1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
|
{-# LANGUAGE CPP #-}
#ifdef __GLASGOW_HASKELL__
#define LANGUAGE_DeriveDataTypeable
{-# LANGUAGE DeriveDataTypeable #-}
#endif
#if __GLASGOW_HASKELL__ >= 702
{-# LANGUAGE Trustworthy #-}
#endif
#if __GLASGOW_HASKELL__ >= 702
#define LANGUAGE_DeriveGeneric
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE EmptyDataDecls #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
#endif
#if __GLASGOW_HASKELL__ >= 706
{-# LANGUAGE PolyKinds #-}
#endif
#if __GLASGOW_HASKELL__ >= 708
#define USE_COERCE
{-# LANGUAGE ScopedTypeVariables #-}
#endif
#ifndef MIN_VERSION_base
#define MIN_VERSION_base(x,y,z) 1
#endif
-----------------------------------------------------------------------------
-- |
-- Module : Data.Semigroup
-- Copyright : (C) 2011-2015 Edward Kmett
-- License : BSD-style (see the file LICENSE)
--
-- Maintainer : Edward Kmett <ekmett@gmail.com>
-- Stability : provisional
-- Portability : portable
--
-- In mathematics, a semigroup is an algebraic structure consisting of a
-- set together with an associative binary operation. A semigroup
-- generalizes a monoid in that there might not exist an identity
-- element. It also (originally) generalized a group (a monoid with all
-- inverses) to a type where every element did not have to have an inverse,
-- thus the name semigroup.
--
-- The use of @(\<\>)@ in this module conflicts with an operator with the same
-- name that is being exported by Data.Monoid. However, this package
-- re-exports (most of) the contents of Data.Monoid, so to use semigroups
-- and monoids in the same package just
--
-- > import Data.Semigroup
--
----------------------------------------------------------------------------
module Data.Semigroup (
Semigroup(..)
, stimesMonoid
, stimesIdempotent
, stimesIdempotentMonoid
, mtimesDefault
-- * Semigroups
, Min(..)
, Max(..)
, First(..)
, Last(..)
, WrappedMonoid(..)
-- * Re-exported monoids from Data.Monoid
, Monoid(..)
, Dual(..)
, Endo(..)
, All(..)
, Any(..)
, Sum(..)
, Product(..)
-- * A better monoid for Maybe
, Option(..)
, option
-- * Difference lists of a semigroup
, diff
, cycle1
-- * ArgMin, ArgMax
, Arg(..)
, ArgMin
, ArgMax
) where
import Prelude hiding (foldr1)
#if MIN_VERSION_base(4,8,0)
import Data.Bifunctor
import Data.Void
#else
import Data.Monoid (Monoid(..))
import Data.Foldable
import Data.Traversable
#endif
import Data.Monoid (Dual(..),Endo(..),All(..),Any(..),Sum(..),Product(..))
#if MIN_VERSION_base(4,8,0)
import Data.Monoid (Alt(..))
#endif
import Control.Applicative
import Control.Monad
import Control.Monad.Fix
import qualified Control.Monad.ST as Strict
import qualified Data.Monoid as Monoid
import Data.List.NonEmpty (NonEmpty(..))
#if MIN_VERSION_base(4,6,0)
import Data.Ord (Down(..))
#else
import GHC.Exts (Down(..))
#endif
#if MIN_VERSION_base(4,4,0) && !defined(mingw32_HOST_OS) && !defined(ghcjs_HOST_OS) && !defined(ETA_VERSION)
import GHC.Event
#endif
#ifdef MIN_VERSION_deepseq
import Control.DeepSeq (NFData(..))
#endif
#ifdef MIN_VERSION_containers
import Data.Sequence (Seq, (><))
import Data.Set (Set)
import Data.IntSet (IntSet)
import Data.Map (Map)
import Data.IntMap (IntMap)
#endif
#ifdef MIN_VERSION_binary
# if !(MIN_VERSION_binary(0,8,3))
import qualified Data.Binary.Builder as Builder
# endif
#endif
#ifdef MIN_VERSION_bytestring
import Data.ByteString as BS
import Data.ByteString.Lazy as BL
# if (MIN_VERSION_bytestring(0,10,2)) || defined(MIN_VERSION_bytestring_builder)
import qualified Data.ByteString.Builder as ByteString
# elif MIN_VERSION_bytestring(0,10,0)
import qualified Data.ByteString.Lazy.Builder as ByteString
# endif
# if (MIN_VERSION_bytestring(0,10,4)) || defined(MIN_VERSION_bytestring_builder)
import Data.ByteString.Short
# endif
#endif
#if (MIN_VERSION_base(4,8,0)) || defined(MIN_VERSION_transformers)
import Data.Functor.Identity
#endif
#if (MIN_VERSION_base(4,7,0)) || defined(MIN_VERSION_tagged)
import Data.Proxy
#endif
#ifdef MIN_VERSION_tagged
import Data.Tagged
#endif
#ifdef MIN_VERSION_text
import qualified Data.Text as TS
import qualified Data.Text.Lazy as TL
import qualified Data.Text.Lazy.Builder as Text
#endif
#ifdef MIN_VERSION_hashable
import Data.Hashable
import Data.Hashable.Lifted
#endif
#ifdef MIN_VERSION_unordered_containers
import Data.HashMap.Lazy as Lazy
import Data.HashSet (HashSet)
#endif
#ifdef LANGUAGE_DeriveDataTypeable
import Data.Data
#endif
#ifdef LANGUAGE_DeriveGeneric
import GHC.Generics
#endif
#ifdef USE_COERCE
import Data.Coerce
#endif
infixr 6 <>
class Semigroup a where
-- | An associative operation.
--
-- @
-- (a '<>' b) '<>' c = a '<>' (b '<>' c)
-- @
--
-- If @a@ is also a 'Monoid' we further require
--
-- @
-- ('<>') = 'mappend'
-- @
(<>) :: a -> a -> a
-- | Reduce a non-empty list with @\<\>@
--
-- The default definition should be sufficient, but this can be overridden for efficiency.
--
sconcat :: NonEmpty a -> a
sconcat (a :| as) = go a as where
go b (c:cs) = b <> go c cs
go b [] = b
-- | Repeat a value @n@ times.
--
-- Given that this works on a 'Semigroup' it is allowed to fail if you request 0 or fewer
-- repetitions, and the default definition will do so.
--
-- By making this a member of the class, idempotent semigroups and monoids can upgrade this to execute in
-- /O(1)/ by picking @stimes = stimesIdempotent@ or @stimes = stimesIdempotentMonoid@ respectively.
--
-- @since 0.17
stimes :: Integral b => b -> a -> a
stimes y0 x0
| y0 <= 0 = error "stimes: positive multiplier expected"
| otherwise = f x0 y0
where
f x y
| even y = f (x <> x) (y `quot` 2)
| y == 1 = x
| otherwise = g (x <> x) (y `quot` 2) x -- See Note [Half of y - 1]
g x y z
| even y = g (x <> x) (y `quot` 2) z
| y == 1 = x <> z
| otherwise = g (x <> x) (y `quot` 2) (x <> z) -- See Note [Half of y - 1]
{-# INLINE stimes #-}
{- Note [Half of y - 1]
~~~~~~~~~~~~~~~~~~~~~
Since y is guaranteed to be odd and positive here,
half of y - 1 can be computed as y `quot` 2, optimising subtraction away.
-}
-- | A generalization of 'Data.List.cycle' to an arbitrary 'Semigroup'.
-- May fail to terminate for some values in some semigroups.
cycle1 :: Semigroup m => m -> m
cycle1 xs = xs' where xs' = xs <> xs'
instance Semigroup () where
_ <> _ = ()
sconcat _ = ()
stimes _ _ = ()
instance Semigroup b => Semigroup (a -> b) where
f <> g = \a -> f a <> g a
stimes n f e = stimes n (f e)
instance Semigroup [a] where
(<>) = (++)
stimes n x
| n < 0 = error "stimes: [], negative multiplier"
| otherwise = rep n
where
rep 0 = []
rep i = x ++ rep (i - 1)
instance Semigroup a => Semigroup (Maybe a) where
Nothing <> b = b
a <> Nothing = a
Just a <> Just b = Just (a <> b)
stimes _ Nothing = Nothing
stimes n (Just a) = case compare n 0 of
LT -> error "stimes: Maybe, negative multiplier"
EQ -> Nothing
GT -> Just (stimes n a)
instance Semigroup (Either a b) where
Left _ <> b = b
a <> _ = a
stimes = stimesIdempotent
instance (Semigroup a, Semigroup b) => Semigroup (a, b) where
(a,b) <> (a',b') = (a<>a',b<>b')
stimes n (a,b) = (stimes n a, stimes n b)
instance (Semigroup a, Semigroup b, Semigroup c) => Semigroup (a, b, c) where
(a,b,c) <> (a',b',c') = (a<>a',b<>b',c<>c')
stimes n (a,b,c) = (stimes n a, stimes n b, stimes n c)
instance (Semigroup a, Semigroup b, Semigroup c, Semigroup d) => Semigroup (a, b, c, d) where
(a,b,c,d) <> (a',b',c',d') = (a<>a',b<>b',c<>c',d<>d')
stimes n (a,b,c,d) = (stimes n a, stimes n b, stimes n c, stimes n d)
instance (Semigroup a, Semigroup b, Semigroup c, Semigroup d, Semigroup e) => Semigroup (a, b, c, d, e) where
(a,b,c,d,e) <> (a',b',c',d',e') = (a<>a',b<>b',c<>c',d<>d',e<>e')
stimes n (a,b,c,d,e) = (stimes n a, stimes n b, stimes n c, stimes n d, stimes n e)
instance Semigroup Ordering where
LT <> _ = LT
EQ <> y = y
GT <> _ = GT
stimes = stimesIdempotentMonoid
instance Semigroup a => Semigroup (Dual a) where
Dual a <> Dual b = Dual (b <> a)
stimes n (Dual a) = Dual (stimes n a)
instance Semigroup (Endo a) where
#ifdef USE_COERCE
(<>) = coerce ((.) :: (a -> a) -> (a -> a) -> (a -> a))
#else
Endo f <> Endo g = Endo (f . g)
#endif
stimes = stimesMonoid
instance Semigroup All where
#ifdef USE_COERCE
(<>) = coerce (&&)
#else
All a <> All b = All (a && b)
#endif
stimes = stimesIdempotentMonoid
instance Semigroup Any where
#ifdef USE_COERCE
(<>) = coerce (||)
#else
Any a <> Any b = Any (a || b)
#endif
stimes = stimesIdempotentMonoid
instance Num a => Semigroup (Sum a) where
#ifdef USE_COERCE
(<>) = coerce ((+) :: a -> a -> a)
#else
Sum a <> Sum b = Sum (a + b)
#endif
stimes n (Sum a) = Sum (fromIntegral n * a)
instance Num a => Semigroup (Product a) where
#ifdef USE_COERCE
(<>) = coerce ((*) :: a -> a -> a)
#else
Product a <> Product b = Product (a * b)
#endif
stimes n (Product a) = Product (a ^ n)
instance Semigroup a => Semigroup (Down a) where
#ifdef USE_COERCE
(<>) = coerce ((<>) :: a -> a -> a)
#else
Down a <> Down b = Down (a <> b)
#endif
stimes n (Down a) = Down (stimes n a)
-- | This is a valid definition of 'stimes' for a 'Monoid'.
--
-- Unlike the default definition of 'stimes', it is defined for 0
-- and so it should be preferred where possible.
stimesMonoid :: (Integral b, Monoid a) => b -> a -> a
stimesMonoid n x0 = case compare n 0 of
LT -> error "stimesMonoid: negative multiplier"
EQ -> mempty
GT -> f x0 n
where
f x y
| even y = f (x `mappend` x) (y `quot` 2)
| y == 1 = x
| otherwise = g (x `mappend` x) (y `quot` 2) x -- See Note [Half of y - 1]
g x y z
| even y = g (x `mappend` x) (y `quot` 2) z
| y == 1 = x `mappend` z
| otherwise = g (x `mappend` x) (y `quot` 2) (x `mappend` z) -- See Note [Half of y - 1]
-- | This is a valid definition of 'stimes' for an idempotent 'Monoid'.
--
-- When @mappend x x = x@, this definition should be preferred, because it
-- works in /O(1)/ rather than /O(log n)/
stimesIdempotentMonoid :: (Integral b, Monoid a) => b -> a -> a
stimesIdempotentMonoid n x = case compare n 0 of
LT -> error "stimesIdempotentMonoid: negative multiplier"
EQ -> mempty
GT -> x
{-# INLINE stimesIdempotentMonoid #-}
-- | This is a valid definition of 'stimes' for an idempotent 'Semigroup'.
--
-- When @x <> x = x@, this definition should be preferred, because it
-- works in /O(1)/ rather than /O(log n)/.
stimesIdempotent :: Integral b => b -> a -> a
stimesIdempotent n x
| n <= 0 = error "stimesIdempotent: positive multiplier expected"
| otherwise = x
{-# INLINE stimesIdempotent #-}
instance Semigroup a => Semigroup (Const a b) where
#ifdef USE_COERCE
(<>) = coerce ((<>) :: a -> a -> a)
#else
Const a <> Const b = Const (a <> b)
#endif
stimes n (Const a) = Const (stimes n a)
#if MIN_VERSION_base(3,0,0)
instance Semigroup (Monoid.First a) where
Monoid.First Nothing <> b = b
a <> _ = a
stimes = stimesIdempotentMonoid
instance Semigroup (Monoid.Last a) where
a <> Monoid.Last Nothing = a
_ <> b = b
stimes = stimesIdempotentMonoid
#endif
#if MIN_VERSION_base(4,8,0)
instance Alternative f => Semigroup (Alt f a) where
# ifdef USE_COERCE
(<>) = coerce ((<|>) :: f a -> f a -> f a)
# else
Alt a <> Alt b = Alt (a <|> b)
# endif
stimes = stimesMonoid
#endif
#if MIN_VERSION_base(4,8,0)
instance Semigroup Void where
a <> _ = a
stimes = stimesIdempotent
#endif
instance Semigroup (NonEmpty a) where
(a :| as) <> ~(b :| bs) = a :| (as ++ b : bs)
newtype Min a = Min { getMin :: a } deriving
( Eq, Ord, Show, Read
#ifdef LANGUAGE_DeriveDataTypeable
, Data, Typeable
#endif
#ifdef LANGUAGE_DeriveGeneric
, Generic
#if __GLASGOW_HASKELL__ >= 706
, Generic1
#endif
#endif
)
instance Bounded a => Bounded (Min a) where
minBound = Min minBound
maxBound = Min maxBound
instance Enum a => Enum (Min a) where
succ (Min a) = Min (succ a)
pred (Min a) = Min (pred a)
toEnum = Min . toEnum
fromEnum = fromEnum . getMin
enumFrom (Min a) = Min <$> enumFrom a
enumFromThen (Min a) (Min b) = Min <$> enumFromThen a b
enumFromTo (Min a) (Min b) = Min <$> enumFromTo a b
enumFromThenTo (Min a) (Min b) (Min c) = Min <$> enumFromThenTo a b c
#ifdef MIN_VERSION_hashable
instance Hashable a => Hashable (Min a) where
hashWithSalt p (Min a) = hashWithSalt p a
#endif
instance Ord a => Semigroup (Min a) where
#ifdef USE_COERCE
(<>) = coerce (min :: a -> a -> a)
#else
Min a <> Min b = Min (a `min` b)
#endif
stimes = stimesIdempotent
instance (Ord a, Bounded a) => Monoid (Min a) where
mempty = maxBound
mappend = (<>)
instance Functor Min where
fmap f (Min x) = Min (f x)
instance Foldable Min where
foldMap f (Min a) = f a
instance Traversable Min where
traverse f (Min a) = Min <$> f a
instance Applicative Min where
pure = Min
a <* _ = a
_ *> a = a
Min f <*> Min x = Min (f x)
instance Monad Min where
return = Min
_ >> a = a
Min a >>= f = f a
instance MonadFix Min where
mfix f = fix (f . getMin)
#ifdef MIN_VERSION_deepseq
instance NFData a => NFData (Min a) where
rnf (Min a) = rnf a
#endif
instance Num a => Num (Min a) where
(Min a) + (Min b) = Min (a + b)
(Min a) * (Min b) = Min (a * b)
(Min a) - (Min b) = Min (a - b)
negate (Min a) = Min (negate a)
abs (Min a) = Min (abs a)
signum (Min a) = Min (signum a)
fromInteger = Min . fromInteger
#if __GLASGOW_HASKELL__ >= 702 && __GLASGOW_HASKELL__ < 706
instance Generic1 Min where
type Rep1 Min = D1 D1'Min (C1 C1'_0Min (S1 S1'_0_0Min Par1))
from1 (Min x) = M1 (M1 (M1 (Par1 x)))
to1 (M1 (M1 (M1 x))) = Min (unPar1 x)
instance Datatype D1'Min where
datatypeName _ = "Min"
moduleName _ = "Data.Semigroup"
instance Constructor C1'_0Min where
conName _ = "Min"
conIsRecord _ = True
instance Selector S1'_0_0Min where
selName _ = "getMin"
data D1'Min
data C1'_0Min
data S1'_0_0Min
#endif
newtype Max a = Max { getMax :: a } deriving
( Eq, Ord, Show, Read
#ifdef LANGUAGE_DeriveDataTypeable
, Data, Typeable
#endif
#ifdef LANGUAGE_DeriveGeneric
, Generic
#if __GLASGOW_HASKELL__ >= 706
, Generic1
#endif
#endif
)
instance Bounded a => Bounded (Max a) where
minBound = Max minBound
maxBound = Max maxBound
instance Enum a => Enum (Max a) where
succ (Max a) = Max (succ a)
pred (Max a) = Max (pred a)
toEnum = Max . toEnum
fromEnum = fromEnum . getMax
enumFrom (Max a) = Max <$> enumFrom a
enumFromThen (Max a) (Max b) = Max <$> enumFromThen a b
enumFromTo (Max a) (Max b) = Max <$> enumFromTo a b
enumFromThenTo (Max a) (Max b) (Max c) = Max <$> enumFromThenTo a b c
#ifdef MIN_VERSION_hashable
instance Hashable a => Hashable (Max a) where
hashWithSalt p (Max a) = hashWithSalt p a
#endif
instance Ord a => Semigroup (Max a) where
#ifdef USE_COERCE
(<>) = coerce (max :: a -> a -> a)
#else
Max a <> Max b = Max (a `max` b)
#endif
stimes = stimesIdempotent
instance (Ord a, Bounded a) => Monoid (Max a) where
mempty = minBound
mappend = (<>)
instance Functor Max where
fmap f (Max x) = Max (f x)
instance Foldable Max where
foldMap f (Max a) = f a
instance Traversable Max where
traverse f (Max a) = Max <$> f a
instance Applicative Max where
pure = Max
a <* _ = a
_ *> a = a
Max f <*> Max x = Max (f x)
instance Monad Max where
return = Max
_ >> a = a
Max a >>= f = f a
instance MonadFix Max where
mfix f = fix (f . getMax)
#ifdef MIN_VERSION_deepseq
instance NFData a => NFData (Max a) where
rnf (Max a) = rnf a
#endif
instance Num a => Num (Max a) where
(Max a) + (Max b) = Max (a + b)
(Max a) * (Max b) = Max (a * b)
(Max a) - (Max b) = Max (a - b)
negate (Max a) = Max (negate a)
abs (Max a) = Max (abs a)
signum (Max a) = Max (signum a)
fromInteger = Max . fromInteger
#if __GLASGOW_HASKELL__ >= 702 && __GLASGOW_HASKELL__ < 706
instance Generic1 Max where
type Rep1 Max = D1 D1'Max (C1 C1'_0Max (S1 S1'_0_0Max Par1))
from1 (Max x) = M1 (M1 (M1 (Par1 x)))
to1 (M1 (M1 (M1 x))) = Max (unPar1 x)
instance Datatype D1'Max where
datatypeName _ = "Max"
moduleName _ = "Data.Semigroup"
instance Constructor C1'_0Max where
conName _ = "Max"
conIsRecord _ = True
instance Selector S1'_0_0Max where
selName _ = "getMax"
data D1'Max
data C1'_0Max
data S1'_0_0Max
#endif
-- | 'Arg' isn't itself a 'Semigroup' in its own right, but it can be placed inside 'Min' and 'Max'
-- to compute an arg min or arg max.
data Arg a b = Arg a b deriving
( Show, Read
#ifdef LANGUAGE_DeriveDataTypeable
, Data, Typeable
#endif
#ifdef LANGUAGE_DeriveGeneric
, Generic
#if __GLASGOW_HASKELL__ >= 706
, Generic1
#endif
#endif
)
type ArgMin a b = Min (Arg a b)
type ArgMax a b = Max (Arg a b)
instance Functor (Arg a) where
fmap f (Arg x a) = Arg x (f a)
instance Foldable (Arg a) where
foldMap f (Arg _ a) = f a
instance Traversable (Arg a) where
traverse f (Arg x a) = Arg x <$> f a
instance Eq a => Eq (Arg a b) where
Arg a _ == Arg b _ = a == b
instance Ord a => Ord (Arg a b) where
Arg a _ `compare` Arg b _ = compare a b
min x@(Arg a _) y@(Arg b _)
| a <= b = x
| otherwise = y
max x@(Arg a _) y@(Arg b _)
| a >= b = x
| otherwise = y
#ifdef MIN_VERSION_deepseq
instance (NFData a, NFData b) => NFData (Arg a b) where
rnf (Arg a b) = rnf a `seq` rnf b `seq` ()
#endif
#ifdef MIN_VERSION_hashable
#if MIN_VERSION_hashable(1,3,0)
-- | Instance like defined in @hashable-1.3@
instance Hashable a => Hashable (Arg a b) where
hashWithSalt p (Arg a _b) = hashWithSalt p a
#else
-- | Instance like defined in @hashable-1.2@
instance (Hashable a, Hashable b) => Hashable (Arg a b) where
hashWithSalt p (Arg a b) = hashWithSalt p a `hashWithSalt` b
#endif
#endif
#if MIN_VERSION_base(4,8,0)
instance Bifunctor Arg where
bimap f g (Arg a b) = Arg (f a) (g b)
#endif
#if __GLASGOW_HASKELL__ >= 702 && __GLASGOW_HASKELL__ < 706
instance Generic1 (Arg a) where
type Rep1 (Arg a)
= D1 D1'Arg
(C1 C1'_0Arg
(S1 NoSelector (Rec0 a)
:*: S1 NoSelector Par1))
from1 (Arg a b) = M1 (M1 (M1 (K1 a) :*: M1 (Par1 b)))
to1 (M1 (M1 (M1 a :*: M1 b))) = Arg (unK1 a) (unPar1 b)
instance Datatype D1'Arg where
datatypeName _ = "Arg"
moduleName _ = "Data.Semigroup"
instance Constructor C1'_0Arg where
conName _ = "Arg"
data D1'Arg
data C1'_0Arg
#endif
-- | Use @'Option' ('First' a)@ to get the behavior of 'Data.Monoid.First' from @Data.Monoid@.
newtype First a = First { getFirst :: a } deriving
( Eq, Ord, Show, Read
#ifdef LANGUAGE_DeriveDataTypeable
, Data
, Typeable
#endif
#ifdef LANGUAGE_DeriveGeneric
, Generic
#if __GLASGOW_HASKELL__ >= 706
, Generic1
#endif
#endif
)
instance Bounded a => Bounded (First a) where
minBound = First minBound
maxBound = First maxBound
instance Enum a => Enum (First a) where
succ (First a) = First (succ a)
pred (First a) = First (pred a)
toEnum = First . toEnum
fromEnum = fromEnum . getFirst
enumFrom (First a) = First <$> enumFrom a
enumFromThen (First a) (First b) = First <$> enumFromThen a b
enumFromTo (First a) (First b) = First <$> enumFromTo a b
enumFromThenTo (First a) (First b) (First c) = First <$> enumFromThenTo a b c
#ifdef MIN_VERSION_hashable
instance Hashable a => Hashable (First a) where
hashWithSalt p (First a) = hashWithSalt p a
#endif
instance Semigroup (First a) where
a <> _ = a
stimes = stimesIdempotent
instance Functor First where
fmap f (First x) = First (f x)
instance Foldable First where
foldMap f (First a) = f a
instance Traversable First where
traverse f (First a) = First <$> f a
instance Applicative First where
pure x = First x
a <* _ = a
_ *> a = a
First f <*> First x = First (f x)
instance Monad First where
return = First
_ >> a = a
First a >>= f = f a
instance MonadFix First where
mfix f = fix (f . getFirst)
#ifdef MIN_VERSION_deepseq
instance NFData a => NFData (First a) where
rnf (First a) = rnf a
#endif
#if __GLASGOW_HASKELL__ >= 702 && __GLASGOW_HASKELL__ < 706
instance Generic1 First where
type Rep1 First = D1 D1'First (C1 C1'_0First (S1 S1'_0_0First Par1))
from1 (First x) = M1 (M1 (M1 (Par1 x)))
to1 (M1 (M1 (M1 x))) = First (unPar1 x)
instance Datatype D1'First where
datatypeName _ = "First"
moduleName _ = "Data.Semigroup"
instance Constructor C1'_0First where
conName _ = "First"
conIsRecord _ = True
instance Selector S1'_0_0First where
selName _ = "getFirst"
data D1'First
data C1'_0First
data S1'_0_0First
#endif
-- | Use @'Option' ('Last' a)@ to get the behavior of 'Data.Monoid.Last' from @Data.Monoid@
newtype Last a = Last { getLast :: a } deriving
( Eq, Ord, Show, Read
#ifdef LANGUAGE_DeriveDataTypeable
, Data, Typeable
#endif
#ifdef LANGUAGE_DeriveGeneric
, Generic
#if __GLASGOW_HASKELL__ >= 706
, Generic1
#endif
#endif
)
instance Bounded a => Bounded (Last a) where
minBound = Last minBound
maxBound = Last maxBound
instance Enum a => Enum (Last a) where
succ (Last a) = Last (succ a)
pred (Last a) = Last (pred a)
toEnum = Last . toEnum
fromEnum = fromEnum . getLast
enumFrom (Last a) = Last <$> enumFrom a
enumFromThen (Last a) (Last b) = Last <$> enumFromThen a b
enumFromTo (Last a) (Last b) = Last <$> enumFromTo a b
enumFromThenTo (Last a) (Last b) (Last c) = Last <$> enumFromThenTo a b c
#ifdef MIN_VERSION_hashable
instance Hashable a => Hashable (Last a) where
hashWithSalt p (Last a) = hashWithSalt p a
#endif
instance Semigroup (Last a) where
_ <> b = b
stimes = stimesIdempotent
instance Functor Last where
fmap f (Last x) = Last (f x)
a <$ _ = Last a
instance Foldable Last where
foldMap f (Last a) = f a
instance Traversable Last where
traverse f (Last a) = Last <$> f a
instance Applicative Last where
pure = Last
a <* _ = a
_ *> a = a
Last f <*> Last x = Last (f x)
instance Monad Last where
return = Last
_ >> a = a
Last a >>= f = f a
instance MonadFix Last where
mfix f = fix (f . getLast)
#ifdef MIN_VERSION_deepseq
instance NFData a => NFData (Last a) where
rnf (Last a) = rnf a
#endif
#if __GLASGOW_HASKELL__ >= 702 && __GLASGOW_HASKELL__ < 706
instance Generic1 Last where
type Rep1 Last = D1 D1'Last (C1 C1'_0Last (S1 S1'_0_0Last Par1))
from1 (Last x) = M1 (M1 (M1 (Par1 x)))
to1 (M1 (M1 (M1 x))) = Last (unPar1 x)
instance Datatype D1'Last where
datatypeName _ = "Last"
moduleName _ = "Data.Semigroup"
instance Constructor C1'_0Last where
conName _ = "Last"
conIsRecord _ = True
instance Selector S1'_0_0Last where
selName _ = "getLast"
data D1'Last
data C1'_0Last
data S1'_0_0Last
#endif
-- (==)/XNOR on Bool forms a 'Semigroup', but has no good name
#ifdef MIN_VERSION_binary
# if !(MIN_VERSION_binary(0,8,3))
instance Semigroup Builder.Builder where
(<>) = mappend
# endif
#endif
#ifdef MIN_VERSION_bytestring
instance Semigroup BS.ByteString where
(<>) = mappend
sconcat (b:|bs) = BS.concat (b:bs)
instance Semigroup BL.ByteString where
(<>) = mappend
sconcat (b:|bs) = BL.concat (b:bs)
# if (MIN_VERSION_bytestring(0,10,0)) || defined(MIN_VERSION_bytestring_builder)
instance Semigroup ByteString.Builder where
(<>) = mappend
# endif
# if (MIN_VERSION_bytestring(0,10,4)) || defined(MIN_VERSION_bytestring_builder)
instance Semigroup ShortByteString where
(<>) = mappend
# endif
#endif
#ifdef MIN_VERSION_text
instance Semigroup TS.Text where
(<>) = mappend
instance Semigroup TL.Text where
(<>) = mappend
instance Semigroup Text.Builder where
(<>) = mappend
#endif
#ifdef MIN_VERSION_unordered_containers
instance (Hashable k, Eq k) => Semigroup (Lazy.HashMap k a) where
(<>) = mappend
stimes = stimesIdempotentMonoid
instance (Hashable a, Eq a) => Semigroup (HashSet a) where
(<>) = mappend
stimes = stimesIdempotentMonoid
#endif
-- | Provide a Semigroup for an arbitrary Monoid.
newtype WrappedMonoid m = WrapMonoid
{ unwrapMonoid :: m } deriving
( Eq, Ord, Show, Read
#ifdef LANGUAGE_DeriveDataTypeable
, Data, Typeable
#endif
#ifdef LANGUAGE_DeriveGeneric
, Generic
#if __GLASGOW_HASKELL__ >= 706
, Generic1
#endif
#endif
)
#ifdef MIN_VERSION_hashable
instance Hashable a => Hashable (WrappedMonoid a) where
hashWithSalt p (WrapMonoid a) = hashWithSalt p a
#endif
instance Monoid m => Semigroup (WrappedMonoid m) where
#ifdef USE_COERCE
(<>) = coerce (mappend :: m -> m -> m)
#else
WrapMonoid a <> WrapMonoid b = WrapMonoid (a `mappend` b)
#endif
instance Monoid m => Monoid (WrappedMonoid m) where
mempty = WrapMonoid mempty
mappend = (<>)
instance Bounded a => Bounded (WrappedMonoid a) where
minBound = WrapMonoid minBound
maxBound = WrapMonoid maxBound
instance Enum a => Enum (WrappedMonoid a) where
succ (WrapMonoid a) = WrapMonoid (succ a)
pred (WrapMonoid a) = WrapMonoid (pred a)
toEnum = WrapMonoid . toEnum
fromEnum = fromEnum . unwrapMonoid
enumFrom (WrapMonoid a) = WrapMonoid <$> enumFrom a
enumFromThen (WrapMonoid a) (WrapMonoid b) = WrapMonoid <$> enumFromThen a b
enumFromTo (WrapMonoid a) (WrapMonoid b) = WrapMonoid <$> enumFromTo a b
enumFromThenTo (WrapMonoid a) (WrapMonoid b) (WrapMonoid c) = WrapMonoid <$> enumFromThenTo a b c
#ifdef MIN_VERSION_deepseq
instance NFData m => NFData (WrappedMonoid m) where
rnf (WrapMonoid a) = rnf a
#endif
#if __GLASGOW_HASKELL__ >= 702 && __GLASGOW_HASKELL__ < 706
instance Generic1 WrappedMonoid where
type Rep1 WrappedMonoid = D1 D1'WrappedMonoid (C1 C1'_0WrappedMonoid (S1 S1'_0_0WrappedMonoid Par1))
from1 (WrapMonoid x) = M1 (M1 (M1 (Par1 x)))
to1 (M1 (M1 (M1 x))) = WrapMonoid (unPar1 x)
instance Datatype D1'WrappedMonoid where
datatypeName _ = "WrappedMonoid"
moduleName _ = "Data.Semigroup"
instance Constructor C1'_0WrappedMonoid where
conName _ = "WrapMonoid"
conIsRecord _ = True
instance Selector S1'_0_0WrappedMonoid where
selName _ = "unwrapMonoid"
data D1'WrappedMonoid
data C1'_0WrappedMonoid
data S1'_0_0WrappedMonoid
#endif
-- | Repeat a value @n@ times.
--
-- > mtimesDefault n a = a <> a <> ... <> a -- using <> (n-1) times
--
-- Implemented using 'stimes' and 'mempty'.
--
-- This is a suitable definition for an 'mtimes' member of 'Monoid'.
--
-- @since 0.17
mtimesDefault :: (Integral b, Monoid a) => b -> a -> a
mtimesDefault n x
| n == 0 = mempty
| otherwise = unwrapMonoid (stimes n (WrapMonoid x))
-- | 'Option' is effectively 'Maybe' with a better instance of 'Monoid', built off of an underlying 'Semigroup'
-- instead of an underlying 'Monoid'.
--
-- Ideally, this type would not exist at all and we would just fix the 'Monoid' instance of 'Maybe'
newtype Option a = Option
{ getOption :: Maybe a } deriving
( Eq, Ord, Show, Read
#ifdef LANGUAGE_DeriveDataTypeable
, Data, Typeable
#endif
#ifdef LANGUAGE_DeriveGeneric
, Generic
#if __GLASGOW_HASKELL__ >= 706
, Generic1
#endif
#endif
)
#ifdef MIN_VERSION_hashable
instance Hashable a => Hashable (Option a) where
hashWithSalt p (Option a) = hashWithSalt p a
#endif
instance Functor Option where
fmap f (Option a) = Option (fmap f a)
instance Applicative Option where
pure a = Option (Just a)
Option a <*> Option b = Option (a <*> b)
instance Monad Option where
return = pure
Option (Just a) >>= k = k a
_ >>= _ = Option Nothing
Option Nothing >> _ = Option Nothing
_ >> b = b
instance Alternative Option where
empty = Option Nothing
Option Nothing <|> b = b
a <|> _ = a
instance MonadPlus Option where
mzero = Option Nothing
mplus = (<|>)
instance MonadFix Option where
mfix f = Option (mfix (getOption . f))
instance Foldable Option where
foldMap f (Option (Just m)) = f m
foldMap _ (Option Nothing) = mempty
instance Traversable Option where
traverse f (Option (Just a)) = Option . Just <$> f a
traverse _ (Option Nothing) = pure (Option Nothing)
#ifdef MIN_VERSION_deepseq
instance NFData a => NFData (Option a) where
rnf (Option a) = rnf a
#endif
-- | Fold an 'Option' case-wise, just like 'maybe'.
option :: b -> (a -> b) -> Option a -> b
option n j (Option m) = maybe n j m
instance Semigroup a => Semigroup (Option a) where
#ifdef USE_COERCE
(<>) = coerce ((<>) :: Maybe a -> Maybe a -> Maybe a)
#else
Option a <> Option b = Option (a <> b)
#endif
stimes _ (Option Nothing) = Option Nothing
stimes n (Option (Just a)) = case compare n 0 of
LT -> error "stimes: Option, negative multiplier"
EQ -> Option Nothing
GT -> Option (Just (stimes n a))
instance Semigroup a => Monoid (Option a) where
mempty = Option Nothing
mappend = (<>)
#if __GLASGOW_HASKELL__ >= 702 && __GLASGOW_HASKELL__ < 706
instance Generic1 Option where
type Rep1 Option = D1 D1'Option (C1 C1'_0Option (S1 S1'_0_0Option (Rec1 Maybe)))
from1 (Option x) = M1 (M1 (M1 (Rec1 x)))
to1 (M1 (M1 (M1 x))) = Option (unRec1 x)
instance Datatype D1'Option where
datatypeName _ = "Option"
moduleName _ = "Data.Semigroup"
instance Constructor C1'_0Option where
conName _ = "Option"
conIsRecord _ = True
instance Selector S1'_0_0Option where
selName _ = "getOption"
data D1'Option
data C1'_0Option
data S1'_0_0Option
#endif
-- | This lets you use a difference list of a 'Semigroup' as a 'Monoid'.
diff :: Semigroup m => m -> Endo m
diff = Endo . (<>)
#ifdef MIN_VERSION_containers
instance Semigroup (Seq a) where
(<>) = (><)
instance Semigroup IntSet where
(<>) = mappend
stimes = stimesIdempotentMonoid
instance Ord a => Semigroup (Set a) where
(<>) = mappend
stimes = stimesIdempotentMonoid
instance Semigroup (IntMap v) where
(<>) = mappend
stimes = stimesIdempotentMonoid
instance Ord k => Semigroup (Map k v) where
(<>) = mappend
stimes = stimesIdempotentMonoid
#endif
#if (MIN_VERSION_base(4,8,0)) || defined(MIN_VERSION_transformers)
instance Semigroup a => Semigroup (Identity a) where
# ifdef USE_COERCE
(<>) = coerce ((<>) :: a -> a -> a)
# else
Identity a <> Identity b = Identity (a <> b)
# endif
stimes n (Identity a) = Identity (stimes n a)
#endif
#if (MIN_VERSION_base(4,7,0)) || defined(MIN_VERSION_tagged)
instance Semigroup (Proxy s) where
_ <> _ = Proxy
sconcat _ = Proxy
stimes _ _ = Proxy
#endif
#ifdef MIN_VERSION_tagged
instance Semigroup a => Semigroup (Tagged s a) where
# ifdef USE_COERCE
(<>) = coerce ((<>) :: a -> a -> a)
# else
Tagged a <> Tagged b = Tagged (a <> b)
# endif
stimes n (Tagged a) = Tagged (stimes n a)
#endif
instance Semigroup a => Semigroup (IO a) where
(<>) = liftA2 (<>)
instance Semigroup a => Semigroup (Strict.ST s a) where
#if MIN_VERSION_base(4,4,0)
(<>) = liftA2 (<>)
#else
(<>) = liftM2 (<>) -- No Applicative instance for ST on GHC 7.0
#endif
#if !defined(mingw32_HOST_OS) && !defined(ghcjs_HOST_OS) && !defined(ETA_VERSION)
# if MIN_VERSION_base(4,4,0)
instance Semigroup Event where
(<>) = mappend
stimes = stimesMonoid
# endif
# if MIN_VERSION_base(4,8,1)
instance Semigroup Lifetime where
(<>) = mappend
stimes = stimesMonoid
# endif
#endif
|