
int2Dig :: Integer -> Char
int2Dig = C.intToDigit . fromIntegral
mkTest (nm, x, t) = testCase ("genChars-" ++ nm ++ "." ++ x) (assert t)
mkThm sop cop arg = isTheorem $ do a <- free "a"
constrain $ a .== literal arg
return $ literal (cop arg) .== sop a
genStrings :: [TestTree]
genStrings = map mkTest1 ( [("length", show s, mkThm1 SS.length strLen s ) | s <- ss ]
++ [("null", show s, mkThm1 SS.null null s ) | s <- ss ]
++ [("head", show s, mkThm1 SS.head head s ) | s <- ss, not (null s) ]
++ [("tail", show s, mkThm1 SS.tail tail s ) | s <- ss, not (null s) ]
++ [("singleton", show c, mkThm1 SS.singleton (: []) c ) | c <- cs ]
++ [("implode", show s, mkThmI SS.implode s ) | s <- ss ]
++ [("strToNat", show s, mkThm1 SS.strToNat strToNat s ) | s <- ss ]
++ [("natToStr", show i, mkThm1 SS.natToStr natToStr i ) | i <- iUBs ])
++ map mkTest2 ( [("strToStrAt", show s, show i, mkThm2 SS.strToStrAt strToStrAt s i ) | s <- ss, i <- range s ]
++ [("strToCharAt", show s, show i, mkThm2 SS.strToCharAt strToCharAt s i ) | s <- ss, i <- range s ]
++ [("concat", show s, show s1, mkThm2 SS.concat (++) s s1 ) | s <- ss, s1 <- ss ]
++ [("isInfixOf", show s, show s1, mkThm2 SS.isInfixOf isInfixOf s s1 ) | s <- ss, s1 <- ss ]
++ [("isSuffixOf", show s, show s1, mkThm2 SS.isSuffixOf isSuffixOf s s1 ) | s <- ss, s1 <- ss ]
++ [("isPrefixOf", show s, show s1, mkThm2 SS.isPrefixOf isPrefixOf s s1 ) | s <- ss, s1 <- ss ]
++ [("take", show s, show i, mkThm2 SS.take genericTake i s ) | s <- ss, i <- iUBs ]
++ [("drop", show s, show i, mkThm2 SS.drop genericDrop i s ) | s <- ss, i <- iUBs ]
++ [("indexOf", show s, show s1, mkThm2 SS.indexOf indexOf s s1 ) | s <- ss, s1 <- ss ])
++ map mkTest3 ( [("subStr", show s, show i, show j, mkThm3 SS.subStr subStr s i j ) | s <- ss, i <- range s, j <- range s, i + j <= genericLength s]
++ [("replace", show s, show s1, show s2, mkThm3 SS.replace replace s s1 s2) | s <- ss, s1 <- ss, s2 <- ss ]
++ [("offsetIndexOf", show s, show s1, show i, mkThm3 SS.offsetIndexOf offsetIndexOf s s1 i ) | s <- ss, s1 <- ss, i <- range s ])
where strLen :: String -> Integer
strLen = fromIntegral . length
strToNat :: String -> Integer
strToNat s
| all C.isDigit s && not (null s) = read s
| True = -1
natToStr :: Integer -> String
natToStr i
| i >= 0 = show i
| True = ""
range :: String -> [Integer]
range s = map fromIntegral [0 .. length s - 1]
indexOf :: String -> String -> Integer
indexOf s1 s2 = go 0 s1
where go i x
| s2 `isPrefixOf` x = i
| True = case x of
"" -> -1
(_:r) -> go (i+1) r
strToStrAt :: String -> Integer -> String
s `strToStrAt` i = [s `strToCharAt` i]
strToCharAt :: String -> Integer -> Char
s `strToCharAt` i = s `genericIndex` i
subStr :: String -> Integer -> Integer -> String
subStr s i j = genericTake j (genericDrop i s)
replace :: String -> String -> String -> String
replace s "" y = y ++ s
replace s x y = go s
where go "" = ""
go h@(c:rest) | x `isPrefixOf` h = y ++ drop (length x) h
| True = c : go rest
offsetIndexOf :: String -> String -> Integer -> Integer
offsetIndexOf x y i = case indexOf (genericDrop i x) y of
-1 -> -1
r -> r+i
mkTest1 (nm, x, t) = testCase ("genStrings-" ++ nm ++ "." ++ x) (assert t)
mkTest2 (nm, x, y, t) = testCase ("genStrings-" ++ nm ++ "." ++ x ++ "_" ++ y) (assert t)
mkTest3 (nm, x, y, z, t) = testCase ("genStrings-" ++ nm ++ "." ++ x ++ "_" ++ y ++ "_" ++ z) (assert t)
mkThmI sop s = isTheorem $ do let v c = do sc <- free_
constrain $ sc .== literal c
return sc
vs <- mapM v s
return $ literal s .== sop vs
mkThm1 sop cop arg = isTheorem $ do a <- free "a"
constrain $ a .== literal arg
return $ literal (cop arg) .== sop a
mkThm2 sop cop arg1 arg2 = isTheorem $ do a <- free "a"
b <- free "b"
constrain $ a .== literal arg1
constrain $ b .== literal arg2
return $ literal (cop arg1 arg2) .== sop a b
mkThm3 sop cop arg1 arg2 arg3 = isTheorem $ do a <- free "a"
b <- free "b"
c <- free "c"
constrain $ a .== literal arg1
constrain $ b .== literal arg2
constrain $ c .== literal arg3
return $ literal (cop arg1 arg2 arg3) .== sop a b c
genLists :: [TestTree]
genLists = map mkTest1 ( [("length", show l, mkThm1 SL.length llen l ) | l <- sl ]
++ [("null", show l, mkThm1 SL.null null l ) | l <- sl ]
++ [("head", show l, mkThm1 SL.head head l ) | l <- sl, not (null l) ]
++ [("tail", show l, mkThm1 SL.tail tail l ) | l <- sl, not (null l) ]
++ [("singleton", show i, mkThm1 SL.singleton (: []) i ) | i <- iUBs ]
++ [("implode", show l, mkThmI SL.implode id l ) | l <- sl ]
++ [("concat", show l, mkThm1 SL.concat concat l ) | l <- sll ]
)
++ map mkTest2 ( [("listToListAt", show l, show i, mkThm2 SL.listToListAt listToListAt l i ) | l <- sl, i <- range l ]
++ [("elemAt", show l, show i, mkThm2 SL.elemAt elemAt l i ) | l <- sl, i <- range l ]
++ [("append", show l, show l1, mkThm2 (SL.++) (++) l l1 ) | l <- sl, l1 <- sl ]
++ [("isInfixOf", show l, show l1, mkThm2 SL.isInfixOf isInfixOf l l1 ) | l <- sl, l1 <- sl ]
++ [("isSuffixOf", show l, show l1, mkThm2 SL.isSuffixOf isSuffixOf l l1 ) | l <- sl, l1 <- sl ]
++ [("isPrefixOf", show l, show l1, mkThm2 SL.isPrefixOf isPrefixOf l l1 ) | l <- sl, l1 <- sl ]
++ [("take", show l, show i, mkThm2 SL.take genericTake i l ) | l <- sl, i <- iUBs ]
++ [("drop", show l, show i, mkThm2 SL.drop genericDrop i l ) | l <- sl, i <- iUBs ]
++ [("indexOf", show l, show l1, mkThm2 SL.indexOf indexOf l l1 ) | l <- sl, l1 <- sl ]
)
++ map mkTest3 ( [("subList", show l, show i, show j, mkThm3 SL.subList subList l i j ) | l <- sl, i <- range l, j <- range l, i + j <= genericLength l]
++ [("replace", show l, show l1, show l2, mkThm3 SL.replace replace l l1 l2) | l <- sl, l1 <- sl, l2 <- sl ]
++ [("offsetIndexOf", show l, show l1, show i, mkThm3 SL.offsetIndexOf offsetIndexOf l l1 i ) | l <- sl, l1 <- sl, i <- range l ]
)
where llen :: [Integer] -> Integer
llen = fromIntegral . length
range :: [Integer] -> [Integer]
range l = map fromIntegral [0 .. length l - 1]
indexOf :: [Integer] -> [Integer] -> Integer
indexOf s1 s2 = go 0 s1
where go i x
| s2 `isPrefixOf` x = i
| True = case x of
[] -> -1
(_:r) -> go (i+1) r
listToListAt :: [Integer] -> Integer -> [Integer]
s `listToListAt` i = [s `elemAt` i]
elemAt :: [Integer] -> Integer -> Integer
l `elemAt` i = l `genericIndex` i
subList :: [Integer] -> Integer -> Integer -> [Integer]
subList s i j = genericTake j (genericDrop i s)
replace :: [Integer] -> [Integer] -> [Integer] -> [Integer]
replace s [] y = y ++ s
replace s x y = go s
where go [] = []
go h@(c:rest) | x `isPrefixOf` h = y ++ drop (length x) h
| True = c : go rest
offsetIndexOf :: [Integer] -> [Integer] -> Integer -> Integer
offsetIndexOf x y i = case indexOf (genericDrop i x) y of
-1 -> -1
r -> r+i
mkTest1 (nm, x, t) = testCase ("genLists-" ++ nm ++ "." ++ x) (assert t)
mkTest2 (nm, x, y, t) = testCase ("genLists-" ++ nm ++ "." ++ x ++ "_" ++ y) (assert t)
mkTest3 (nm, x, y, z, t) = testCase ("genLists-" ++ nm ++ "." ++ x ++ "_" ++ y ++ "_" ++ z) (assert t)
mkThmI sop cop arg = isTheorem $ do let v c = do sc <- free_
constrain $ sc .== literal c
return sc
vs <- mapM v arg
return $ literal (cop arg) .== sop vs
mkThm1 sop cop arg = isTheorem $ do a <- free "a"
constrain $ a .== literal arg
return $ literal (cop arg) .== sop a
mkThm2 sop cop arg1 arg2 = isTheorem $ do a <- free "a"
b <- free "b"
constrain $ a .== literal arg1
constrain $ b .== literal arg2
return $ literal (cop arg1 arg2) .== sop a b
mkThm3 sop cop arg1 arg2 arg3 = isTheorem $ do a <- free "a"
b <- free "b"
c <- free "c"
constrain $ a .== literal arg1
constrain $ b .== literal arg2
constrain $ c .== literal arg3
return $ literal (cop arg1 arg2 arg3) .== sop a b c
-- Concrete test data
xsSigned, xsUnsigned :: (Num a, Bounded a) => [a]
xsUnsigned = [0, 1, maxBound - 1, maxBound]
xsSigned = xsUnsigned ++ [minBound, minBound + 1, -1]
w8s :: [Word8]
w8s = xsUnsigned
w16s :: [Word16]
w16s = xsUnsigned
w32s :: [Word32]
w32s = xsUnsigned
w64s :: [Word64]
w64s = xsUnsigned
i8s :: [Int8]
i8s = xsSigned
i16s :: [Int16]
i16s = xsSigned
i32s :: [Int32]
i32s = xsSigned
i64s :: [Int64]
i64s = xsSigned
wn8s :: [WordN 8]
wn8s = xsUnsigned
in8s :: [IntN 8]
in8s = xsSigned
iUBs :: [Integer]
iUBs = [-1000000] ++ [-1 .. 1] ++ [1000000]
rs :: [AlgReal]
rs = [fromRational (i % d) | i <- is, d <- dens]
where is = [-1000000] ++ [-1 .. 1] ++ [10000001]
dens = [5,100,1000000]
-- Admittedly paltry test-cases for float/double
fs :: [Float]
fs = xs ++ map (* (-1)) (filter (not . isNaN) xs) -- -nan is the same as nan
where xs = [nan, infinity, 0, 0.5, 0.68302244, 0.5268265, 0.10283524, 5.8336496e-2, 1.0e-45]
ds :: [Double]
ds = xs ++ map (* (-1)) (filter (not . isNaN) xs) -- -nan is the same as nan
where xs = [nan, infinity, 0, 0.5, 2.516632060108026e-2, 0.8601891300751106, 5.0e-324]
-- Currently we test over all latin-1 characters. Maybe we should add some unicode when the
-- underlying operation is supported. Oh well.
cs :: String
cs = map C.chr [0..255]
-- For pair char ops, take a subset.
reducedCS :: String
reducedCS = map C.chr $ [0..5] ++ [98..102] ++ [250..255]
-- Ditto for strings, just a few things
ss :: [String]
ss = ["", "palTRY", "teSTing", "SBV", "sTRIngs", "123", "surely", "thIS", "hI", "ly", "0"]
-- Lists are the worst in coverage!
sl :: [[Integer]]
sl = [[], [0], [-1, 1], [-10, 0, 10], [3, 4, 5, 4, 5, 3]]
-- List of lists are similarly inadequate
sll :: [[[Integer]]]
sll = [[x, x, x] | x <- [[], [0], [-1, 1], [-10, 0, 10], [3, 4, 5, 4, 5, 3]]]
-- Ditto for maybe, either and tuple
sm :: [Maybe Integer]
sm = [Nothing, Just (-5), Just 0, Just 5]
se :: [Either Integer Integer]
se = [Left 3, Right 5]
st :: [(Integer, Integer)]
st = [(1, 2), (-1, -5), (0, 9), (5, 5)]
{- HLint ignore module "Reduce duplication" -}
|