1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
|
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# OPTIONS_GHC -fno-warn-orphans #-}
module Main where
import Control.Monad
import Data.Int
import Data.Word
import Data.Scientific as Scientific
import Test.Tasty
import Test.Tasty.HUnit (testCase, (@?=), Assertion, assertBool)
import qualified Test.SmallCheck as SC
import qualified Test.SmallCheck.Series as SC
import qualified Test.Tasty.SmallCheck as SC (testProperty)
import qualified Test.QuickCheck as QC
import qualified Test.Tasty.QuickCheck as QC (testProperty)
import qualified Data.Binary as Binary (encode, decode)
import qualified Data.Text.Lazy as TL (unpack)
import qualified Data.Text.Lazy.Builder as TLB (toLazyText)
import qualified Data.Text.Lazy.Builder.Scientific as T
import Numeric ( floatToDigits )
import qualified Data.ByteString.Lazy.Char8 as BLC8
import qualified Data.ByteString.Builder.Scientific as B
import qualified Data.ByteString.Builder as B
import Text.ParserCombinators.ReadP (readP_to_S)
main :: IO ()
main = testMain $ testGroup "scientific"
[ testGroup "DoS protection"
[ testGroup "Eq"
[ testCase "1e1000000" $ assertBool "" $
(read "1e1000000" :: Scientific) == (read "1e1000000" :: Scientific)
]
, testGroup "Ord"
[ testCase "compare 1234e1000000 123e1000001" $
compare (read "1234e1000000" :: Scientific) (read "123e1000001" :: Scientific) @?= GT
]
, testGroup "RealFrac"
[ testGroup "floor"
[ testCase "1e1000000" $ (floor (read "1e1000000" :: Scientific) :: Int) @?= 0
, testCase "-1e-1000000" $ (floor (read "-1e-1000000" :: Scientific) :: Int) @?= (-1)
, testCase "1e-1000000" $ (floor (read "1e-1000000" :: Scientific) :: Int) @?= 0
]
, testGroup "ceiling"
[ testCase "1e1000000" $ (ceiling (read "1e1000000" :: Scientific) :: Int) @?= 0
, testCase "-1e-1000000" $ (ceiling (read "-1e-1000000" :: Scientific) :: Int) @?= 0
, testCase "1e-1000000" $ (ceiling (read "1e-1000000" :: Scientific) :: Int) @?= 1
]
, testGroup "round"
[ testCase "1e1000000" $ (round (read "1e1000000" :: Scientific) :: Int) @?= 0
, testCase "-1e-1000000" $ (round (read "-1e-1000000" :: Scientific) :: Int) @?= 0
, testCase "1e-1000000" $ (round (read "1e-1000000" :: Scientific) :: Int) @?= 0
]
, testGroup "truncate"
[ testCase "1e1000000" $ (truncate (read "1e1000000" :: Scientific) :: Int) @?= 0
, testCase "-1e-1000000" $ (truncate (read "-1e-1000000" :: Scientific) :: Int) @?= 0
, testCase "1e-1000000" $ (truncate (read "1e-1000000" :: Scientific) :: Int) @?= 0
]
, testGroup "properFracton"
[ testCase "1e1000000" $ properFraction (read "1e1000000" :: Scientific) @?= (0 :: Int, 0)
, testCase "-1e-1000000" $ let s = read "-1e-1000000" :: Scientific
in properFraction s @?= (0 :: Int, s)
, testCase "1e-1000000" $ let s = read "1e-1000000" :: Scientific
in properFraction s @?= (0 :: Int, s)
]
]
, testGroup "toRealFloat"
[ testCase "1e1000000" $ assertBool "Should be infinity!" $ isInfinite $
(toRealFloat (read "1e1000000" :: Scientific) :: Double)
, testCase "1e-1000000" $ (toRealFloat (read "1e-1000000" :: Scientific) :: Double) @?= 0
]
, testGroup "toBoundedInteger"
[ testCase "1e1000000" $ (toBoundedInteger (read "1e1000000" :: Scientific) :: Maybe Int) @?= Nothing
]
]
, smallQuick "normalization"
(SC.over normalizedScientificSeries $ \s ->
s /= 0 SC.==> abs (Scientific.coefficient s) `mod` 10 /= 0)
(QC.forAll normalizedScientificGen $ \s ->
s /= 0 QC.==> abs (Scientific.coefficient s) `mod` 10 /= 0)
, testGroup "Binary"
[ testProperty "decode . encode == id" $ \s ->
Binary.decode (Binary.encode s) === s
]
, testGroup "Parsing"
[ testCase "reads \"\"" $ testReads "" []
, testCase "reads \"1.\"" $ testReads "1." [(1.0, ".")]
, testCase "reads \"1.2e\"" $ testReads "1.2e" [(1.2, "e")]
, testCase "reads \"(1.3 )\"" $ testReads "(1.3 )" [(1.3, "")]
, testCase "reads \"((1.3))\"" $ testReads "((1.3))" [(1.3, "")]
, testCase "reads \" 1.3\"" $ testReads " 1.3" [(1.3, "")]
, testCase "read \" ( (( -1.0e+3 ) ))\"" $ testRead " ( (( -1.0e+3 ) ))" (-1000.0)
, testCase "scientificP \"3\"" $ testScientificP "3" [(3.0, "")]
, testCase "scientificP \"3.0e2\"" $ testScientificP "3.0e2" [(3.0, "e2"), (300.0, "")]
, testCase "scientificP \"+3.0e+2\"" $ testScientificP "+3.0e+2" [(3.0, "e+2"), (300.0, "")]
, testCase "scientificP \"-3.0e-2\"" $ testScientificP "-3.0e-2" [(-3.0, "e-2"), (-3.0e-2, "")]
]
, testGroup "Formatting"
[ testProperty "read . show == id" $ \s -> read (show s) === s
, testCase "show (Just 1)" $ testShow (Just 1) "Just 1.0"
, testCase "show (Just 0)" $ testShow (Just 0) "Just 0.0"
, testCase "show (Just (-1))" $ testShow (Just (-1)) "Just (-1.0)"
, testGroup "toDecimalDigits"
[ smallQuick "laws"
(SC.over nonNegativeScientificSeries toDecimalDigits_laws)
(QC.forAll nonNegativeScientificGen toDecimalDigits_laws)
, smallQuick "== Numeric.floatToDigits"
(toDecimalDigits_eq_floatToDigits . SC.getNonNegative)
(toDecimalDigits_eq_floatToDigits . QC.getNonNegative)
]
, testGroup "Builder"
[ testProperty "Text" $ \s ->
formatScientific Scientific.Generic Nothing s ==
TL.unpack (TLB.toLazyText $
T.formatScientificBuilder Scientific.Generic Nothing s)
, testProperty "ByteString" $ \s ->
formatScientific Scientific.Generic Nothing s ==
BLC8.unpack (B.toLazyByteString $
B.formatScientificBuilder Scientific.Generic Nothing s)
]
, testProperty "formatScientific_fromFloatDigits" $ \(d::Double) ->
formatScientific Scientific.Generic Nothing (Scientific.fromFloatDigits d) ==
show d
-- , testProperty "formatScientific_realToFrac" $ \(d::Double) ->
-- formatScientific B.Generic Nothing (realToFrac d :: Scientific) ==
-- show d
]
, testGroup "Eq"
[ testProperty "==" $ \(s1 :: Scientific) (s2 :: Scientific) ->
(s1 == s2) == (toRational s1 == toRational s2)
, testProperty "s == s" $ \(s :: Scientific) -> s == s
]
, testGroup "Ord"
[ testProperty "compare" $ \(s1 :: Scientific) (s2 :: Scientific) ->
compare s1 s2 == compare (toRational s1) (toRational s2)
]
, testGroup "Num"
[ testGroup "Equal to Rational"
[ testProperty "fromInteger" $ \i -> fromInteger i === fromRational (fromInteger i)
, testProperty "+" $ bin (+)
, testProperty "-" $ bin (-)
, testProperty "*" $ bin (*)
, testProperty "abs" $ unary abs
, testProperty "negate" $ unary negate
, testProperty "signum" $ unary signum
]
, testProperty "0 identity of +" $ \a -> a + 0 === a
, testProperty "1 identity of *" $ \a -> 1 * a === a
, testProperty "0 identity of *" $ \a -> 0 * a === 0
, testProperty "associativity of +" $ \a b c -> a + (b + c) === (a + b) + c
, testProperty "commutativity of +" $ \a b -> a + b === b + a
, testProperty "distributivity of * over +" $ \a b c -> a * (b + c) === a * b + a * c
, testProperty "subtracting the addition" $ \x y -> x + y - y === x
, testProperty "+ and negate" $ \x -> x + negate x === 0
, testProperty "- and negate" $ \x -> x - negate x === x + x
, smallQuick "abs . negate == id"
(SC.over nonNegativeScientificSeries $ \x -> abs (negate x) === x)
(QC.forAll nonNegativeScientificGen $ \x -> abs (negate x) === x)
]
, testGroup "Real"
[ testProperty "fromRational . toRational == id" $ \x ->
(fromRational . toRational) x === x
]
, testGroup "RealFrac"
[ testGroup "Equal to Rational"
[ testProperty "properFraction" $ \x ->
let (n1::Integer, f1::Scientific) = properFraction x
(n2::Integer, f2::Rational) = properFraction (toRational x)
in (n1 == n2) && (f1 == fromRational f2)
, testProperty "round" $ \(x::Scientific) ->
(round x :: Integer) == round (toRational x)
, testProperty "truncate" $ \(x::Scientific) ->
(truncate x :: Integer) == truncate (toRational x)
, testProperty "ceiling" $ \(x::Scientific) ->
(ceiling x :: Integer) == ceiling (toRational x)
, testProperty "floor" $ \(x::Scientific) ->
(floor x :: Integer) == floor (toRational x)
]
, testProperty "properFraction_laws" properFraction_laws
, testProperty "round" $ \s -> round s == roundDefault s
, testProperty "truncate" $ \s -> truncate s == truncateDefault s
, testProperty "ceiling" $ \s -> ceiling s == ceilingDefault s
, testProperty "floor" $ \s -> floor s == floorDefault s
]
, testGroup "Conversions"
[ testProperty "fromRationalRepetend" $ \(l, r) -> r ==
(case fromRationalRepetend (Just l) r of
Left (s, rr) -> toRational s + rr
Right (s, mbRepetend) ->
case mbRepetend of
Nothing -> toRational s
Just repetend -> toRationalRepetend s repetend)
, testGroup "Float" $ conversionsProperties (undefined :: Float)
, testGroup "Double" $ conversionsProperties (undefined :: Double)
, testGroup "floatingOrInteger"
[ testProperty "correct conversion" $ \s ->
case floatingOrInteger s :: Either Double Int of
Left d -> d == toRealFloat s
Right i -> i == fromInteger (coefficient s') * 10^(base10Exponent s')
where
s' = normalize s
, testProperty "Integer == Right" $ \(i::Integer) ->
(floatingOrInteger (fromInteger i) :: Either Double Integer) == Right i
, smallQuick "Double == Left"
(\(d::Double) -> genericIsFloating d SC.==>
(floatingOrInteger (realToFrac d) :: Either Double Integer) == Left d)
(\(d::Double) -> genericIsFloating d QC.==>
(floatingOrInteger (realToFrac d) :: Either Double Integer) == Left d)
]
, testGroup "toBoundedInteger"
[ testGroup "correct conversion"
[ testProperty "Int64" $ toBoundedIntegerConversion (undefined :: Int64)
, testProperty "Word64" $ toBoundedIntegerConversion (undefined :: Word64)
, testProperty "NegativeNum" $ toBoundedIntegerConversion (undefined :: NegativeInt)
]
]
]
, testGroup "toBoundedRealFloat"
[ testCase "0 * 10^1000 == 0" $
toBoundedRealFloat (scientific 0 1000) @?= Right (0 :: Float)
]
, testGroup "toBoundedInteger"
[ testGroup "to Int64" $
[ testCase "succ of maxBound" $
let i = succ . fromIntegral $ (maxBound :: Int64)
s = scientific i 0
in (toBoundedInteger s :: Maybe Int64) @?= Nothing
, testCase "pred of minBound" $
let i = pred . fromIntegral $ (minBound :: Int64)
s = scientific i 0
in (toBoundedInteger s :: Maybe Int64) @?= Nothing
, testCase "0 * 10^1000 == 0" $
toBoundedInteger (scientific 0 1000) @?= Just (0 :: Int64)
]
]
, testGroup "Predicates"
[ testProperty "isFloating" $ \s -> isFloating s == genericIsFloating s
, testProperty "isInteger" $ \s -> isInteger s == not (genericIsFloating s)
]
]
testMain :: TestTree -> IO ()
testMain = defaultMainWithIngredients defaultIngredients
testReads :: String -> [(Scientific, String)] -> Assertion
testReads inp out = reads inp @?= out
testRead :: String -> Scientific -> Assertion
testRead inp out = read inp @?= out
testShow :: Maybe Scientific -> String -> Assertion
testShow inp out = show inp @?= out
testScientificP :: String -> [(Scientific, String)] -> Assertion
testScientificP inp out = readP_to_S Scientific.scientificP inp @?= out
genericIsFloating :: RealFrac a => a -> Bool
genericIsFloating a = fromInteger (floor a :: Integer) /= a
toDecimalDigits_eq_floatToDigits :: Double -> Bool
toDecimalDigits_eq_floatToDigits d =
Scientific.toDecimalDigits (Scientific.fromFloatDigits d)
== Numeric.floatToDigits 10 d
conversionsProperties :: forall realFloat.
( RealFloat realFloat
, QC.Arbitrary realFloat
, SC.Serial IO realFloat
, Show realFloat
)
=> realFloat -> [TestTree]
conversionsProperties _ =
[
-- testProperty "fromFloatDigits_1" $ \(d :: realFloat) ->
-- Scientific.fromFloatDigits d === realToFrac d
-- testProperty "fromFloatDigits_2" $ \(s :: Scientific) ->
-- Scientific.fromFloatDigits (realToFrac s :: realFloat) == s
testProperty "toRealFloat" $ \(d :: realFloat) ->
(Scientific.toRealFloat . realToFrac) d == d
, testProperty "toRealFloat . fromFloatDigits == id" $ \(d :: realFloat) ->
(Scientific.toRealFloat . Scientific.fromFloatDigits) d == d
-- , testProperty "fromFloatDigits . toRealFloat == id" $ \(s :: Scientific) ->
-- Scientific.fromFloatDigits (Scientific.toRealFloat s :: realFloat) == s
]
toBoundedIntegerConversion
:: forall i. (Integral i, Bounded i)
=> i -> Scientific -> Bool
toBoundedIntegerConversion _ s =
case toBoundedInteger s :: Maybe i of
Just i -> i == (fromIntegral $ (coefficient s') * 10^(base10Exponent s')) &&
i >= minBound &&
i <= maxBound
where
s' = normalize s
Nothing -> isFloating s ||
s < fromIntegral (minBound :: i) ||
s > fromIntegral (maxBound :: i)
testProperty :: (SC.Testable IO test, QC.Testable test)
=> TestName -> test -> TestTree
testProperty n test = smallQuick n test test
smallQuick :: (SC.Testable IO smallCheck, QC.Testable quickCheck)
=> TestName -> smallCheck -> quickCheck -> TestTree
smallQuick n sc qc = testGroup n
[ SC.testProperty "smallcheck" sc
, QC.testProperty "quickcheck" qc
]
-- | ('==') specialized to 'Scientific' so we don't have to put type
-- signatures everywhere.
(===) :: Scientific -> Scientific -> Bool
(===) = (==)
infix 4 ===
bin :: (forall a. Num a => a -> a -> a) -> Scientific -> Scientific -> Bool
bin op a b = toRational (a `op` b) == toRational a `op` toRational b
unary :: (forall a. Num a => a -> a) -> Scientific -> Bool
unary op a = toRational (op a) == op (toRational a)
toDecimalDigits_laws :: Scientific -> Bool
toDecimalDigits_laws x =
let (ds, e) = Scientific.toDecimalDigits x
rule1 = n >= 1
n = length ds
rule2 = toRational x == coeff * 10 ^^ e
coeff = foldr (\di a -> a / 10 + fromIntegral di) 0 (0:ds)
rule3 = all (\di -> 0 <= di && di <= 9) ds
rule4 | n == 1 = True
| otherwise = null $ takeWhile (==0) $ reverse ds
in rule1 && rule2 && rule3 && rule4
properFraction_laws :: Scientific -> Bool
properFraction_laws x = fromInteger n + f === x &&
(positive n == posX || n == 0) &&
(positive f == posX || f == 0) &&
abs f < 1
where
posX = positive x
(n, f) = properFraction x :: (Integer, Scientific)
positive :: (Ord a, Num a) => a -> Bool
positive y = y >= 0
floorDefault :: Scientific -> Integer
floorDefault x = if r < 0 then n - 1 else n
where (n,r) = properFraction x
ceilingDefault :: Scientific -> Integer
ceilingDefault x = if r > 0 then n + 1 else n
where (n,r) = properFraction x
truncateDefault :: Scientific -> Integer
truncateDefault x = m where (m,_) = properFraction x
roundDefault :: Scientific -> Integer
roundDefault x = let (n,r) = properFraction x
m = if r < 0 then n - 1 else n + 1
in case signum (abs r - 0.5) of
-1 -> n
0 -> if even n then n else m
1 -> m
_ -> error "round default defn: Bad value"
newtype NegativeInt = NegativeInt Int
deriving (Show, Enum, Eq, Ord, Num, Real, Integral)
instance Bounded NegativeInt where
minBound = -100
maxBound = -10
----------------------------------------------------------------------
-- SmallCheck instances
----------------------------------------------------------------------
instance (Monad m) => SC.Serial m Scientific where
series = scientifics
scientifics :: (Monad m) => SC.Series m Scientific
scientifics = SC.cons2 scientific
nonNegativeScientificSeries :: (Monad m) => SC.Series m Scientific
nonNegativeScientificSeries = liftM SC.getNonNegative SC.series
normalizedScientificSeries :: (Monad m) => SC.Series m Scientific
normalizedScientificSeries = liftM Scientific.normalize SC.series
----------------------------------------------------------------------
-- QuickCheck instances
----------------------------------------------------------------------
instance QC.Arbitrary Scientific where
arbitrary = QC.frequency
[ (70, scientific <$> QC.arbitrary
<*> intGen)
, (20, scientific <$> QC.arbitrary
<*> bigIntGen)
, (10, scientific <$> pure 0
<*> bigIntGen)
]
shrink s = zipWith scientific (QC.shrink $ Scientific.coefficient s)
(QC.shrink $ Scientific.base10Exponent s)
nonNegativeScientificGen :: QC.Gen Scientific
nonNegativeScientificGen =
scientific <$> (QC.getNonNegative <$> QC.arbitrary)
<*> intGen
normalizedScientificGen :: QC.Gen Scientific
normalizedScientificGen = Scientific.normalize <$> QC.arbitrary
bigIntGen :: QC.Gen Int
bigIntGen = QC.sized $ \size -> QC.resize (size * 1000) intGen
intGen :: QC.Gen Int
intGen = QC.arbitrary
|