1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
|
{- ByHand.hs
(c) Richard Eisenberg 2012
rae@cs.brynmawr.edu
Shows the derivations for the singleton definitions done by hand.
This file is a great way to understand the singleton encoding better.
-}
{-# OPTIONS_GHC -Wno-unticked-promoted-constructors -Wno-orphans #-}
{-# LANGUAGE PolyKinds, DataKinds, TypeFamilies, KindSignatures, GADTs,
FlexibleInstances, FlexibleContexts, UndecidableInstances,
RankNTypes, TypeOperators, MultiParamTypeClasses,
FunctionalDependencies, ScopedTypeVariables,
LambdaCase, EmptyCase,
TypeApplications, EmptyCase, CPP #-}
#if __GLASGOW_HASKELL__ < 806
{-# LANGUAGE TypeInType #-}
#endif
#if __GLASGOW_HASKELL__ >= 810
{-# LANGUAGE StandaloneKindSignatures #-}
#endif
module ByHand where
import Data.Kind
import Data.Type.Equality hiding (type (==), apply)
import Data.Proxy
import Data.Singletons
import Data.Singletons.Decide
import Prelude hiding ((+), (-), map, zipWith)
import Unsafe.Coerce
-----------------------------------
-- Original ADTs ------------------
-----------------------------------
#if __GLASGOW_HASKELL__ >= 810
type Nat :: Type
#endif
data Nat where
Zero :: Nat
Succ :: Nat -> Nat
deriving Eq
-- Defined using names to avoid fighting with concrete syntax
#if __GLASGOW_HASKELL__ >= 810
type List :: Type -> Type
#endif
data List :: Type -> Type where
Nil :: List a
Cons :: a -> List a -> List a
deriving Eq
-----------------------------------
-- One-time definitions -----------
-----------------------------------
-- Promoted equality type class
#if __GLASGOW_HASKELL__ >= 810
type PEq :: Type -> Constraint
#endif
class PEq k where
type (==) (a :: k) (b :: k) :: Bool
-- omitting definition of /=
-- Singleton type equality type class
#if __GLASGOW_HASKELL__ >= 810
type SEq :: Type -> Constraint
#endif
class SEq k where
(%==) :: forall (a :: k) (b :: k). Sing a -> Sing b -> Sing (a == b)
-- omitting definition of %/=
#if __GLASGOW_HASKELL__ >= 810
type If :: Bool -> a -> a -> a
#endif
type family If (cond :: Bool) (tru :: a) (fls :: a) :: a where
If True tru fls = tru
If False tru fls = fls
sIf :: Sing a -> Sing b -> Sing c -> Sing (If a b c)
sIf STrue b _ = b
sIf SFalse _ c = c
-----------------------------------
-- Auto-generated code ------------
-----------------------------------
-- Nat
#if __GLASGOW_HASKELL__ >= 810
type SNat :: Nat -> Type
#endif
data SNat :: Nat -> Type where
SZero :: SNat Zero
SSucc :: SNat n -> SNat (Succ n)
#if __GLASGOW_HASKELL__ >= 808
type instance Sing @Nat =
#else
type instance Sing =
#endif
SNat
#if _
_GLASGOW_HASKELL__ >= 810
type SuccSym0 :: Nat ~> Nat
#endif
data SuccSym0 :: Nat ~> Nat
type instance Apply SuccSym0 x = Succ x
#if __GLASGOW_HASKELL__ >= 810
type EqualsNat :: Nat -> Nat -> Bool
#endif
type family EqualsNat (a :: Nat) (b :: Nat) :: Bool where
EqualsNat Zero Zero = True
EqualsNat (Succ a) (Succ b) = a == b
EqualsNat (n1 :: Nat) (n2 :: Nat) = False
instance PEq Nat where
type a == b = EqualsNat a b
instance SEq Nat where
SZero %== SZero = STrue
SZero %== (SSucc _) = SFalse
(SSucc _) %== SZero = SFalse
(SSucc n) %== (SSucc n') = n %== n'
instance SDecide Nat where
SZero %~ SZero = Proved Refl
(SSucc m) %~ (SSucc n) =
case m %~ n of
Proved Refl -> Proved Refl
Disproved contra -> Disproved (\Refl -> contra Refl)
SZero %~ (SSucc _) = Disproved (\case)
(SSucc _) %~ SZero = Disproved (\case)
instance SingI Zero where
sing = SZero
instance SingI n => SingI (Succ n) where
sing = SSucc sing
instance SingI1 Succ where
liftSing = SSucc
instance SingKind Nat where
type Demote Nat = Nat
fromSing SZero = Zero
fromSing (SSucc n) = Succ (fromSing n)
toSing Zero = SomeSing SZero
toSing (Succ n) = withSomeSing n (\n' -> SomeSing $ SSucc n')
-- Bool
#if __GLASGOW_HASKELL__ >= 810
type SBool :: Bool -> Type
#endif
data SBool :: Bool -> Type where
SFalse :: SBool False
STrue :: SBool True
#if __GLASGOW_HASKELL__ >= 808
type instance Sing @Bool =
#else
type instance Sing =
#endif
SBool
{-
(&&) :: Bool -> Bool -> Bool
False && _ = False
True && x = x
-}
#if __GLASGOW_HASKELL__ >= 810
type (&&) :: Bool -> Bool -> Bool
#endif
type family (a :: Bool) && (b :: Bool) :: Bool where
False && _ = False
True && x = x
(%&&) :: forall (a :: Bool) (b :: Bool). Sing a -> Sing b -> Sing (a && b)
SFalse %&& SFalse = SFalse
SFalse %&& STrue = SFalse
STrue %&& SFalse = SFalse
STrue %&& STrue = STrue
instance SingI False where
sing = SFalse
instance SingI True where
sing = STrue
instance SingKind Bool where
type Demote Bool = Bool
fromSing SFalse = False
fromSing STrue = True
toSing False = SomeSing SFalse
toSing True = SomeSing STrue
-- Maybe
#if __GLASGOW_HASKELL__ >= 810
type SMaybe :: forall k. Maybe k -> Type
#endif
data SMaybe :: forall k. Maybe k -> Type where
SNothing :: SMaybe Nothing
SJust :: forall k (a :: k). Sing a -> SMaybe (Just a)
#if __GLASGOW_HASKELL__ >= 808
type instance Sing @(Maybe k) =
#else
type instance Sing =
#endif
SMaybe
#if __GLASGOW_HASKELL__ >= 810
type EqualsMaybe :: Maybe k -> Maybe k -> Bool
#endif
type family EqualsMaybe (a :: Maybe k) (b :: Maybe k) :: Bool where
EqualsMaybe Nothing Nothing = True
EqualsMaybe (Just a) (Just a') = a == a'
EqualsMaybe (x :: Maybe k) (y :: Maybe k) = False
instance PEq a => PEq (Maybe a) where
type m1 == m2 = EqualsMaybe m1 m2
instance SDecide k => SDecide (Maybe k) where
SNothing %~ SNothing = Proved Refl
(SJust x) %~ (SJust y) =
case x %~ y of
Proved Refl -> Proved Refl
Disproved contra -> Disproved (\Refl -> contra Refl)
SNothing %~ (SJust _) = Disproved (\case)
(SJust _) %~ SNothing = Disproved (\case)
instance SEq k => SEq (Maybe k) where
SNothing %== SNothing = STrue
SNothing %== (SJust _) = SFalse
(SJust _) %== SNothing = SFalse
(SJust a) %== (SJust a') = a %== a'
instance SingI (Nothing :: Maybe k) where
sing = SNothing
instance SingI a => SingI (Just (a :: k)) where
sing = SJust sing
instance SingI1 Just where
liftSing = SJust
instance SingKind k => SingKind (Maybe k) where
type Demote (Maybe k) = Maybe (Demote k)
fromSing SNothing = Nothing
fromSing (SJust a) = Just (fromSing a)
toSing Nothing = SomeSing SNothing
toSing (Just x) =
case toSing x :: SomeSing k of
SomeSing x' -> SomeSing $ SJust x'
-- List
#if __GLASGOW_HASKELL__ >= 810
type SList :: forall k. List k -> Type
#endif
data SList :: forall k. List k -> Type where
SNil :: SList Nil
SCons :: forall k (h :: k) (t :: List k). Sing h -> SList t -> SList (Cons h t)
#if __GLASGOW_HASKELL__ >= 808
type instance Sing @(List k) =
#else
type instance Sing =
#endif
SList
#if __GLASGOW_HASKELL__ >= 810
type NilSym0 :: List a
#endif
type family NilSym0 :: List a where
NilSym0 = Nil
#if __GLASGOW_HASKELL__ >= 810
type ConsSym0 :: forall a. a ~> List a ~> List a
type ConsSym1 :: forall a. a -> List a ~> List a
type ConsSym2 :: forall a. a -> List a -> List a
#endif
data ConsSym0 :: forall a. a ~> List a ~> List a
data ConsSym1 :: forall a. a -> List a ~> List a
type family ConsSym2 (x :: a) (y :: List a) :: List a where
ConsSym2 x y = Cons x y
type instance Apply ConsSym0 a = ConsSym1 a
type instance Apply (ConsSym1 a) b = Cons a b
#if __GLASGOW_HASKELL__ >= 810
type EqualsList :: List k -> List k -> Bool
#endif
type family EqualsList (a :: List k) (b :: List k) :: Bool where
EqualsList Nil Nil = True
EqualsList (Cons a b) (Cons a' b') = (a == a') && (b == b')
EqualsList (x :: List k) (y :: List k) = False
instance PEq a => PEq (List a) where
type l1 == l2 = EqualsList l1 l2
instance SEq k => SEq (List k) where
SNil %== SNil = STrue
SNil %== (SCons _ _) = SFalse
(SCons _ _) %== SNil = SFalse
(SCons a b) %== (SCons a' b') = (a %== a') %&& (b %== b')
instance SDecide k => SDecide (List k) where
SNil %~ SNil = Proved Refl
(SCons h1 t1) %~ (SCons h2 t2) =
case (h1 %~ h2, t1 %~ t2) of
(Proved Refl, Proved Refl) -> Proved Refl
(Disproved contra, _) -> Disproved (\Refl -> contra Refl)
(_, Disproved contra) -> Disproved (\Refl -> contra Refl)
SNil %~ (SCons _ _) = Disproved (\case)
(SCons _ _) %~ SNil = Disproved (\case)
instance SingI Nil where
sing = SNil
instance (SingI h, SingI t) =>
SingI (Cons (h :: k) (t :: List k)) where
sing = SCons sing sing
instance SingI h => SingI1 (Cons (h :: k)) where
liftSing = SCons sing
instance SingI2 Cons where
liftSing2 = SCons
instance SingKind k => SingKind (List k) where
type Demote (List k) = List (Demote k)
fromSing SNil = Nil
fromSing (SCons h t) = Cons (fromSing h) (fromSing t)
toSing Nil = SomeSing SNil
toSing (Cons h t) =
case ( toSing h :: SomeSing k
, toSing t :: SomeSing (List k) ) of
(SomeSing h', SomeSing t') -> SomeSing $ SCons h' t'
-- Either
#if __GLASGOW_HASKELL__ >= 810
type SEither :: forall k1 k2. Either k1 k2 -> Type
#endif
data SEither :: forall k1 k2. Either k1 k2 -> Type where
SLeft :: forall k1 (a :: k1). Sing a -> SEither (Left a)
SRight :: forall k2 (b :: k2). Sing b -> SEither (Right b)
#if __GLASGOW_HASKELL__ >= 808
type instance Sing @(Either k1 k2) =
#else
type instance Sing =
#endif
SEither
instance (SingI a) => SingI (Left (a :: k)) where
sing = SLeft sing
instance SingI1 Left where
liftSing = SLeft
instance (SingI b) => SingI (Right (b :: k)) where
sing = SRight sing
instance SingI1 Right where
liftSing = SRight
instance (SingKind k1, SingKind k2) => SingKind (Either k1 k2) where
type Demote (Either k1 k2) = Either (Demote k1) (Demote k2)
fromSing (SLeft x) = Left (fromSing x)
fromSing (SRight x) = Right (fromSing x)
toSing (Left x) =
case toSing x :: SomeSing k1 of
SomeSing x' -> SomeSing $ SLeft x'
toSing (Right x) =
case toSing x :: SomeSing k2 of
SomeSing x' -> SomeSing $ SRight x'
instance (SDecide k1, SDecide k2) => SDecide (Either k1 k2) where
(SLeft x) %~ (SLeft y) =
case x %~ y of
Proved Refl -> Proved Refl
Disproved contra -> Disproved (\Refl -> contra Refl)
(SRight x) %~ (SRight y) =
case x %~ y of
Proved Refl -> Proved Refl
Disproved contra -> Disproved (\Refl -> contra Refl)
(SLeft _) %~ (SRight _) = Disproved (\case)
(SRight _) %~ (SLeft _) = Disproved (\case)
-- Composite
#if __GLASGOW_HASKELL__ >= 810
type Composite :: Type -> Type -> Type
#endif
data Composite :: Type -> Type -> Type where
MkComp :: Either (Maybe a) b -> Composite a b
#if __GLASGOW_HASKELL__ >= 810
type SComposite :: forall k1 k2. Composite k1 k2 -> Type
#endif
data SComposite :: forall k1 k2. Composite k1 k2 -> Type where
SMkComp :: forall k1 k2 (a :: Either (Maybe k1) k2). SEither a -> SComposite (MkComp a)
#if __GLASGOW_HASKELL__ >= 808
type instance Sing @(Composite k1 k2) =
#else
type instance Sing =
#endif
SComposite
instance SingI a => SingI (MkComp (a :: Either (Maybe k1) k2)) where
sing = SMkComp sing
instance SingI1 MkComp where
liftSing = SMkComp
instance (SingKind k1, SingKind k2) => SingKind (Composite k1 k2) where
type Demote (Composite k1 k2) =
Composite (Demote k1) (Demote k2)
fromSing (SMkComp x) = MkComp (fromSing x)
toSing (MkComp x) =
case toSing x :: SomeSing (Either (Maybe k1) k2) of
SomeSing x' -> SomeSing $ SMkComp x'
instance (SDecide k1, SDecide k2) => SDecide (Composite k1 k2) where
(SMkComp x) %~ (SMkComp y) =
case x %~ y of
Proved Refl -> Proved Refl
Disproved contra -> Disproved (\Refl -> contra Refl)
-- Empty
#if __GLASGOW_HASKELL__ >= 810
type Empty :: Type
#endif
data Empty
#if __GLASGOW_HASKELL__ >= 810
type SEmpty :: Empty -> Type
#endif
data SEmpty :: Empty -> Type
#if __GLASGOW_HASKELL__ >= 808
type instance Sing @Empty =
#else
type instance Sing =
#endif
SEmpty
instance SingKind Empty where
type Demote Empty = Empty
fromSing = \case
toSing x = SomeSing (case x of)
-- Type
#if __GLASGOW_HASKELL__ >= 810
type Vec :: Type -> Nat -> Type
#endif
data Vec :: Type -> Nat -> Type where
VNil :: Vec a Zero
VCons :: a -> Vec a n -> Vec a (Succ n)
#if __GLASGOW_HASKELL__ >= 810
type Rep :: Type
#endif
data Rep = Nat | Maybe Rep | Vec Rep Nat
#if __GLASGOW_HASKELL__ >= 810
type SRep :: Type -> Type
#endif
data SRep :: Type -> Type where
SNat :: SRep Nat
SMaybe :: SRep a -> SRep (Maybe a)
SVec :: SRep a -> SNat n -> SRep (Vec a n)
#if __GLASGOW_HASKELL__ >= 808
type instance Sing @Type =
#else
type instance Sing =
#endif
SRep
instance SingI Nat where
sing = SNat
instance SingI a => SingI (Maybe a) where
sing = SMaybe sing
instance SingI1 Maybe where
liftSing = SMaybe
instance (SingI a, SingI n) => SingI (Vec a n) where
sing = SVec sing sing
instance SingI a => SingI1 (Vec a) where
liftSing = SVec sing
instance SingI2 Vec where
liftSing2 = SVec
instance SingKind Type where
type Demote Type = Rep
fromSing SNat = Nat
fromSing (SMaybe a) = Maybe (fromSing a)
fromSing (SVec a n) = Vec (fromSing a) (fromSing n)
toSing Nat = SomeSing SNat
toSing (Maybe a) =
case toSing a :: SomeSing Type of
SomeSing a' -> SomeSing $ SMaybe a'
toSing (Vec a n) =
case ( toSing a :: SomeSing Type
, toSing n :: SomeSing Nat) of
(SomeSing a', SomeSing n') -> SomeSing $ SVec a' n'
instance SDecide Type where
SNat %~ SNat = Proved Refl
SNat %~ (SMaybe {}) = Disproved (\case)
SNat %~ (SVec {}) = Disproved (\case)
(SMaybe {}) %~ SNat = Disproved (\case)
(SMaybe a) %~ (SMaybe b) =
case a %~ b of
Proved Refl -> Proved Refl
Disproved contra -> Disproved (\Refl -> contra Refl)
(SMaybe {}) %~ (SVec {}) = Disproved (\case)
(SVec {}) %~ SNat = Disproved (\case)
(SVec {}) %~ (SMaybe {}) = Disproved (\case)
(SVec a1 n1) %~ (SVec a2 n2) =
case (a1 %~ a2, n1 %~ n2) of
(Proved Refl, Proved Refl) -> Proved Refl
(Disproved contra, _) -> Disproved (\Refl -> contra Refl)
(_, Disproved contra) -> Disproved (\Refl -> contra Refl)
#if __GLASGOW_HASKELL__ >= 810
type EqualsType :: Type -> Type -> Bool
#endif
type family EqualsType (a :: Type) (b :: Type) :: Bool where
EqualsType a a = True
EqualsType _ _ = False
instance PEq Type where
type a == b = EqualsType a b
instance SEq Type where
a %== b =
case a %~ b of
Proved Refl -> STrue
Disproved _ -> unsafeCoerce SFalse
-----------------------------------
-- Some example functions ---------
-----------------------------------
isJust :: Maybe a -> Bool
isJust Nothing = False
isJust (Just _) = True
#if __GLASGOW_HASKELL__ >= 810
type IsJust :: Maybe k -> Bool
#endif
type family IsJust (a :: Maybe k) :: Bool where
IsJust Nothing = False
IsJust (Just a) = True
-- defunctionalization symbols
#if __GLASGOW_HASKELL__ >= 810
type IsJustSym0 :: forall a. Maybe a ~> Bool
#endif
data IsJustSym0 :: forall a. Maybe a ~> Bool
type instance Apply IsJustSym0 a = IsJust a
sIsJust :: Sing a -> Sing (IsJust a)
sIsJust SNothing = SFalse
sIsJust (SJust _) = STrue
pred :: Nat -> Nat
pred Zero = Zero
pred (Succ n) = n
#if __GLASGOW_HASKELL__ >= 810
type Pred :: Nat -> Nat
#endif
type family Pred (a :: Nat) :: Nat where
Pred Zero = Zero
Pred (Succ n) = n
#if __GLASGOW_HASKELL__ >= 810
type PredSym0 :: Nat ~> Nat
#endif
data PredSym0 :: Nat ~> Nat
type instance Apply PredSym0 a = Pred a
sPred :: forall (t :: Nat). Sing t -> Sing (Pred t)
sPred SZero = SZero
sPred (SSucc n) = n
map :: (a -> b) -> List a -> List b
map _ Nil = Nil
map f (Cons h t) = Cons (f h) (map f t)
#if __GLASGOW_HASKELL__ >= 810
type Map :: (k1 ~> k2) -> List k1 -> List k2
#endif
type family Map (f :: k1 ~> k2) (l :: List k1) :: List k2 where
Map f Nil = Nil
Map f (Cons h t) = Cons (Apply f h) (Map f t)
-- defunctionalization symbols
#if __GLASGOW_HASKELL__ >= 810
type MapSym0 :: forall a b. (a ~> b) ~> List a ~> List b
type MapSym1 :: forall a b. (a ~> b) -> List a ~> List b
#endif
data MapSym0 :: forall a b. (a ~> b) ~> List a ~> List b
data MapSym1 :: forall a b. (a ~> b) -> List a ~> List b
type instance Apply MapSym0 f = MapSym1 f
type instance Apply (MapSym1 f) xs = Map f xs
sMap :: forall k1 k2 (a :: List k1) (f :: k1 ~> k2).
(forall b. Proxy f -> Sing b -> Sing (Apply f b)) -> Sing a -> Sing (Map f a)
sMap _ SNil = SNil
sMap f (SCons h t) = SCons (f Proxy h) (sMap f t)
-- Alternative implementation of sMap with Proxy outside of callback.
-- Not generated by the library.
sMap2 :: forall k1 k2 (a :: List k1) (f :: k1 ~> k2). Proxy f ->
(forall b. Sing b -> Sing (Apply f b)) -> Sing a -> Sing (Map f a)
sMap2 _ _ SNil = SNil
sMap2 p f (SCons h t) = SCons (f h) (sMap2 p f t)
-- test sMap
foo :: Sing (Cons (Succ (Succ Zero)) (Cons (Succ Zero) Nil))
foo = sMap (\(_ :: Proxy (TyCon1 Succ)) -> SSucc) (SCons (SSucc SZero) (SCons SZero SNil))
-- test sMap2
bar :: Sing (Cons (Succ (Succ Zero)) (Cons (Succ Zero) Nil))
bar = sMap2 (Proxy :: Proxy SuccSym0) (SSucc) (SCons (SSucc SZero) (SCons SZero SNil))
baz :: Sing (Cons Zero (Cons Zero Nil))
baz = sMap2 (Proxy :: Proxy PredSym0) (sPred) (SCons (SSucc SZero) (SCons SZero SNil))
zipWith :: (a -> b -> c) -> List a -> List b -> List c
zipWith f (Cons x xs) (Cons y ys) = Cons (f x y) (zipWith f xs ys)
zipWith _ Nil (Cons _ _) = Nil
zipWith _ (Cons _ _) Nil = Nil
zipWith _ Nil Nil = Nil
#if __GLASGOW_HASKELL__ >= 810
type ZipWith :: (a ~> b ~> c) -> List a -> List b -> List c
#endif
type family ZipWith (k1 :: a ~> b ~> c) (k2 :: List a) (k3 :: List b) :: List c where
ZipWith f (Cons x xs) (Cons y ys) = Cons (Apply (Apply f x) y) (ZipWith f xs ys)
ZipWith f Nil (Cons z1 z2) = Nil
ZipWith f (Cons z1 z2) Nil = Nil
ZipWith f Nil Nil = Nil
#if __GLASGOW_HASKELL__ >= 810
type ZipWithSym0 :: forall a b c. (a ~> b ~> c) ~> List a ~> List b ~> List c
type ZipWithSym1 :: forall a b c. (a ~> b ~> c) -> List a ~> List b ~> List c
type ZipWithSym2 :: forall a b c. (a ~> b ~> c) -> List a -> List b ~> List c
#endif
data ZipWithSym0 :: forall a b c. (a ~> b ~> c) ~> List a ~> List b ~> List c
data ZipWithSym1 :: forall a b c. (a ~> b ~> c) -> List a ~> List b ~> List c
data ZipWithSym2 :: forall a b c. (a ~> b ~> c) -> List a -> List b ~> List c
type instance Apply ZipWithSym0 f = ZipWithSym1 f
type instance Apply (ZipWithSym1 f) xs = ZipWithSym2 f xs
type instance Apply (ZipWithSym2 f xs) ys = ZipWith f xs ys
sZipWith :: forall a b c (k1 :: a ~> b ~> c) (k2 :: List a) (k3 :: List b).
(forall (t1 :: a). Proxy k1 -> Sing t1 -> forall (t2 :: b). Sing t2 -> Sing (Apply (Apply k1 t1) t2))
-> Sing k2 -> Sing k3 -> Sing (ZipWith k1 k2 k3)
sZipWith f (SCons x xs) (SCons y ys) = SCons (f Proxy x y) (sZipWith f xs ys)
sZipWith _ SNil (SCons _ _) = SNil
sZipWith _ (SCons _ _) SNil = SNil
sZipWith _ SNil SNil = SNil
either :: (a -> c) -> (b -> c) -> Either a b -> c
either l _ (Left x) = l x
either _ r (Right x) = r x
#if __GLASGOW_HASKELL__ >= 810
type Either_ :: (a ~> c) -> (b ~> c) -> Either a b -> c
#endif
type family Either_ (l :: a ~> c) (r :: b ~> c) (e :: Either a b) :: c where
Either_ l r (Left x) = Apply l x
Either_ l r (Right x) = Apply r x
-- defunctionalization symbols
#if __GLASGOW_HASKELL__ >= 810
type Either_Sym0 :: forall a c b. (a ~> c) ~> (b ~> c) ~> Either a b ~> c
type Either_Sym1 :: forall a c b. (a ~> c) -> (b ~> c) ~> Either a b ~> c
type Either_Sym2 :: forall a c b. (a ~> c) -> (b ~> c) -> Either a b ~> c
#endif
data Either_Sym0 :: forall a c b. (a ~> c) ~> (b ~> c) ~> Either a b ~> c
data Either_Sym1 :: forall a c b. (a ~> c) -> (b ~> c) ~> Either a b ~> c
data Either_Sym2 :: forall a c b. (a ~> c) -> (b ~> c) -> Either a b ~> c
type instance Apply Either_Sym0 k1 = Either_Sym1 k1
type instance Apply (Either_Sym1 k1) k2 = Either_Sym2 k1 k2
type instance Apply (Either_Sym2 k1 k2) k3 = Either_ k1 k2 k3
sEither :: forall a b c
(l :: a ~> c)
(r :: b ~> c)
(e :: Either a b).
(forall n. Proxy l -> Sing n -> Sing (Apply l n)) ->
(forall n. Proxy r -> Sing n -> Sing (Apply r n)) ->
Sing e -> Sing (Either_ l r e)
sEither l _ (SLeft x) = l Proxy x
sEither _ r (SRight x) = r Proxy x
-- Alternative implementation of sEither with Proxy outside of callbacks.
-- Not generated by the library.
sEither2 :: forall a b c
(l :: a ~> c)
(r :: b ~> c)
(e :: Either a b).
Proxy l -> Proxy r ->
(forall n. Sing n -> Sing (Apply l n)) ->
(forall n. Sing n -> Sing (Apply r n)) ->
Sing e -> Sing (Either_ l r e)
sEither2 _ _ l _ (SLeft x) = l x
sEither2 _ _ _ r (SRight x) = r x
eitherFoo :: Sing (Succ (Succ Zero))
eitherFoo = sEither (\(_ :: Proxy SuccSym0) -> SSucc)
(\(_ :: Proxy PredSym0) -> sPred) (SLeft (SSucc SZero))
eitherBar :: Sing Zero
eitherBar = sEither2 (Proxy :: Proxy SuccSym0)
(Proxy :: Proxy PredSym0)
SSucc
sPred (SRight (SSucc SZero))
eitherToNat :: Either Nat Nat -> Nat
eitherToNat (Left x) = x
eitherToNat (Right x) = x
#if __GLASGOW_HASKELL__ >= 810
type EitherToNat :: Either Nat Nat -> Nat
#endif
type family EitherToNat (e :: Either Nat Nat) :: Nat where
EitherToNat (Left x) = x
EitherToNat (Right x) = x
sEitherToNat :: Sing a -> Sing (EitherToNat a)
sEitherToNat (SLeft x) = x
sEitherToNat (SRight x) = x
liftMaybe :: (a -> b) -> Maybe a -> Maybe b
liftMaybe _ Nothing = Nothing
liftMaybe f (Just a) = Just (f a)
#if __GLASGOW_HASKELL__ >= 810
type LiftMaybe :: (a ~> b) -> Maybe a -> Maybe b
#endif
type family LiftMaybe (f :: a ~> b) (x :: Maybe a) :: Maybe b where
LiftMaybe f Nothing = Nothing
LiftMaybe f (Just a) = Just (Apply f a)
#if __GLASGOW_HASKELL__ >= 810
type LiftMaybeSym0 :: forall a b. (a ~> b) ~> Maybe a ~> Maybe b
type LiftMaybeSym1 :: forall a b. (a ~> b) -> Maybe a ~> Maybe b
#endif
data LiftMaybeSym0 :: forall a b. (a ~> b) ~> Maybe a ~> Maybe b
data LiftMaybeSym1 :: forall a b. (a ~> b) -> Maybe a ~> Maybe b
type instance Apply LiftMaybeSym0 k1 = LiftMaybeSym1 k1
type instance Apply (LiftMaybeSym1 k1) k2 = LiftMaybe k1 k2
sLiftMaybe :: forall a b (f :: a ~> b) (x :: Maybe a).
(forall (y :: a). Proxy f -> Sing y -> Sing (Apply f y)) ->
Sing x -> Sing (LiftMaybe f x)
sLiftMaybe _ SNothing = SNothing
sLiftMaybe f (SJust a) = SJust (f Proxy a)
(+) :: Nat -> Nat -> Nat
Zero + x = x
(Succ x) + y = Succ (x + y)
#if __GLASGOW_HASKELL__ >= 810
type (+) :: Nat -> Nat -> Nat
#endif
type family (+) (m :: Nat) (n :: Nat) :: Nat where
Zero + x = x
(Succ x) + y = Succ (x + y)
-- defunctionalization symbols
#if __GLASGOW_HASKELL__ >= 810
type (+@#@$) :: Nat ~> Nat ~> Nat
type (+@#@$$) :: Nat -> Nat ~> Nat
#endif
data (+@#@$) :: Nat ~> Nat ~> Nat
data (+@#@$$) :: Nat -> Nat ~> Nat
type instance Apply (+@#@$) k1 = (+@#@$$) k1
type instance Apply ((+@#@$$) k1) k2 = (+) k1 k2
(%+) :: Sing m -> Sing n -> Sing (m + n)
SZero %+ x = x
(SSucc x) %+ y = SSucc (x %+ y)
(-) :: Nat -> Nat -> Nat
Zero - _ = Zero
(Succ x) - Zero = Succ x
(Succ x) - (Succ y) = x - y
#if __GLASGOW_HASKELL__ >= 810
type (-) :: Nat -> Nat -> Nat
#endif
type family (-) (m :: Nat) (n :: Nat) :: Nat where
Zero - x = Zero
(Succ x) - Zero = Succ x
(Succ x) - (Succ y) = x - y
#if __GLASGOW_HASKELL__ >= 810
type (-@#@$) :: Nat ~> Nat ~> Nat
type (-@#@$$) :: Nat -> Nat ~> Nat
#endif
data (-@#@$) :: Nat ~> Nat ~> Nat
data (-@#@$$) :: Nat -> Nat ~> Nat
type instance Apply (-@#@$) k1 = (-@#@$$) k1
type instance Apply ((-@#@$$) k1) k2 = (-) k1 k2
(%-) :: Sing m -> Sing n -> Sing (m - n)
SZero %- _ = SZero
(SSucc x) %- SZero = SSucc x
(SSucc x) %- (SSucc y) = x %- y
isZero :: Nat -> Bool
isZero n = if n == Zero then True else False
#if __GLASGOW_HASKELL__ >= 810
type IsZero :: Nat -> Bool
#endif
type family IsZero (n :: Nat) :: Bool where
IsZero n = If (n == Zero) True False
#if __GLASGOW_HASKELL__ >= 810
type IsZeroSym0 :: Nat ~> Bool
#endif
data IsZeroSym0 :: Nat ~> Bool
type instance Apply IsZeroSym0 a = IsZero a
sIsZero :: Sing n -> Sing (IsZero n)
sIsZero n = sIf (n %== SZero) STrue SFalse
{-
(||) :: Bool -> Bool -> Bool
False || x = x
True || _ = True
-}
#if __GLASGOW_HASKELL__ >= 810
type (||) :: Bool -> Bool -> Bool
#endif
type family (a :: Bool) || (b :: Bool) :: Bool where
False || x = x
True || x = True
#if __GLASGOW_HASKELL__ >= 810
type (||@#@$) :: Bool ~> Bool ~> Bool
type (||@#@$$) :: Bool -> Bool ~> Bool
#endif
data (||@#@$) :: Bool ~> Bool ~> Bool
data (||@#@$$) :: Bool -> Bool ~> Bool
type instance Apply (||@#@$) a = (||@#@$$) a
type instance Apply ((||@#@$$) a) b = (||) a b
(%||) :: Sing a -> Sing b -> Sing (a || b)
SFalse %|| x = x
STrue %|| _ = STrue
contains :: Eq a => a -> List a -> Bool
contains _ Nil = False
contains elt (Cons h t) = (elt == h) || contains elt t
#if __GLASGOW_HASKELL__ >= 810
type Contains :: k -> List k -> Bool
#endif
type family Contains (a :: k) (b :: List k) :: Bool where
Contains elt Nil = False
Contains elt (Cons h t) = (elt == h) || (Contains elt t)
#if __GLASGOW_HASKELL__ >= 810
type ContainsSym0 :: forall a. a ~> List a ~> Bool
type ContainsSym1 :: forall a. a -> List a ~> Bool
#endif
data ContainsSym0 :: forall a. a ~> List a ~> Bool
data ContainsSym1 :: forall a. a -> List a ~> Bool
type instance Apply ContainsSym0 a = ContainsSym1 a
type instance Apply (ContainsSym1 a) b = Contains a b
{-
sContains :: forall k. SEq k =>
forall (a :: k). Sing a ->
forall (list :: List k). Sing list -> Sing (Contains a list)
sContains _ SNil = SFalse
sContains elt (SCons h t) = (elt %== h) %|| (sContains elt t)
-}
sContains :: forall a (t1 :: a) (t2 :: List a). SEq a => Sing t1
-> Sing t2 -> Sing (Contains t1 t2)
sContains _ SNil =
let lambda :: forall wild. Sing (Contains wild Nil)
lambda = SFalse
in
lambda
sContains elt (SCons h t) =
let lambda :: forall elt h t. (elt ~ t1, (Cons h t) ~ t2) => Sing elt -> Sing h -> Sing t -> Sing (Contains elt (Cons h t))
lambda elt' h' t' = (elt' %== h') %|| sContains elt' t'
in
lambda elt h t
cont :: Eq a => a -> List a -> Bool
cont = \elt list -> case list of
Nil -> False
Cons h t -> (elt == h) || cont elt t
#if __GLASGOW_HASKELL__ >= 810
type Cont :: a ~> List a ~> Bool
#endif
type family Cont :: a ~> List a ~> Bool where
Cont = Lambda10Sym0
data Lambda10Sym0 f where
KindInferenceLambda10Sym0 :: (Lambda10Sym0 @@ arg) ~ Lambda10Sym1 arg
=> Proxy arg
-> Lambda10Sym0 f
type instance Lambda10Sym0 `Apply` x = Lambda10Sym1 x
data Lambda10Sym1 a f where
KindInferenceLambda10Sym1 :: (Lambda10Sym1 a @@ arg) ~ Lambda10Sym2 a arg
=> Proxy arg
-> Lambda10Sym1 a f
type instance (Lambda10Sym1 a) `Apply` b = Lambda10Sym2 a b
type Lambda10Sym2 a b = Lambda10 a b
type family Lambda10 a b where
Lambda10 elt list = Case10 elt list list
type family Case10 a b scrut where
Case10 elt list Nil = False
Case10 elt list (Cons h t) = (||@#@$) @@ ((==@#@$) @@ elt @@ h) @@ (Cont @@ elt @@ t)
data (==@#@$) f where
(:###==@#@$) :: ((==@#@$) @@ arg) ~ (==@#@$$) arg
=> Proxy arg
-> (==@#@$) f
type instance (==@#@$) `Apply` x = (==@#@$$) x
data (==@#@$$) a f where
(:###==@#@$$) :: ((==@#@$$) x @@ arg) ~ (==@#@$$$) x arg
=> Proxy arg
-> (==@#@$$) x y
type instance (==@#@$$) a `Apply` b = (==) a b
type family (==@#@$$$) a b where
(==@#@$$$) a b = (==) a b
impNat :: forall m n. SingI n => Proxy n -> Sing m -> Sing (n + m)
impNat _ sm = (sing :: Sing n) %+ sm
callImpNat :: forall n m. Sing n -> Sing m -> Sing (n + m)
callImpNat sn sm = withSingI sn (impNat (Proxy :: Proxy n) sm)
instance Show (SNat n) where
show SZero = "SZero"
show (SSucc n) = "SSucc (" ++ (show n) ++ ")"
findIndices :: (a -> Bool) -> [a] -> [Nat]
findIndices p ls = loop Zero ls
where
loop _ [] = []
loop n (x:xs) | p x = n : loop (Succ n) xs
| otherwise = loop (Succ n) xs
#if __GLASGOW_HASKELL__ >= 810
type FindIndices :: (a ~> Bool) -> List a -> List Nat
#endif
type family FindIndices (f :: a ~> Bool) (ls :: List a) :: List Nat where
FindIndices p ls = (Let123LoopSym2 p ls) @@ Zero @@ ls
type family Let123Loop p ls (arg1 :: Nat) (arg2 :: List a) :: List Nat where
Let123Loop p ls z Nil = Nil
Let123Loop p ls n (x `Cons` xs) = Case123 p ls n x xs (p @@ x)
type family Case123 p ls n x xs scrut where
Case123 p ls n x xs True = n `Cons` ((Let123LoopSym2 p ls) @@ (Succ n) @@ xs)
Case123 p ls n x xs False = (Let123LoopSym2 p ls) @@ (Succ n) @@ xs
data Let123LoopSym2 a b c where
Let123LoopSym2KindInfernece :: ((Let123LoopSym2 a b @@ z) ~ Let123LoopSym3 a b z)
=> Proxy z
-> Let123LoopSym2 a b c
type instance Apply (Let123LoopSym2 a b) c = Let123LoopSym3 a b c
data Let123LoopSym3 a b c d where
KindInferenceLet123LoopSym3 :: ((Let123LoopSym3 a b c @@ z) ~ Let123LoopSym4 a b c z)
=> Proxy z
-> Let123LoopSym3 a b c d
type instance Apply (Let123LoopSym3 a b c) d = Let123Loop a b c d
type family Let123LoopSym4 a b c d where
Let123LoopSym4 a b c d = Let123Loop a b c d
data FindIndicesSym0 a where
KindInferenceFindIndicesSym0 :: (FindIndicesSym0 @@ z) ~ FindIndicesSym1 z
=> Proxy z
-> FindIndicesSym0 a
type instance Apply FindIndicesSym0 a = FindIndicesSym1 a
data FindIndicesSym1 a b where
KindInferenceFindIndicesSym1 :: (FindIndicesSym1 a @@ z) ~ FindIndicesSym2 a z
=> Proxy z
-> FindIndicesSym1 a b
type instance Apply (FindIndicesSym1 a) b = FindIndices a b
type family FindIndicesSym2 a b where
FindIndicesSym2 a b = FindIndices a b
sFindIndices :: forall a (t1 :: a ~> Bool) (t2 :: (List a)).
Sing t1
-> Sing t2
-> Sing (FindIndicesSym0 @@ t1 @@ t2)
sFindIndices sP sLs =
let sLoop :: forall (u1 :: Nat) (u2 :: List a).
Sing u1 -> Sing u2
-> Sing ((Let123LoopSym2 t1 t2) @@ u1 @@ u2)
sLoop _ SNil = SNil
sLoop sN (sX `SCons` sXs) = case sP @@ sX of
STrue -> (singFun2 @ConsSym0 SCons) @@ sN @@
((singFun2 @(Let123LoopSym2 t1 t2) sLoop) @@ ((singFun1 @SuccSym0 SSucc) @@ sN) @@ sXs)
SFalse -> (singFun2 @(Let123LoopSym2 t1 t2) sLoop) @@ ((singFun1 @SuccSym0 SSucc) @@ sN) @@ sXs
in
(singFun2 @(Let123LoopSym2 t1 t2) sLoop) @@ SZero @@ sLs
fI :: forall a. (a -> Bool) -> [a] -> [Nat]
fI = \p ls ->
let loop :: Nat -> [a] -> [Nat]
loop _ [] = []
loop n (x:xs) = case p x of
True -> n : loop (Succ n) xs
False -> loop (Succ n) xs
in
loop Zero ls
type FI = Lambda22Sym0
type FISym0 = FI
type family Lambda22 p ls where
Lambda22 p ls = (Let123LoopSym2 p ls) @@ Zero @@ ls
data Lambda22Sym0 a where
KindInferenceLambda22Sym0 :: (Lambda22Sym0 @@ z) ~ Lambda22Sym1 z
=> Proxy z
-> Lambda22Sym0 a
type instance Apply Lambda22Sym0 a = Lambda22Sym1 a
data Lambda22Sym1 a b where
KindInferenceLambda22Sym1 :: (Lambda22Sym1 a @@ z) ~ Lambda22Sym2 a z
=> Proxy z
-> Lambda22Sym1 a b
type instance Apply (Lambda22Sym1 a) b = Lambda22 a b
type family Lambda22Sym2 a b where
Lambda22Sym2 a b = Lambda22 a b
{-
sFI :: forall a (t1 :: a ~> Bool) (t2 :: List a). Sing t1
-> Sing t2
-> Sing (FISym0 @@ t1 @@ t2)
sFI = unSingFun2 (singFun2 @FI (\p ls ->
let lambda :: forall {-(t1 :: a ~> Bool)-} t1 t2. Sing t1 -> Sing t2 -> Sing (Lambda22Sym0 @@ t1 @@ t2)
lambda sP sLs =
let sLoop :: (Lambda22Sym0 @@ t1 @@ t2) ~ (Let123LoopSym2 t1 t2 @@ Zero @@ t2) => forall (u1 :: Nat). Sing u1
-> forall {-(u2 :: List a)-} u2. Sing u2
-> Sing ((Let123LoopSym2 t1 t2) @@ u1 @@ u2)
sLoop _ SNil = SNil
sLoop sN (sX `SCons` sXs) = case sP @@ sX of
STrue -> (singFun2 @ConsSym0 SCons) @@ sN @@
((singFun2 @(Let123LoopSym2 t1 t2) sLoop) @@ ((singFun1 @SuccSym0 SSucc) @@ sN) @@ sXs)
SFalse -> (singFun2 @(Let123LoopSym2 t1 t2) sLoop) @@ ((singFun1 @SuccSym0 SSucc) @@ sN) @@ sXs
in
(singFun2 @(Let123LoopSym2 t1 t2) sLoop) @@ SZero @@ sLs
in
lambda p ls
))
-}
------------------------------------------------------------
#if __GLASGOW_HASKELL__ >= 810
type G :: Type -> Type
#endif
data G :: Type -> Type where
MkG :: G Bool
#if __GLASGOW_HASKELL__ >= 810
type SG :: forall a. G a -> Type
#endif
data SG :: forall a. G a -> Type where
SMkG :: SG MkG
#if __GLASGOW_HASKELL__ >= 808
type instance Sing @(G a) =
#else
type instance Sing =
#endif
SG
|