1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
|
{-# LANGUAGE RecordWildCards, ScopedTypeVariables, PatternGuards #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE DeriveDataTypeable, GeneralizedNewtypeDeriving #-}
module Development.Shake.Database(
Time, offsetTime, Duration, duration, Trace(..),
Database, withDatabase,
listDepends, lookupDependencies,
Ops(..), build, Depends,
progress,
Stack, emptyStack, topStack, showStack, showTopStack,
toReport, checkValid,
) where
import Development.Shake.Classes
import General.Binary
import Development.Shake.Pool
import Development.Shake.Value
import Development.Shake.Errors
import Development.Shake.Storage
import Development.Shake.Types
import Development.Shake.Special
import Development.Shake.Report
import General.Base
import General.String
import General.Intern as Intern
import Control.Applicative
import Control.Exception
import Control.Monad
import qualified Data.HashSet as Set
import qualified Data.HashMap.Strict as Map
import Data.IORef
import Data.Maybe
import Data.List
import Data.Monoid
type Map = Map.HashMap
---------------------------------------------------------------------
-- UTILITY TYPES
newtype Step = Step Word32 deriving (Eq,Ord,Show,Binary,NFData,Hashable,Typeable)
incStep (Step i) = Step $ i + 1
---------------------------------------------------------------------
-- CALL STACK
data Stack = Stack (Maybe Key) [Id] !(Set.HashSet Id)
showStack :: Database -> Stack -> IO [String]
showStack Database{..} (Stack _ xs _) = do
status <- withLock lock $ readIORef status
return $ reverse $ map (maybe "<unknown>" (show . fst) . flip Map.lookup status) xs
addStack :: Id -> Key -> Stack -> Stack
addStack x key (Stack _ xs set) = Stack (Just key) (x:xs) (Set.insert x set)
showTopStack :: Stack -> String
showTopStack = maybe "<unknown>" show . topStack
topStack :: Stack -> Maybe Key
topStack (Stack key _ _) = key
checkStack :: [Id] -> Stack -> Maybe Id
checkStack new (Stack _ old set)
| bad:_ <- filter (`Set.member` set) new = Just bad
| otherwise = Nothing
emptyStack :: Stack
emptyStack = Stack Nothing [] Set.empty
---------------------------------------------------------------------
-- CENTRAL TYPES
data Trace = Trace BS Time Time -- (message, start, end)
deriving Show
instance NFData Trace where
rnf (Trace a b c) = rnf a `seq` rnf b `seq` rnf c
-- | Invariant: The database does not have any cycles when a Key depends on itself
data Database = Database
{lock :: Lock
,intern :: IORef (Intern Key)
,status :: IORef (Map Id (Key, Status))
,step :: Step
,journal :: Id -> (Key, Status {- Loaded or Missing -}) -> IO ()
,diagnostic :: String -> IO () -- logging function
,assume :: Maybe Assume
}
data Status
= Ready Result -- I have a value
| Error SomeException -- I have been run and raised an error
| Loaded Result -- Loaded from the database
| Waiting Pending (Maybe Result) -- Currently checking if I am valid or building
| Missing -- I am only here because I got into the Intern table
deriving Show
data Result = Result
{result :: Value -- the result associated with the Key
,built :: {-# UNPACK #-} !Step -- when it was actually run
,changed :: {-# UNPACK #-} !Step -- the step for deciding if it's valid
,depends :: [[Id]] -- dependencies
,execution :: {-# UNPACK #-} !Duration -- how long it took when it was last run (seconds)
,traces :: [Trace] -- a trace of the expensive operations (start/end in seconds since beginning of run)
} deriving Show
newtype Pending = Pending (IORef (IO ()))
-- you must run this action when you finish, while holding DB lock
-- after you have set the result to Error or Ready
instance Show Pending where show _ = "Pending"
statusType Ready{} = "Ready"
statusType Error{} = "Error"
statusType Loaded{} = "Loaded"
statusType Waiting{} = "Waiting"
statusType Missing{} = "Missing"
isError Error{} = True; isError _ = False
isWaiting Waiting{} = True; isWaiting _ = False
isReady Ready{} = True; isReady _ = False
-- All the waiting operations are only valid when isWaiting
type Waiting = Status
afterWaiting :: Waiting -> IO () -> IO ()
afterWaiting (Waiting (Pending p) _) act = modifyIORef'' p (>> act)
newWaiting :: Maybe Result -> IO Waiting
newWaiting r = do ref <- newIORef $ return (); return $ Waiting (Pending ref) r
runWaiting :: Waiting -> IO ()
runWaiting (Waiting (Pending p) _) = join $ readIORef p
-- Wait for a set of actions to complete
-- If the action returns True, the function will not be called again
-- If the first argument is True, the thing is ended
waitFor :: [(a, Waiting)] -> (Bool -> a -> IO Bool) -> IO ()
waitFor ws@(_:_) act = do
todo <- newIORef $ length ws
forM_ ws $ \(k,w) -> afterWaiting w $ do
t <- readIORef todo
when (t /= 0) $ do
b <- act (t == 1) k
writeIORef'' todo $ if b then 0 else t - 1
getResult :: Status -> Maybe Result
getResult (Ready r) = Just r
getResult (Loaded r) = Just r
getResult (Waiting _ r) = r
getResult _ = Nothing
---------------------------------------------------------------------
-- OPERATIONS
newtype Depends = Depends {fromDepends :: [Id]}
deriving (NFData)
listDepends :: Database -> Depends -> IO [Key]
listDepends Database{..} (Depends xs) =
withLock lock $ do
status <- readIORef status
return $ map (fst . fromJust . flip Map.lookup status) xs
lookupDependencies :: Database -> Key -> IO [Key]
lookupDependencies Database{..} k = do
withLock lock $ do
intern <- readIORef intern
status <- readIORef status
let Just i = Intern.lookup k intern
let Just (_, Ready r) = Map.lookup i status
return $ map (fst . fromJust . flip Map.lookup status) $ concat $ depends r
data Ops = Ops
{stored :: Key -> IO (Maybe Value)
-- ^ Given a Key and a Value from the database, check it still matches the value stored on disk
,equal :: Key -> Value -> Value -> EqualCost
-- ^ Given both Values, see if they are equal and how expensive that check was
,execute :: Stack -> Key -> IO (Either SomeException (Value, [Depends], Duration, [Trace]))
-- ^ Given a chunk of stack (bottom element first), and a key, either raise an exception or successfully build it
}
-- | Return either an exception (crash), or (how much time you spent waiting, the value)
build :: Pool -> Database -> Ops -> Stack -> [Key] -> IO (Either SomeException (Duration,Depends,[Value]))
build pool Database{..} Ops{..} stack ks = do
join $ withLock lock $ do
is <- forM ks $ \k -> do
is <- readIORef intern
case Intern.lookup k is of
Just i -> return i
Nothing -> do
(is, i) <- return $ Intern.add k is
writeIORef'' intern is
modifyIORef'' status $ Map.insert i (k,Missing)
return i
whenJust (checkStack is stack) $ \bad -> do
status <- readIORef status
uncurry errorRuleRecursion $ case Map.lookup bad status of
Nothing -> (Nothing, Nothing)
Just (k,_) -> (Just $ typeKey k, Just $ show k)
vs <- mapM (reduce stack) is
let errs = [e | Error e <- vs]
if all isReady vs then
return $ return $ Right (0, Depends is, [result r | Ready r <- vs])
else if not $ null errs then
return $ return $ Left $ head errs
else do
wait <- newBarrier
waitFor (filter (isWaiting . snd) $ zip is vs) $ \finish i -> do
s <- readIORef status
let done x = do signalBarrier wait x; return True
case Map.lookup i s of
Just (_, Error e) -> done (True, Left e) -- on error make sure we immediately kick off our parent
Just (_, Ready{}) | finish -> done (False, Right [result r | i <- is, let Ready r = snd $ fromJust $ Map.lookup i s])
| otherwise -> return False
return $ do
(dur,res) <- duration $ blockPool pool $ waitBarrier wait
return $ case res of
Left e -> Left e
Right v -> Right (dur,Depends is,v)
where
(#=) :: Id -> (Key, Status) -> IO Status
i #= (k,v) = do
s <- readIORef status
writeIORef'' status $ Map.insert i (k,v) s
diagnostic $ maybe "Missing" (statusType . snd) (Map.lookup i s) ++ " -> " ++ statusType v ++ ", " ++ maybe "<unknown>" (show . fst) (Map.lookup i s)
return v
atom x = let s = show x in if ' ' `elem` s then "(" ++ s ++ ")" else s
-- Rules for each eval* function
-- * Must NOT lock
-- * Must have an equal return to what is stored in the db at that point
-- * Must not return Loaded
reduce :: Stack -> Id -> IO Status
reduce stack i = do
s <- readIORef status
case Map.lookup i s of
Nothing -> err $ "interned value missing from database, " ++ show i
Just (k, Missing) -> run stack i k Nothing
Just (k, Loaded r) -> do
let out b = diagnostic $ "valid " ++ show b ++ " for " ++ atom k ++ " " ++ atom (result r)
let continue r = out True >> check stack i k r (depends r)
let rebuild = out False >> run stack i k (Just r)
case assume of
Just AssumeDirty -> rebuild
Just AssumeSkip -> continue r
_ -> do
s <- stored k
case s of
Just s -> case equal k (result r) s of
NotEqual -> rebuild
EqualCheap -> continue r
EqualExpensive -> do
-- warning, have the db lock while appending (may harm performance)
r <- return r{result=s}
journal i (k, Loaded r)
i #= (k, Loaded r)
continue r
_ -> rebuild
Just (k, res) -> return res
run :: Stack -> Id -> Key -> Maybe Result -> IO Waiting
run stack i k r = do
w <- newWaiting r
addPool pool $ do
let norm = do
res <- execute (addStack i k stack) k
return $ case res of
Left err -> Error err
Right (v,deps,execution,traces) ->
let c | Just r <- r, result r == v = changed r
| otherwise = step
in Ready Result{result=v,changed=c,built=step,depends=map fromDepends deps,..}
res <- case r of
Just r | assume == Just AssumeClean -> do
v <- stored k
case v of
Just v -> return $ Ready r{result=v}
Nothing -> norm
_ -> norm
ans <- withLock lock $ do
ans <- i #= (k, res)
runWaiting w
return ans
case ans of
Ready r -> do
diagnostic $ "result " ++ atom k ++ " = " ++ atom (result r)
journal i (k, Loaded r) -- leave the DB lock before appending
Error _ -> do
diagnostic $ "result " ++ atom k ++ " = error"
journal i (k, Missing)
_ -> return ()
i #= (k, w)
check :: Stack -> Id -> Key -> Result -> [[Id]] -> IO Status
check stack i k r [] =
i #= (k, Ready r)
check stack i k r (ds:rest) = do
vs <- mapM (reduce (addStack i k stack)) ds
let ws = filter (isWaiting . snd) $ zip ds vs
if any isError vs || any (> built r) [changed | Ready Result{..} <- vs] then
run stack i k $ Just r
else if null ws then
check stack i k r rest
else do
self <- newWaiting $ Just r
waitFor ws $ \finish d -> do
s <- readIORef status
let buildIt = do
b <- run stack i k $ Just r
afterWaiting b $ runWaiting self
return True
case Map.lookup d s of
Just (_, Error{}) -> buildIt
Just (_, Ready r2)
| changed r2 > built r -> buildIt
| finish -> do
res <- check stack i k r rest
if not $ isWaiting res
then runWaiting self
else afterWaiting res $ runWaiting self
return True
| otherwise -> return False
i #= (k, self)
---------------------------------------------------------------------
-- PROGRESS
progress :: Database -> IO Progress
progress Database{..} = do
s <- readIORef status
return $ foldl' f mempty $ map snd $ Map.elems s
where
g = fromRational . toRational
f s (Ready Result{..}) = if step == built
then s{countBuilt = countBuilt s + 1, timeBuilt = timeBuilt s + g execution}
else s{countSkipped = countSkipped s + 1, timeSkipped = timeSkipped s + g execution}
f s (Loaded Result{..}) = s{countUnknown = countUnknown s + 1, timeUnknown = timeUnknown s + g execution}
f s (Waiting _ r) =
let (d,c) = timeTodo s
t | Just Result{..} <- r = let d2 = d + g execution in d2 `seq` (d2,c)
| otherwise = let c2 = c + 1 in c2 `seq` (d,c2)
in s{countTodo = countTodo s + 1, timeTodo = t}
f s _ = s
---------------------------------------------------------------------
-- QUERY DATABASE
-- | Given a map of representing a dependency order (with a show for error messages), find an ordering for the items such
-- that no item points to an item before itself.
-- Raise an error if you end up with a cycle.
dependencyOrder :: (Eq a, Hashable a) => (a -> String) -> Map a [a] -> [a]
-- Algorithm:
-- Divide everyone up into those who have no dependencies [Id]
-- And those who depend on a particular Id, Dep :-> Maybe [(Key,[Dep])]
-- Where d :-> Just (k, ds), k depends on firstly d, then remaining on ds
-- For each with no dependencies, add to list, then take its dep hole and
-- promote them either to Nothing (if ds == []) or into a new slot.
-- k :-> Nothing means the key has already been freed
dependencyOrder shw status = f (map fst noDeps) $ Map.map Just $ Map.fromListWith (++) [(d, [(k,ds)]) | (k,d:ds) <- hasDeps]
where
(noDeps, hasDeps) = partition (null . snd) $ Map.toList status
f [] mp | null bad = []
| otherwise = error $ unlines $
"Internal invariant broken, database seems to be cyclic" :
map (" " ++) bad ++
["... plus " ++ show (length badOverflow) ++ " more ..." | not $ null badOverflow]
where (bad,badOverflow) = splitAt 10 $ [shw i | (i, Just _) <- Map.toList mp]
f (x:xs) mp = x : f (now++xs) later
where Just free = Map.lookupDefault (Just []) x mp
(now,later) = foldl' g ([], Map.insert x Nothing mp) free
g (free, mp) (k, []) = (k:free, mp)
g (free, mp) (k, d:ds) = case Map.lookupDefault (Just []) d mp of
Nothing -> g (free, mp) (k, ds)
Just todo -> (free, Map.insert d (Just $ (k,ds) : todo) mp)
-- | Eliminate all errors from the database, pretending they don't exist
resultsOnly :: Map Id (Key, Status) -> Map Id (Key, Result)
resultsOnly mp = Map.map (\(k, v) -> (k, let Just r = getResult v in r{depends = map (filter (isJust . flip Map.lookup keep)) $ depends r})) keep
where keep = Map.filter (isJust . getResult . snd) mp
removeStep :: Map Id (Key, Result) -> Map Id (Key, Result)
removeStep = Map.filter (\(k,_) -> k /= stepKey)
toReport :: Database -> IO [ReportEntry]
toReport Database{..} = do
status <- fmap (removeStep . resultsOnly) $ readIORef status
let order = let shw i = maybe "<unknown>" (show . fst) $ Map.lookup i status
in dependencyOrder shw $ Map.map (concat . depends . snd) status
ids = Map.fromList $ zip order [0..]
steps = let xs = Set.toList $ Set.fromList $ concat [[changed, built] | (_,Result{..}) <- Map.elems status]
in Map.fromList $ zip (sortBy (flip compare) xs) [0..]
f (k, Result{..}) = ReportEntry
{repName = show k
,repBuilt = fromStep built
,repChanged = fromStep changed
,repDepends = mapMaybe (`Map.lookup` ids) (concat depends)
,repExecution = fromFloat execution
,repTraces = map fromTrace traces
}
where fromStep i = fromJust $ Map.lookup i steps
fromTrace (Trace a b c) = ReportTrace (unpack a) (fromFloat b) (fromFloat c)
fromFloat = fromRational . toRational
return $ [maybe (err "toReport") f $ Map.lookup i status | i <- order]
checkValid :: Database -> (Key -> IO (Maybe Value)) -> (Key -> Value -> Value -> EqualCost) -> [(Key, Key)] -> IO ()
checkValid Database{..} stored equal missing = do
status <- readIORef status
intern <- readIORef intern
diagnostic "Starting validity/lint checking"
-- Do not use a forM here as you use too much stack space
bad <- (\f -> foldM f [] (Map.toList status)) $ \seen (i,v) -> case v of
(key, Ready Result{..}) -> do
now <- stored key
let good = maybe False ((==) EqualCheap . equal key result) now
diagnostic $ "Checking if " ++ show key ++ " is " ++ show result ++ ", " ++ if good then "passed" else "FAILED"
return $ [(key, result, now) | not good && not (specialAlwaysRebuilds result)] ++ seen
_ -> return seen
unless (null bad) $ do
let n = length bad
errorStructured
("Lint checking error - " ++ (if n == 1 then "value has" else show n ++ " values have") ++ " changed since being depended upon")
(intercalate [("",Just "")] [ [("Key", Just $ show key),("Old", Just $ show result),("New", Just $ maybe "<missing>" show now)]
| (key, result, now) <- bad])
""
bad <- return [(parent,key) | (parent, key) <- missing, isJust $ Intern.lookup key intern]
unless (null bad) $ do
let n = length bad
errorStructured
("Link checking error - " ++ (if n == 1 then "value" else show n ++ " values") ++ " did not have " ++ (if n == 1 then "its" else "their") ++ " creation tracked")
(intercalate [("",Just "")] [ [("Rule", Just $ show parent), ("Created", Just $ show key)] | (parent,key) <- bad])
""
diagnostic "Validity/lint check passed"
---------------------------------------------------------------------
-- STORAGE
-- To simplify journaling etc we smuggle the Step in the database, with a special StepKey
newtype StepKey = StepKey ()
deriving (Show,Eq,Typeable,Hashable,Binary,NFData)
stepKey :: Key
stepKey = newKey $ StepKey ()
toStepResult :: Step -> Result
toStepResult i = Result (newValue i) i i [] 0 []
fromStepResult :: Result -> Step
fromStepResult = fromValue . result
withDatabase :: ShakeOptions -> (String -> IO ()) -> (Database -> IO a) -> IO a
withDatabase opts diagnostic act = do
registerWitness $ StepKey ()
registerWitness $ Step 0
witness <- currentWitness
withStorage opts diagnostic witness $ \mp2 journal -> do
let mp1 = Intern.fromList [(k, i) | (i, (k,_)) <- Map.toList mp2]
(mp1, stepId) <- case Intern.lookup stepKey mp1 of
Just stepId -> return (mp1, stepId)
Nothing -> do
(mp1, stepId) <- return $ Intern.add stepKey mp1
return (mp1, stepId)
intern <- newIORef mp1
status <- newIORef mp2
let step = case Map.lookup stepId mp2 of
Just (_, Loaded r) -> incStep $ fromStepResult r
_ -> Step 1
journal stepId (stepKey, Loaded $ toStepResult step)
lock <- newLock
act Database{assume=shakeAssume opts,..}
instance BinaryWith Witness Step where
putWith _ x = put x
getWith _ = get
instance BinaryWith Witness Result where
putWith ws (Result x1 x2 x3 x4 x5 x6) = putWith ws x1 >> put x2 >> put x3 >> put (BinList $ map BinList x4) >> put (BinFloat x5) >> put (BinList x6)
getWith ws = (\x1 x2 x3 (BinList x4) (BinFloat x5) (BinList x6) -> Result x1 x2 x3 (map fromBinList x4) x5 x6) <$>
getWith ws <*> get <*> get <*> get <*> get <*> get
instance Binary Trace where
put (Trace a b c) = put a >> put (BinFloat b) >> put (BinFloat c)
get = (\a (BinFloat b) (BinFloat c) -> Trace a b c) <$> get <*> get <*> get
instance BinaryWith Witness Status where
putWith ctx Missing = putWord8 0
putWith ctx (Loaded x) = putWord8 1 >> putWith ctx x
putWith ctx x = err $ "putWith, Cannot write Status with constructor " ++ statusType x
getWith ctx = do i <- getWord8; if i == 0 then return Missing else fmap Loaded $ getWith ctx
|