1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
|
{-# LANGUAGE DataKinds, PolyKinds, TypeFamilies, GADTs, TypeOperators,
DefaultSignatures, ScopedTypeVariables, InstanceSigs,
MultiParamTypeClasses, FunctionalDependencies,
UndecidableInstances, CPP, TypeApplications #-}
{-# OPTIONS_GHC -Wno-missing-signatures -Wno-orphans #-}
#if __GLASGOW_HASKELL__ < 806
{-# LANGUAGE TypeInType #-}
#endif
#if __GLASGOW_HASKELL__ >= 810
{-# LANGUAGE StandaloneKindSignatures #-}
#endif
module ByHand2 where
import Data.Kind
import Data.Singletons (Sing)
#if __GLASGOW_HASKELL__ >= 810
type Nat :: Type
#endif
data Nat = Zero | Succ Nat
#if __GLASGOW_HASKELL__ >= 810
type SNat :: Nat -> Type
#endif
data SNat :: Nat -> Type where
SZero :: SNat 'Zero
SSucc :: SNat n -> SNat ('Succ n)
#if __GLASGOW_HASKELL__ >= 808
type instance Sing @Nat =
#else
type instance Sing =
#endif
SNat
{-
type Bool :: Type
data Bool = False | True
-}
#if __GLASGOW_HASKELL__ >= 810
type SBool :: Bool -> Type
#endif
data SBool :: Bool -> Type where
SFalse :: SBool 'False
STrue :: SBool 'True
#if __GLASGOW_HASKELL__ >= 808
type instance Sing @Bool =
#else
type instance Sing =
#endif
SBool
{-
type Ordering :: Type
data Ordering = LT | EQ | GT
-}
#if __GLASGOW_HASKELL__ >= 810
type SOrdering :: Ordering -> Type
#endif
data SOrdering :: Ordering -> Type where
SLT :: SOrdering 'LT
SEQ :: SOrdering 'EQ
SGT :: SOrdering 'GT
#if __GLASGOW_HASKELL__ >= 808
type instance Sing @Ordering =
#else
type instance Sing =
#endif
SOrdering
{-
not :: Bool -> Bool
not True = False
not False = True
-}
#if __GLASGOW_HASKELL__ >= 810
type Not :: Bool -> Bool
#endif
type family Not (x :: Bool) :: Bool where
Not 'True = 'False
Not 'False = 'True
sNot :: Sing b -> Sing (Not b)
sNot STrue = SFalse
sNot SFalse = STrue
{-
type Eq :: Type -> Constraint
class Eq a where
(==) :: a -> a -> Bool
(/=) :: a -> a -> Bool
infix 4 ==, /=
x == y = not (x /= y)
x /= y = not (x == y)
-}
#if __GLASGOW_HASKELL__ >= 810
type PEq :: Type -> Constraint
#endif
class PEq a where
type (==) (x :: a) (y :: a) :: Bool
type (/=) (x :: a) (y :: a) :: Bool
type x == y = Not (x /= y)
type x /= y = Not (x == y)
#if __GLASGOW_HASKELL__ >= 810
type SEq :: Type -> Constraint
#endif
class SEq a where
(%==) :: Sing (x :: a) -> Sing (y :: a) -> Sing (x == y)
(%/=) :: Sing (x :: a) -> Sing (y :: a) -> Sing (x /= y)
default (%==) :: ((x == y) ~ (Not (x /= y))) => Sing (x :: a) -> Sing (y :: a) -> Sing (x == y)
x %== y = sNot (x %/= y)
default (%/=) :: ((x /= y) ~ (Not (x == y))) => Sing (x :: a) -> Sing (y :: a) -> Sing (x /= y)
x %/= y = sNot (x %== y)
instance Eq Nat where
Zero == Zero = True
Zero == Succ _ = False
Succ _ == Zero = False
Succ x == Succ y = x == y
instance PEq Nat where
type 'Zero == 'Zero = 'True
type 'Succ x == 'Zero = 'False
type 'Zero == 'Succ x = 'False
type 'Succ x == 'Succ y = x == y
instance SEq Nat where
(%==) :: forall (x :: Nat) (y :: Nat). Sing x -> Sing y -> Sing (x == y)
SZero %== SZero = STrue
SSucc _ %== SZero = SFalse
SZero %== SSucc _ = SFalse
SSucc x %== SSucc y = x %== y
{-
instance Eq Ordering where
LT == LT = True
LT == EQ = False
LT == GT = False
EQ == LT = False
EQ == EQ = True
EQ == GT = False
GT == LT = False
GT == EQ = False
GT == GT = True
-}
instance PEq Ordering where
type 'LT == 'LT = 'True
type 'LT == 'EQ = 'False
type 'LT == 'GT = 'False
type 'EQ == 'LT = 'False
type 'EQ == 'EQ = 'True
type 'EQ == 'GT = 'False
type 'GT == 'LT = 'False
type 'GT == 'EQ = 'False
type 'GT == 'GT = 'True
instance SEq Ordering where
SLT %== SLT = STrue
SLT %== SEQ = SFalse
SLT %== SGT = SFalse
SEQ %== SLT = SFalse
SEQ %== SEQ = STrue
SEQ %== SGT = SFalse
SGT %== SLT = SFalse
SGT %== SEQ = SFalse
SGT %== SGT = STrue
{-
type Ord :: Type -> Constraint
class Eq a => Ord a where
compare :: a -> a -> Ordering
(<) :: a -> a -> Bool
x < y = compare x y == LT
-}
#if __GLASGOW_HASKELL__ >= 810
type POrd :: Type -> Constraint
#endif
class PEq a => POrd a where
type Compare (x :: a) (y :: a) :: Ordering
type (<) (x :: a) (y :: a) :: Bool
type x < y = Compare x y == 'LT
#if __GLASGOW_HASKELL__ >= 810
type SOrd :: Type -> Constraint
#endif
class SEq a => SOrd a where
sCompare :: Sing (x :: a) -> Sing (y :: a) -> Sing (Compare x y)
(%<) :: Sing (x :: a) -> Sing (y :: a) -> Sing (x < y)
default (%<) :: ((x < y) ~ (Compare x y == 'LT)) => Sing (x :: a) -> Sing (y :: a) -> Sing (x < y)
x %< y = sCompare x y %== SLT
instance Ord Nat where
compare Zero Zero = EQ
compare Zero (Succ _) = LT
compare (Succ _) Zero = GT
compare (Succ a) (Succ b) = compare a b
instance POrd Nat where
type Compare 'Zero 'Zero = 'EQ
type Compare 'Zero ('Succ x) = 'LT
type Compare ('Succ x) 'Zero = 'GT
type Compare ('Succ x) ('Succ y) = Compare x y
instance SOrd Nat where
sCompare SZero SZero = SEQ
sCompare SZero (SSucc _) = SLT
sCompare (SSucc _) SZero = SGT
sCompare (SSucc x) (SSucc y) = sCompare x y
#if __GLASGOW_HASKELL__ >= 810
type Pointed :: Type -> Constraint
#endif
class Pointed a where
point :: a
#if __GLASGOW_HASKELL__ >= 810
type PPointed :: Type -> Constraint
#endif
class PPointed a where
type Point :: a
#if __GLASGOW_HASKELL__ >= 810
type SPointed :: Type -> Constraint
#endif
class SPointed a where
sPoint :: Sing (Point :: a)
instance Pointed Nat where
point = Zero
instance PPointed Nat where
type Point = 'Zero
instance SPointed Nat where
sPoint = SZero
--------------------------------
#if __GLASGOW_HASKELL__ >= 810
type FD :: Type -> Type -> Constraint
#endif
class FD a b | a -> b where
meth :: a -> a
l2r :: a -> b
instance FD Bool Nat where
meth = not
l2r False = Zero
l2r True = Succ Zero
t1 = meth True
t2 = l2r False
#if __GLASGOW_HASKELL__ >= 810
type PFD :: Type -> Type -> Constraint
#endif
class PFD a b | a -> b where
type Meth (x :: a) :: a
type L2r (x :: a) :: b
instance PFD Bool Nat where
type Meth a = Not a
type L2r 'False = 'Zero
type L2r 'True = 'Succ 'Zero
type T1 = Meth 'True
#if __GLASGOW_HASKELL__ >= 810
type T2 :: Nat
#endif
type T2 = (L2r 'False :: Nat)
#if __GLASGOW_HASKELL__ >= 810
type SFD :: Type -> Type -> Constraint
#endif
class SFD a b | a -> b where
sMeth :: forall (x :: a). Sing x -> Sing (Meth x :: a)
sL2r :: forall (x :: a). Sing x -> Sing (L2r x :: b)
instance SFD Bool Nat where
sMeth x = sNot x
sL2r SFalse = SZero
sL2r STrue = SSucc SZero
sT1 = sMeth STrue
sT2 :: Sing T2
sT2 = sL2r SFalse
|