1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
|
{-# LANGUAGE DeriveFunctor, EmptyCase, FlexibleInstances, GADTs, RankNTypes #-}
{-# LANGUAGE MultiParamTypeClasses, ScopedTypeVariables, TupleSections #-}
{-# OPTIONS_GHC -fno-warn-unused-imports #-}
module Sketch where
import Control.Arrow hiding (first, second)
import Control.Category (Category)
import Control.Monad
import Control.Selective
import Data.Bifunctor
import Data.Bool
import Data.Function
import Data.Semigroup (Semigroup (..))
import Data.Void
import qualified Control.Arrow as A
import qualified Control.Category as C
-- This file contains various examples and proof sketches and we keep it here to
-- make sure it still compiles. We ignore HLINT suggestions because they often
-- get in the way of readable "proofs" that use equational reasoning.
{-# ANN module "HLint: ignore" #-}
------------------------------- Various examples -------------------------------
bindBool :: Selective f => f Bool -> (Bool -> f a) -> f a
bindBool x f = ifS x (f False) (f True)
branch3 :: Selective f => f (Either a (Either b c)) -> f (a -> d) -> f (b -> d) -> f (c -> d) -> f d
branch3 x a b c = (fmap (fmap Left) <$> x)
<*? (fmap (Right . Right) <$> a)
<*? (fmap Right <$> b)
<*? c
bindOrdering :: Selective f => f Ordering -> (Ordering -> f a) -> f a
bindOrdering x f = branch3 (toEither <$> x) (const <$> f LT) (const <$> f EQ) (const <$> f GT)
where
toEither LT = Left ()
toEither EQ = Right (Left ())
toEither GT = Right (Right ())
-------------------------------- Proof sketches --------------------------------
-- A convenient primitive which checks that the types of two given values
-- coincide and returns the first value.
(===) :: a -> a -> a
x === y = if True then x else y
infixl 0 ===
-- First, we typecheck the laws
-- F1 (Free): f <$> select x y = select (fmap f <$> x) (fmap f <$> y)
f1 :: Selective f => (b -> c) -> f (Either a b) -> f (a -> b) -> f c
f1 f x y = f <$> select x y === select (fmap f <$> x) (fmap f <$> y)
-- F2 (Free): select (first f <$> x) y = select x ((. f) <$> y)
f2 :: Selective f => (a -> c) -> f (Either a b) -> f (c -> b) -> f b
f2 f x y = select (first f <$> x) y === select x ((. f) <$> y)
-- F3 (Free): select x (f <$> y) = select (first (flip f) <$> x) ((&) <$> y)
f3 :: Selective f => (c -> a -> b) -> f (Either a b) -> f c -> f b
f3 f x y = select x (f <$> y) === select (first (flip f) <$> x) ((&) <$> y)
-- P1 (Generalised identity): select x (pure y) == either y id <$> x
p1 :: Selective f => f (Either a b) -> (a -> b) -> f b
p1 x y = select x (pure y) === either y id <$> x
-- A more basic form of P1, from which P1 itself follows as a free theorem.
-- Intuitively, both 'p1' and 'p1id' make the following Const instance illegal:
--
-- @
-- instance Monoid m => Selective (Const m) where
-- select (Const x) (Const _) = Const (x <> x)
-- @
-- P1id (Identity): select x (pure id) == either id id <$> x
p1id :: Selective f => f (Either a a) -> f a
p1id x = select x (pure id) === either id id <$> x
-- P2 (does not generally hold): select (pure (Left x)) y = ($x) <$> y
p2 :: Selective f => a -> f (a -> b) -> f b
p2 x y = select (pure (Left x)) y === y <*> pure x
-- P3 (does not generally hold): select (pure (Right x)) y = pure x
p3 :: Selective f => b -> f (a -> b) -> f b
p3 x y = select (pure (Right x)) y === pure x
-- A1 (Associativity):
-- select x (select y z) = select (select (f <$> x) (g <$> y)) (h <$> z)
-- where f x = Right <$> x
-- g y = \a -> bimap (,a) ($a) y
-- h z = uncurry z
a1 :: Selective f => f (Either a b) -> f (Either c (a -> b)) -> f (c -> a -> b) -> f b
a1 x y z = select x (select y z) === select (select (f <$> x) (g <$> y)) (h <$> z)
where
f x = Right <$> x
g y = \a -> bimap (,a) ($a) y
h z = uncurry z
-- Intuitively, 'i1' makes the following Const instance illegal, by insisting
-- that effects on the left hand side must be executed.
--
-- @
-- instance Monoid m => Selective (Const m) where
-- select _ _ = Const mempty
-- @
--
-- If we decompose an effect @x :: f a@ into the effect itself @void x@ and the
-- resulting pure value @a@, i.e. @void x *> pure a@, then it becomes clear that
-- 'i1unit' means that all effects must be executed and the remainig pure value
-- will be used to select whether to execute or skip the right hand side.
-- i1unit (Interchange): (x *> y) <*? z = x *> (y <*? z)
i1unit :: Selective f => f c -> f (Either a b) -> f (a -> b) -> f b
i1unit x y z =
(x *> y) <*? z
===
x *> (y <*? z)
-- i1: x <*> (y <*? z) = (f <$> x <*> y) <*? (g <$> z)
-- where
-- f = (\ab -> bimap (, ab) ab)
-- g = (\ca (c, ab) -> ab (ca c))
i1 :: Selective f => f (a -> b) -> f (Either c a) -> f (c -> a) -> f b
i1 x y z =
x <*> (y <*? z)
===
(f <$> x <*> y) <*? (g <$> z)
where
f ab = bimap (\c ca -> ab (ca c)) ab
g ca = ($ca)
-- D1 (distributivity): pure x <*? (y *> z) = (pure x <*? y) *> (pure x <*? z)
d1 :: Selective f => Either a b -> f (a -> b) -> f (a -> b) -> f b
d1 x y z =
pure x <*? (y *> z)
===
(pure x <*? y) *> (pure x <*? z)
-- TODO: Can we prove the following from D1?
-- ifS (pure x) a1 b1 *> ifS (pure x) a2 b2 = ifS (pure x) (a1 *> a2) (b1 *> b2)
-- Now let's typecheck some theorems
-- This assumes P2, which does not always hold
-- Identity: pure id <*> v = v
t1 :: Selective f => f a -> f a
t1 v =
-- Express the lefthand side using 'apS'
apS (pure id) v
=== -- Definition of 'apS'
select (Left <$> pure id) ((&) <$> v)
=== -- Push 'Left' inside 'pure'
select (pure (Left id)) ((&) <$> v)
=== -- Apply P2
($id) <$> ((&) <$> v)
=== -- Simplify
id <$> v
=== -- Functor identity: -- Functor identity: fmap id = id
v
-- Homomorphism: pure f <*> pure x = pure (f x)
t2 :: Selective f => (a -> b) -> a -> f b
t2 f x =
-- Express the lefthand side using 'apS'
apS (pure f) (pure x)
=== -- Definition of 'apS'
select (Left <$> pure f) ((&) <$> pure x)
=== -- Push 'Left' inside 'pure'
select (pure (Left f)) ((&) <$> pure x)
=== -- Applicative's fmap-pure law
select (pure (Left f)) (pure ((&) x))
=== -- Apply P1
either (((&) x)) id <$> pure (Left f)
=== -- Applicative's fmap-pure law
pure (((&) x) f)
=== -- Simplify
pure (f x)
-- This assumes P2, which does not always hold
-- Interchange: u <*> pure y = pure ($y) <*> u
t3 :: Selective f => f (a -> b) -> a -> f b
t3 u y =
-- Express the lefthand side using 'apS'
apS u (pure y)
=== -- Definition of 'apS'
select (Left <$> u) ((&) <$> pure y)
=== -- Rewrite to have a pure second argument
select (Left <$> u) (pure ($y))
=== -- Apply P1
either ($y) id <$> (Left <$> u)
=== -- Simplify, obtaining (#)
($y) <$> u
=== -- Express right-hand side of the theorem using 'apS'
apS (pure ($y)) u
=== -- Definition of 'apS'
select (Left <$> pure ($y)) ((&) <$> u)
=== -- Push 'Left' inside 'pure'
select (pure (Left ($y))) ((&) <$> u)
=== -- Apply P2
($($y)) <$> ((&) <$> u)
=== -- Simplify, obtaining (#)
($y) <$> u
-- Composition: (.) <$> u <*> v <*> w = u <*> (v <*> w)
t4 :: Selective f => f (b -> c) -> f (a -> b) -> f a -> f c
t4 u v w =
-- Express the lefthand side using 'apS'
apS (apS ((.) <$> u) v) w
=== -- Definition of 'apS'
select (Left <$> select (Left <$> (.) <$> u) ((&) <$> v)) ((&) <$> w)
=== -- Apply F1 to push the leftmost 'Left' inside 'select'
select (select (second Left <$> Left <$> (.) <$> u) ((Left .) <$> (&) <$> v)) ((&) <$> w)
=== -- Simplify
select (select (Left <$> (.) <$> u) ((Left .) <$> (&) <$> v)) ((&) <$> w)
=== -- Pull (.) outside 'Left'
select (select (first (.) <$> Left <$> u) ((Left .) <$> (&) <$> v)) ((&) <$> w)
=== -- Apply F2 to push @(.)@ to the function
select (select (Left <$> u) ((. (.)) <$> (Left .) <$> (&) <$> v)) ((&) <$> w)
=== -- Simplify, obtaining (#)
select (select (Left <$> u) ((Left .) <$> flip (.) <$> v)) ((&) <$> w)
=== -- Express the righthand side using 'apS'
apS u (apS v w)
=== -- Definition of 'apS'
select (Left <$> u) ((&) <$> select (Left <$> v) ((&) <$> w))
=== -- Apply F1 to push @(&)@ inside 'select'
select (Left <$> u) (select (Left <$> v) (((&) .) <$> (&) <$> w))
=== -- Apply A1 to reassociate to the left
select (select (Left <$> u) ((\y a -> bimap (,a) ($a) y) <$> Left <$> v)) (uncurry . ((&) .) <$> (&) <$> w)
=== -- Simplify
select (select (Left <$> u) ((\y a -> Left (y, a)) <$> v)) ((\x (f, g) -> g (f x)) <$> w)
=== -- Apply F3 to pull the rightmost pure function inside 'select'
select (first (flip ((\x (f, g) -> g (f x)))) <$> select (Left <$> u) ((\y a -> Left (y, a)) <$> v)) ((&) <$> w)
=== -- Simplify
select (first (\(f, g) -> g . f) <$> select (Left <$> u) ((\y a -> Left (y, a)) <$> v)) ((&) <$> w)
=== -- Apply F1 to push the leftmost pure function inside 'select'
select (select (Left <$> u) (((first (\(f, g) -> g . f)).) <$> (\y a -> Left (y, a)) <$> v)) ((&) <$> w)
=== -- Simplify, obtaining (#)
select (select (Left <$> u) ((Left .) <$> flip (.) <$> v)) ((&) <$> w)
--------------------------------- End of proofs --------------------------------
-- Various other sketches below
-- Associate to the left
-- f (a + b + c) -> f (a -> (b + c)) -> f (b -> c) -> f c
l :: Selective f => f (Either a (Either b c)) -> f (a -> Either b c) -> f (b -> c) -> f c
l x y z = x <*? y <*? z
-- Associate to the right
-- f (a + b) -> f (c + (a -> b)) -> f (c -> a -> b) -> f b
r :: Selective f => f (Either a b) -> f (Either c (a -> b)) -> f (c -> a -> b) -> f b
r x y z = x <*? (y <*? z)
-- Normalise: go from right to left association
normalise :: Selective f => f (Either a b) -> f (Either c (a -> b)) -> f (c -> a -> b) -> f b
normalise x y z = (f <$> x) <*? (g <$> y) <*? (h <$> z)
where
f x = Right <$> x
g y = \a -> bimap (,a) ($a) y
h z = uncurry z
-- Alternative normalisation which uses Scott encoding of pairs
normalise2 :: Selective f => f (Either a b) -> f (Either c (a -> b)) -> f (c -> a -> b) -> f b
normalise2 x y z = (f <$> x) <*? (g <$> y) <*? (h <$> z)
where
f x = Right <$> x
g y = \a -> bimap (\c f -> f c a) ($a) y
h z = ($z) -- h = (&)
-- Alternative formulations of selective functors.
-- Factoring out the selection logic into a pure argument
class Applicative f => SelectiveBy f where
selectBy :: (a -> Either (b -> c) c) -> f a -> f b -> f c
fromSelectBy :: SelectiveBy f => f (Either a b) -> f (a -> b) -> f b
fromSelectBy = selectBy (first ((&)))
toSelectBy :: Selective f => (a -> Either (b -> c) c) -> f a -> f b -> f c
toSelectBy f x y = select (f <$> x) ((&) <$> y)
whenBy :: SelectiveBy f => f Bool -> f () -> f ()
whenBy = selectBy (bool (Right ()) (Left id))
-- A first-order version of selective functors.
class Applicative f => SelectiveF f where
selectF :: f (Either a b) -> f c -> f (Either a (b, c))
toF :: Selective f => f (Either a b) -> f c -> f (Either a (b, c))
toF x y = branch x (pure Left) ((\c b -> Right (b, c)) <$> y)
fromF :: SelectiveF f => f (Either a b) -> f (a -> b) -> f b
fromF x y = either id (uncurry ((&))) <$> selectF (swapEither <$> x) y
-- A few variants that have a sum type in both arguments. They are not
-- equivalent to 'Selective' of 'SelectiveF' unless we require that effects are
-- executed from left to right.
-- Composition of Applicative and Either monad
class Applicative f => SelectiveA f where
(|*|) :: f (Either e (a -> b)) -> f (Either e a) -> f (Either e b)
-- Composition of Starry and Either monad
-- See: https://duplode.github.io/posts/applicative-archery.html
class Applicative f => SelectiveS f where
(|.|) :: f (Either e (b -> c)) -> f (Either e (a -> b)) -> f (Either e (a -> c))
-- Composition of Monoidal and Either monad
-- See: http://blog.ezyang.com/2012/08/applicative-functors/
class Applicative f => SelectiveM f where
(|**|) :: f (Either e a) -> f (Either e b) -> f (Either e (a, b))
biselect :: Selective f => f (Either a b) -> f (Either a c) -> f (Either a (b, c))
biselect x y = select ((fmap Left . swapEither) <$> x) ((\e a -> fmap (a,) e) <$> y)
(?*?) :: Selective f => f (Either a b) -> f (Either a c) -> f (Either a (b, c))
(?*?) = biselect
a1M :: Selective f => f (Either a b) -> f (Either a c) -> f (Either a d)
-> f (Either a (b, (c, d)))
a1M x y z =
x ?*? (y ?*? z)
===
fmap assoc <$> ((x ?*? y) ?*? z)
where
assoc ((a, b), c) = (a, (b, c))
apM :: SelectiveM f => f (a -> b) -> f a -> f b
apM f x = fmap (either absurd (uncurry ($))) (fmap Right f |**| fmap Right x)
fromM :: SelectiveM f => f (Either a b) -> f (a -> b) -> f b
fromM x f = either id (\(a, f) -> f a) <$> (fmap swapEither x |**| fmap Right f)
toM :: Selective f => f (Either e a) -> f (Either e b) -> f (Either e (a, b))
toM = biselect
-- Proof that if select = selectM, and <*> = ap, then <*> = apS.
apSEqualsApply :: (Selective f, Monad f) => f (a -> b) -> f a -> f b
apSEqualsApply fab fa =
fab <*> fa
=== -- Law: <*> = ap
ap fab fa
=== -- Free theorem (?)
selectM (Left <$> fab) ((&) <$> fa)
=== -- Law: selectM = select
select (Left <$> fab) ((&) <$> fa)
=== -- Definition of apS
apS fab fa
-- | Selective function composition, where the first effect is always evaluated,
-- but the second one can be skipped if the first value is @Nothing@.
-- Thanks to the laws of 'Selective', this operator is associative, and has
-- identity @pure (Just id)@.
(.?) :: Selective f => f (Maybe (b -> c)) -> f (Maybe (a -> b)) -> f (Maybe (a -> c))
x .? y = select (maybe (Right Nothing) Left <$> x) ((\ab bc -> (bc .) <$> ab) <$> y)
infixl 4 .?
-- This assumes P2, which does not always hold
-- Proof of left identity: pure (Just id) .? x = x
t5 :: Selective f => f (Maybe (a -> b)) -> f (Maybe (a -> b))
t5 x =
--- Lefthand side
pure (Just id) .? x
=== -- Express the lefthand side by expanding the definition of '.?'
select (maybe (Right Nothing) Left <$> pure (Just id))
((\ab bc -> (bc .) <$> ab) <$> x)
=== -- Simplify
select (pure $ Left id) ((\ab bc -> (bc .) <$> ab) <$> x)
=== -- Apply P2
($id) <$> ((\ab bc -> (bc .) <$> ab) <$> x)
=== -- Simplify
(($id) <$> (\ab bc -> (bc .) <$> ab) <$> x)
=== -- Functor identity: fmap id = id
id <$> x
===
x
-- Proof of right identity: x .? pure (Just id) = x
t6 :: Selective f => f (Maybe (a -> b)) -> f (Maybe (a -> b))
t6 x =
--- Lefthand side
x .? pure (Just id)
=== -- Express the lefthand side by expanding the definition of '.?'
select (maybe (Right Nothing) Left <$> x)
((\ab bc -> (bc .) <$> ab) <$> pure (Just id))
=== -- Simplify
select (maybe (Right Nothing) Left <$> x) (pure Just)
=== -- Apply P1
either Just id <$> (maybe (Right Nothing) Left <$> x)
=== -- Functor identity: fmap id = id
id <$> x
===
x
-- Proof of associativity: (x .? y) .? z = x .? (y .? z)
t7 :: Selective f => f (Maybe (c -> d)) -> f (Maybe (b -> c)) -> f (Maybe (a -> b)) -> f (Maybe (a -> d))
t7 x y z =
-- Lefthand side
(x .? y) .? z
=== -- Express the lefthand side by expanding the definition of '.?'
select (maybe (Right Nothing) Left <$> (select (maybe (Right Nothing) Left <$> x)
((\ab bc -> (bc .) <$> ab) <$> y)))
((\ab bc -> (bc .) <$> ab) <$> z)
=== -- Apply F3 to move the rightmost pure function into the outer 'select'
select (first (flip $ (\ab bc -> (bc .) <$> ab)) <$> maybe (Right Nothing) Left <$> (select (maybe (Right Nothing) Left <$> x)
((\ab bc -> (bc .) <$> ab) <$> y)))
((&) <$> z)
=== -- Simplify
select (maybe (Right Nothing) (\bc -> Left $ fmap $ (bc .)) <$> (select (maybe (Right Nothing) Left <$> x)
((\ab bc -> (bc .) <$> ab) <$> y)))
((&) <$> z)
=== -- Apply F1 to move the pure function into the inner 'select'
select (select (second (maybe (Right Nothing) (\bc -> Left $ fmap $ (bc .))) <$> maybe (Right Nothing) Left <$> x)
(((maybe (Right Nothing) (\bc -> Left $ fmap $ (bc .))).) <$> (\ab bc -> (bc .) <$> ab) <$> y))
((&) <$> z)
=== -- Simplify, obtaining (#)
select (select (maybe (Right (Right Nothing)) Left <$> x)
((\mbc cd -> maybe (Right Nothing) (\bc -> Left $ fmap ((cd . bc) .)) mbc) <$> y))
((&) <$> z)
=== -- Righthand side
x .? (y .? z)
=== -- Express the righthand side by expanding the definition of '.?'
select (maybe (Right Nothing) Left <$> x)
((\ab bc -> (bc .) <$> ab) <$> (select (maybe (Right Nothing) Left <$> y)
((\ab bc -> (bc .) <$> ab) <$> z)))
=== -- Apply F1 to move the pure function into the inner 'select'
select (maybe (Right Nothing) Left <$> x)
(select (second ((\ab bc -> (bc .) <$> ab)) <$> maybe (Right Nothing) Left <$> y)
((((\ab bc -> (bc .) <$> ab)).) <$> (\ab bc -> (bc .) <$> ab) <$> z))
=== -- Apply A1 to reassociate to the left
select (select (fmap Right <$> maybe (Right Nothing) Left <$> x)
((\y a -> bimap (,a) ($a) y) <$> second ((\ab bc -> (bc .) <$> ab)) <$> maybe (Right Nothing) Left <$> y))
(uncurry <$> (((\ab bc -> (bc .) <$> ab)).) <$> (\ab bc -> (bc .) <$> ab) <$> z)
=== -- Simplify
select (select (maybe (Right (Right Nothing)) Left <$> x)
((\m a -> maybe (Right Nothing) (Left . (,a)) m) <$> y))
((\ab (bc, cd) -> ((cd . bc) .) <$> ab) <$> z)
=== -- Apply F3 to move the rightmost pure function into the outer 'select'
select (first (flip $ \ab (bc, cd) -> ((cd . bc) .) <$> ab) <$> select (maybe (Right (Right Nothing)) Left <$> x)
((\m a -> maybe (Right Nothing) (Left . (,a)) m) <$> y))
((&) <$> z)
=== -- Apply F1 to move the pure function into the inner 'select', obtaining (#)
select (select (maybe (Right (Right Nothing)) Left <$> x)
((\mbc cd -> maybe (Right Nothing) (\bc -> Left $ fmap ((cd . bc) .)) mbc) <$> y))
((&) <$> z)
------------------------ McCarthy's Conditional combinator -------------------------
-- See: http://www4.di.uminho.pt/~jno/ps/pdbc.pdf
-- And also: https://themattchan.com/docs/algprog.pdf
-- Guard function used in McCarthy's conditional
-- | It provides information about the outcome of testing @p@ on some input @a@,
-- encoded in terms of the coproduct injections without losing the input
-- @a@ itself.
grdS :: Applicative f => f (a -> Bool) -> f a -> f (Either a a)
grdS f a = selector <$> applyF f (dup <$> a)
where
dup x = (x, x)
applyF fab faa = bimap <$> fab <*> pure id <*> faa
selector (b, x) = bool (Right x) (Left x) b
-- | McCarthy's conditional, denoted p -> f,g is a well-known functional
-- combinator, which suggests that, to reason about conditionals, one may
-- seek help in the algebra of coproducts.
--
-- This combinator is very similar to the very nature of the 'select'
-- operator and benefits from a series of properties and laws.
condS :: Selective f => f (b -> Bool) -> f (b -> c) -> f (b -> c) -> f b -> f c
condS p f g = (\r -> branch r f g) . grdS p
------------------------ Carter Schonwald's copatterns -------------------------
-- See: https://github.com/cartazio/symmetric-monoidal/blob/15b209953b7d4a47651f615b02dbb0171de8af40/src/Control/Monoidal.hs#L93
-- And also: https://twitter.com/andreymokhov/status/1102648479841701888
data Choose a b c where
CLeft :: Choose a b a
CRight :: Choose a b b
newtype Choice a b = Choice (forall r . Choose a b r -> r)
class SelectiveC f where
choose :: f (Either a b) -> Choice (f (a -> c)) (f (b -> c)) -> f c
-- Recover selective 'branch' from 'choose'.
branchC :: SelectiveC f => f (Either a b) -> f (a -> c) -> f (b -> c) -> f c
branchC x l r = choose x $ Choice $ \c -> case c of { CLeft -> l; CRight -> r }
-- Recover 'choose' from selective 'branch'.
chooseS :: Selective f => f (Either a b) -> Choice (f (a -> c)) (f (b -> c)) -> f c
chooseS x (Choice c) = branch x (c CLeft) (c CRight)
------------------------------- ApplicativeError -------------------------------
-- See https://twitter.com/LukaJacobowitz/status/1148756733243940864.
class Applicative f => ApplicativeEither f e where
raise :: e -> f a
handle :: f a -> f (e -> a) -> f a -- Note that the handler may fail too
-- If the first computation succeeds with an @a@, this function just returns it.
-- Otherwise, it attempts to handle the error @e@ by running the second
-- computation. If the latter fails too, we return the very first error @e@,
-- otherwise we handle the error with the obtained function @e -> a@ and return
-- the resulting value @a@.
handleS :: Selective f => f (Either e a) -> f (Either e (e -> a)) -> f (Either e a)
handleS x y = select (second Right <$> x) (handlePure <$> y)
where
handlePure :: Either e (e -> a) -> e -> Either e a
handlePure (Left _) e = Left e
handlePure (Right f) e = Right (f e)
instance Selective f => ApplicativeEither (ComposeEither f e) e where
raise = ComposeEither . pure . Left
handle (ComposeEither x) (ComposeEither y) = ComposeEither (handleS x y)
------------------------------- Free ArrowChoice -------------------------------
-- A free 'ArrowChoice' built on top of base components @f i o@.
newtype FreeArrowChoice f a b = FreeArrowChoice {
runFreeArrowChoice :: forall arr. ArrowChoice arr =>
(forall i o. f i o -> arr i o) -> arr a b }
instance Category (FreeArrowChoice f) where
id = FreeArrowChoice (\_ -> C.id)
FreeArrowChoice x . FreeArrowChoice y = FreeArrowChoice (\t -> x t C.. y t)
instance Arrow (FreeArrowChoice f) where
arr x = FreeArrowChoice (\_ -> A.arr x)
first (FreeArrowChoice x) = FreeArrowChoice (\t -> A.first (x t))
instance ArrowChoice (FreeArrowChoice f) where
left (FreeArrowChoice x) = FreeArrowChoice (\t -> A.left (x t))
-- A constant arrow, similar to the 'Const' applicative functor.
newtype ConstArrow m a b = ConstArrow { getConstArrow :: m }
instance Monoid m => Category (ConstArrow m) where
id = ConstArrow mempty
ConstArrow x . ConstArrow y = ConstArrow (mappend x y)
instance Monoid m => Arrow (ConstArrow m) where
arr _ = ConstArrow mempty
first (ConstArrow x) = ConstArrow x
instance Monoid m => ArrowChoice (ConstArrow m) where
left (ConstArrow x) = ConstArrow x
-- Collect all base arrows in a 'FreeArrowChoice'.
foldArrowChoice :: Monoid m => (forall i o. f i o -> m) -> FreeArrowChoice f a b -> m
foldArrowChoice f arr = getConstArrow $ runFreeArrowChoice arr (ConstArrow . f)
-- Execute a 'FreeArrowChoice' in an arbitrary monad.
runArrowChoice :: Monad m => (forall i o. f i o -> (i -> m o)) -> FreeArrowChoice f a b -> (a -> m b)
runArrowChoice f arr = runKleisli $ runFreeArrowChoice arr (Kleisli . f)
-------------------------------- Simplified Haxl -------------------------------
data BlockedRequests
instance Semigroup BlockedRequests where (<>) x _ = case x of {}
-- A Haxl computation is either completed (Done) or Blocked on pending data requests
data Result a = Done a | Blocked BlockedRequests (Haxl a) deriving Functor
newtype Haxl a = Haxl { runHaxl :: IO (Result a) } deriving Functor
instance Applicative Haxl where
pure = Haxl . return . Done
Haxl iof <*> Haxl iox = Haxl $ do
rf <- iof
rx <- iox
return $ case (rf, rx) of
(Done f , _ ) -> f <$> rx
(_ , Done x ) -> ($x) <$> rf
(Blocked bf f, Blocked bx x) -> Blocked (bf <> bx) (f <*> x) -- parallelism
instance Selective Haxl where
select (Haxl iox) (Haxl iof) = Haxl $ do
rx <- iox
rf <- iof
return $ case (rx, rf) of
(Done (Right b), _ ) -> Done b -- abandon the second computation
(Done (Left a), _ ) -> ($a) <$> rf
(_ , Done f) -> either f id <$> rx
(Blocked bx x , Blocked bf f) -> Blocked (bx <> bf) (select x f) -- speculative
-- execution
instance Monad Haxl where
return = pure
Haxl iox >>= f = Haxl $ do
rx <- iox
case rx of Done x -> runHaxl (f x) -- dynamic dependency on runtime value 'x'
Blocked bx x -> return (Blocked bx (x >>= f))
|