1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
|
-- vim:fdm=marker:foldtext=foldtext()
--------------------------------------------------------------------
-- |
-- Module : Test.SmallCheck.Series
-- Copyright : (c) Colin Runciman et al.
-- License : BSD3
-- Maintainer: Roman Cheplyaka <roma@ro-che.info>
--
-- You need this module if you want to generate test values of your own
-- types.
--
-- You'll typically need the following extensions:
--
-- >{-# LANGUAGE FlexibleInstances, MultiParamTypeClasses #-}
--
-- SmallCheck itself defines data generators for all the data types used
-- by the "Prelude".
--
-- In order to generate values and functions of your own types, you need
-- to make them instances of 'Serial' (for values) and 'CoSerial' (for
-- functions). There are two main ways to do so: using Generics or writing
-- the instances by hand.
--------------------------------------------------------------------
{-# LANGUAGE CPP #-}
#if __GLASGOW_HASKELL__ >= 702
{-# LANGUAGE DefaultSignatures #-}
#endif
{-# LANGUAGE DeriveFoldable #-}
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE DeriveTraversable #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE NoImplicitPrelude #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeOperators #-}
#if MIN_VERSION_base(4,8,0)
{-# LANGUAGE Safe #-}
#else
{-# LANGUAGE OverlappingInstances #-}
#if __GLASGOW_HASKELL__ >= 704
{-# LANGUAGE Trustworthy #-}
#endif
#endif
#define HASCBOOL MIN_VERSION_base(4,10,0)
module Test.SmallCheck.Series (
-- {{{
-- * Generic instances
-- | The easiest way to create the necessary instances is to use GHC
-- generics (available starting with GHC 7.2.1).
--
-- Here's a complete example:
--
-- >{-# LANGUAGE FlexibleInstances, MultiParamTypeClasses #-}
-- >{-# LANGUAGE DeriveGeneric #-}
-- >
-- >import Test.SmallCheck.Series
-- >import GHC.Generics
-- >
-- >data Tree a = Null | Fork (Tree a) a (Tree a)
-- > deriving Generic
-- >
-- >instance Serial m a => Serial m (Tree a)
--
-- Here we enable the @DeriveGeneric@ extension which allows to derive 'Generic'
-- instance for our data type. Then we declare that @Tree@ @a@ is an instance of
-- 'Serial', but do not provide any definitions. This causes GHC to use the
-- default definitions that use the 'Generic' instance.
--
-- One minor limitation of generic instances is that there's currently no
-- way to distinguish newtypes and datatypes. Thus, newtype constructors
-- will also count as one level of depth.
-- * Data Generators
-- | Writing 'Serial' instances for application-specific types is
-- straightforward. You need to define a 'series' generator, typically using
-- @consN@ family of generic combinators where N is constructor arity.
--
-- For example:
--
-- >data Tree a = Null | Fork (Tree a) a (Tree a)
-- >
-- >instance Serial m a => Serial m (Tree a) where
-- > series = cons0 Null \/ cons3 Fork
--
-- For newtypes use 'newtypeCons' instead of 'cons1'.
-- The difference is that 'cons1' is counts as one level of depth, while
-- 'newtypeCons' doesn't affect the depth.
--
-- >newtype Light a = Light a
-- >
-- >instance Serial m a => Serial m (Light a) where
-- > series = newtypeCons Light
--
-- For data types with more than 6 fields define @consN@ as
--
-- >consN f = decDepth $
-- > f <$> series
-- > <~> series
-- > <~> series
-- > <~> ... {- series repeated N times in total -}
-- ** What does @consN@ do, exactly?
-- | @consN@ has type
-- @(Serial t₁, ..., Serial tₙ) => (t₁ -> ... -> tₙ -> t) -> Series t@.
--
-- @consN@ @f@ is a series which, for a given depth \(d > 0\), produces values of the
-- form
--
-- >f x₁ ... xₙ
--
-- where @xₖ@ ranges over all values of type @tₖ@ of depth up to \(d-1\)
-- (as defined by the 'series' functions for @tₖ@).
--
-- @consN@ functions also ensure that xₖ are enumerated in the
-- breadth-first order. Thus, combinations of smaller depth come first
-- (assuming the same is true for @tₖ@).
--
-- If \(d \le 0\), no values are produced.
cons0, cons1, cons2, cons3, cons4, cons5, cons6, newtypeCons,
-- * Function Generators
-- | To generate functions of an application-specific argument type,
-- make the type an instance of 'CoSerial'.
--
-- Again there is a standard pattern, this time using the @altsN@
-- combinators where again N is constructor arity. Here are @Tree@ and
-- @Light@ instances:
--
--
-- >instance CoSerial m a => CoSerial m (Tree a) where
-- > coseries rs =
-- > alts0 rs >>- \z ->
-- > alts3 rs >>- \f ->
-- > return $ \t ->
-- > case t of
-- > Null -> z
-- > Fork t1 x t2 -> f t1 x t2
--
-- >instance CoSerial m a => CoSerial m (Light a) where
-- > coseries rs =
-- > newtypeAlts rs >>- \f ->
-- > return $ \l ->
-- > case l of
-- > Light x -> f x
--
-- For data types with more than 6 fields define @altsN@ as
--
-- >altsN rs = do
-- > rs <- fixDepth rs
-- > decDepthChecked
-- > (constM $ constM $ ... $ constM rs)
-- > (coseries $ coseries $ ... $ coseries rs)
-- > {- constM and coseries are repeated N times each -}
-- ** What does altsN do, exactly?
-- | @altsN@ has type
-- @(Serial t₁, ..., Serial tₙ) => Series t -> Series (t₁ -> ... -> tₙ -> t)@.
--
-- @altsN@ @s@ is a series which, for a given depth \( d \), produces functions of
-- type
--
-- >t₁ -> ... -> tₙ -> t
--
-- If \( d \le 0 \), these are constant functions, one for each value produced
-- by @s@.
--
-- If \( d > 0 \), these functions inspect each of their arguments up to the depth
-- \( d-1 \) (as defined by the 'coseries' functions for the corresponding
-- types) and return values produced by @s@. The depth to which the
-- values are enumerated does not depend on the depth of inspection.
alts0, alts1, alts2, alts3, alts4, alts5, alts6, newtypeAlts,
-- * Basic definitions
Depth, Series, Serial(..), CoSerial(..),
#if __GLASGOW_HASKELL__ >= 702
-- * Generic implementations
genericSeries,
genericCoseries,
#endif
-- * Convenient wrappers
Positive(..), NonNegative(..), NonZero(..), NonEmpty(..),
-- * Other useful definitions
(\/), (><), (<~>), (>>-),
localDepth,
decDepth,
getDepth,
generate,
limit,
listSeries,
list,
listM,
fixDepth,
decDepthChecked,
constM
-- }}}
) where
import Control.Applicative (empty, pure, (<$>), (<|>))
import Control.Monad (Monad, liftM, guard, mzero, mplus, msum, return, (>>), (>>=))
import Control.Monad.Identity (Identity(Identity), runIdentity)
import Control.Monad.Logic (MonadLogic, (>>-), interleave, msplit, observeAllT)
import Control.Monad.Reader (ask, local)
import Data.Bool (Bool (True, False), (&&), (||))
import Data.Char (Char)
import Data.Complex (Complex((:+)))
import Data.Either (Either (Left, Right), either)
import Data.Eq (Eq, (==), (/=))
import Data.Foldable (Foldable)
import Data.Function (($), (.), const)
import Data.Functor (Functor, fmap)
import Data.Functor.Compose (Compose(Compose), getCompose)
import Data.Int (Int, Int8, Int16, Int32, Int64)
import Data.List (intercalate, take, map, length, (++), maximum, sum, unlines, lines, concat)
import qualified Data.List.NonEmpty as NE
import Data.Maybe (Maybe (Just, Nothing), maybe)
import Data.Ord (Ord, Ordering (LT, EQ, GT), max, (<), (>), (>=), compare, (<=))
import Data.Ratio (Ratio, numerator, denominator, (%))
import Data.Traversable (Traversable)
import Data.Tuple (uncurry)
import Data.Void (Void, absurd)
import Data.Word (Word, Word8, Word16, Word32, Word64)
import Numeric.Natural (Natural)
import Prelude (Integer, Real, toRational, Enum, toEnum, fromEnum, Num, (+), (*), Integral, quotRem, toInteger, negate, abs, signum, fromInteger, Bounded, minBound, maxBound, Float, Double, (-), odd, encodeFloat, decodeFloat, realToFrac, seq, subtract)
import Test.SmallCheck.SeriesMonad
import Text.Show (Show, showsPrec, show)
#if MIN_VERSION_base(4,5,0)
import Foreign.C.Types (CFloat(CFloat), CDouble(CDouble), CChar(CChar), CSChar(CSChar), CUChar(CUChar), CShort(CShort), CUShort(CUShort), CInt(CInt), CUInt(CUInt), CLong(CLong), CULong(CULong), CPtrdiff(CPtrdiff), CSize(CSize), CWchar(CWchar), CSigAtomic(CSigAtomic), CLLong(CLLong), CULLong(CULLong), CIntPtr(CIntPtr), CUIntPtr(CUIntPtr), CIntMax(CIntMax), CUIntMax(CUIntMax), CClock(CClock), CTime(CTime), CUSeconds(CUSeconds), CSUSeconds(CSUSeconds))
#endif
#if __GLASGOW_HASKELL__ >= 702
import GHC.Generics (Generic, (:+:)(L1, R1), (:*:)((:*:)), C1, K1(K1), unK1, M1(M1), unM1, U1(U1), V1, Rep, to, from)
#else
import Prelude (RealFloat)
#endif
#if HASCBOOL
import Foreign.C.Types (CBool(CBool))
#endif
------------------------------
-- Main types and classes
------------------------------
--{{{
-- | @since 1.0
class Monad m => Serial m a where
series :: Series m a
#if __GLASGOW_HASKELL__ >= 704
default series :: (Generic a, GSerial m (Rep a)) => Series m a
series = genericSeries
#endif
#if __GLASGOW_HASKELL__ >= 702
-- | @since 1.1.5
genericSeries
:: (Monad m, Generic a, GSerial m (Rep a))
=> Series m a
genericSeries = to <$> gSeries
#endif
-- | @since 1.0
class Monad m => CoSerial m a where
-- | A proper 'coseries' implementation should pass the depth unchanged to
-- its first argument. Doing otherwise will make enumeration of curried
-- functions non-uniform in their arguments.
coseries :: Series m b -> Series m (a->b)
#if __GLASGOW_HASKELL__ >= 704
default coseries :: (Generic a, GCoSerial m (Rep a)) => Series m b -> Series m (a->b)
coseries = genericCoseries
#endif
#if __GLASGOW_HASKELL__ >= 702
-- | @since 1.1.5
genericCoseries
:: (Monad m, Generic a, GCoSerial m (Rep a))
=> Series m b -> Series m (a->b)
genericCoseries rs = (. from) <$> gCoseries rs
#endif
-- }}}
------------------------------
-- Helper functions
------------------------------
-- {{{
-- | A simple series specified by a function from depth to the list of
-- values up to that depth.
--
-- @since 1.0
generate :: (Depth -> [a]) -> Series m a
generate f = do
d <- getDepth
msum $ map return $ f d
-- | Limit a 'Series' to its first @n@ elements.
--
-- @since 1.1.5
limit :: forall m a . Monad m => Int -> Series m a -> Series m a
limit n0 (Series s) = Series $ go n0 s
where
go 0 _ = empty
go n mb1 = do
cons :: Maybe (b, ml b) <- msplit mb1
case cons of
Nothing -> empty
Just (b, mb2) -> return b <|> go (n-1) mb2
suchThat :: Series m a -> (a -> Bool) -> Series m a
suchThat s p = s >>= \x -> if p x then pure x else empty
-- | Given a depth, return the list of values generated by a 'Serial' instance.
--
-- For example, list all integers up to depth 1:
--
-- * @listSeries 1 :: [Int] -- returns [0,1,-1]@
--
-- @since 1.1.2
listSeries :: Serial Identity a => Depth -> [a]
listSeries d = list d series
-- | Return the list of values generated by a 'Series'. Useful for
-- debugging 'Serial' instances.
--
-- Examples:
--
-- * @'list' 3 'series' :: ['Int'] -- returns [0,1,-1,2,-2,3,-3]@
--
-- * @'list' 3 ('series' :: 'Series' 'Data.Functor.Identity' 'Int') -- returns [0,1,-1,2,-2,3,-3]@
--
-- * @'list' 2 'series' :: [['Bool']] -- returns [[],['True'],['False']]@
--
-- The first two are equivalent. The second has a more explicit type binding.
--
-- @since 1.0
list :: Depth -> Series Identity a -> [a]
list d s = runIdentity $ observeAllT $ runSeries d s
-- | Monadic version of 'list'.
--
-- @since 1.1
listM d s = observeAllT $ runSeries d s
-- | Sum (union) of series.
--
-- @since 1.0
infixr 7 \/
(\/) :: Monad m => Series m a -> Series m a -> Series m a
(\/) = interleave
-- | Product of series
--
-- @since 1.0
infixr 8 ><
(><) :: Monad m => Series m a -> Series m b -> Series m (a,b)
a >< b = (,) <$> a <~> b
-- | Fair version of 'Control.Applicative.ap' and 'Control.Applicative.<*>'.
--
-- @since 1.0
infixl 4 <~>
(<~>) :: Monad m => Series m (a -> b) -> Series m a -> Series m b
a <~> b = a >>- (<$> b)
uncurry3 :: (a->b->c->d) -> ((a,b,c)->d)
uncurry3 f (x,y,z) = f x y z
uncurry4 :: (a->b->c->d->e) -> ((a,b,c,d)->e)
uncurry4 f (w,x,y,z) = f w x y z
uncurry5 :: (a->b->c->d->e->f) -> ((a,b,c,d,e)->f)
uncurry5 f (v,w,x,y,z) = f v w x y z
uncurry6 :: (a->b->c->d->e->f->g) -> ((a,b,c,d,e,f)->g)
uncurry6 f (u,v,w,x,y,z) = f u v w x y z
-- | Query the current depth.
--
-- @since 1.0
getDepth :: Series m Depth
getDepth = Series ask
-- | Run a series with a modified depth.
--
-- @since 1.0
localDepth :: (Depth -> Depth) -> Series m a -> Series m a
localDepth f (Series a) = Series $ local f a
-- | Run a 'Series' with the depth decreased by 1.
--
-- If the current depth is less or equal to 0, the result is 'empty'.
--
-- @since 1.0
decDepth :: Series m a -> Series m a
decDepth a = do
checkDepth
localDepth (subtract 1) a
checkDepth :: Series m ()
checkDepth = do
d <- getDepth
guard $ d > 0
-- | @'constM' = 'liftM' 'const'@
--
-- @since 1.1.1
constM :: Monad m => m b -> m (a -> b)
constM = liftM const
-- | Fix the depth of a series at the current level. The resulting series
-- will no longer depend on the \"ambient\" depth.
--
-- @since 1.1.1
fixDepth :: Series m a -> Series m (Series m a)
fixDepth s = getDepth >>= \d -> return $ localDepth (const d) s
-- | If the current depth is 0, evaluate the first argument. Otherwise,
-- evaluate the second argument with decremented depth.
--
-- @since 1.1.1
decDepthChecked :: Series m a -> Series m a -> Series m a
decDepthChecked b r = do
d <- getDepth
if d <= 0
then b
else decDepth r
unwind :: MonadLogic m => m a -> m [a]
unwind a =
msplit a >>=
maybe (return []) (\(x,a') -> (x:) `liftM` unwind a')
-- }}}
------------------------------
-- cons* and alts* functions
------------------------------
-- {{{
-- | @since 1.0
cons0 :: a -> Series m a
cons0 x = decDepth $ pure x
-- | @since 1.0
cons1 :: Serial m a => (a->b) -> Series m b
cons1 f = decDepth $ f <$> series
-- | Same as 'cons1', but preserves the depth.
--
-- @since 1.0
newtypeCons :: Serial m a => (a->b) -> Series m b
newtypeCons f = f <$> series
-- | @since 1.0
cons2 :: (Serial m a, Serial m b) => (a->b->c) -> Series m c
cons2 f = decDepth $ f <$> series <~> series
-- | @since 1.0
cons3 :: (Serial m a, Serial m b, Serial m c) =>
(a->b->c->d) -> Series m d
cons3 f = decDepth $
f <$> series
<~> series
<~> series
-- | @since 1.0
cons4 :: (Serial m a, Serial m b, Serial m c, Serial m d) =>
(a->b->c->d->e) -> Series m e
cons4 f = decDepth $
f <$> series
<~> series
<~> series
<~> series
-- | @since 1.2.0
cons5 :: (Serial m a, Serial m b, Serial m c, Serial m d, Serial m e) =>
(a->b->c->d->e->f) -> Series m f
cons5 f = decDepth $
f <$> series
<~> series
<~> series
<~> series
<~> series
-- | @since 1.2.0
cons6 :: (Serial m a, Serial m b, Serial m c, Serial m d, Serial m e, Serial m f) =>
(a->b->c->d->e->f->g) -> Series m g
cons6 f = decDepth $
f <$> series
<~> series
<~> series
<~> series
<~> series
<~> series
-- | @since 1.0
alts0 :: Series m a -> Series m a
alts0 s = s
-- | @since 1.0
alts1 :: CoSerial m a => Series m b -> Series m (a->b)
alts1 rs = do
rs <- fixDepth rs
decDepthChecked (constM rs) (coseries rs)
-- | @since 1.0
alts2
:: (CoSerial m a, CoSerial m b)
=> Series m c -> Series m (a->b->c)
alts2 rs = do
rs <- fixDepth rs
decDepthChecked
(constM $ constM rs)
(coseries $ coseries rs)
-- | @since 1.0
alts3 :: (CoSerial m a, CoSerial m b, CoSerial m c) =>
Series m d -> Series m (a->b->c->d)
alts3 rs = do
rs <- fixDepth rs
decDepthChecked
(constM $ constM $ constM rs)
(coseries $ coseries $ coseries rs)
-- | @since 1.0
alts4 :: (CoSerial m a, CoSerial m b, CoSerial m c, CoSerial m d) =>
Series m e -> Series m (a->b->c->d->e)
alts4 rs = do
rs <- fixDepth rs
decDepthChecked
(constM $ constM $ constM $ constM rs)
(coseries $ coseries $ coseries $ coseries rs)
-- | @since 1.2.0
alts5 :: (CoSerial m a, CoSerial m b, CoSerial m c, CoSerial m d, CoSerial m e) =>
Series m f -> Series m (a->b->c->d->e->f)
alts5 rs = do
rs <- fixDepth rs
decDepthChecked
(constM $ constM $ constM $ constM $ constM rs)
(coseries $ coseries $ coseries $ coseries $ coseries rs)
-- | @since 1.2.0
alts6 :: (CoSerial m a, CoSerial m b, CoSerial m c, CoSerial m d, CoSerial m e, CoSerial m f) =>
Series m g -> Series m (a->b->c->d->e->f->g)
alts6 rs = do
rs <- fixDepth rs
decDepthChecked
(constM $ constM $ constM $ constM $ constM $ constM rs)
(coseries $ coseries $ coseries $ coseries $ coseries $ coseries rs)
-- | Same as 'alts1', but preserves the depth.
--
-- @since 1.0
newtypeAlts :: CoSerial m a => Series m b -> Series m (a->b)
newtypeAlts = coseries
-- }}}
------------------------------
-- Generic instances
------------------------------
-- {{{
class GSerial m f where
gSeries :: Series m (f a)
class GCoSerial m f where
gCoseries :: Series m b -> Series m (f a -> b)
#if __GLASGOW_HASKELL__ >= 702
instance {-# OVERLAPPABLE #-} GSerial m f => GSerial m (M1 i c f) where
gSeries = M1 <$> gSeries
{-# INLINE gSeries #-}
instance GCoSerial m f => GCoSerial m (M1 i c f) where
gCoseries rs = (. unM1) <$> gCoseries rs
{-# INLINE gCoseries #-}
instance Serial m c => GSerial m (K1 i c) where
gSeries = K1 <$> series
{-# INLINE gSeries #-}
instance CoSerial m c => GCoSerial m (K1 i c) where
gCoseries rs = (. unK1) <$> coseries rs
{-# INLINE gCoseries #-}
instance GSerial m U1 where
gSeries = pure U1
{-# INLINE gSeries #-}
instance GCoSerial m U1 where
gCoseries rs = constM rs
{-# INLINE gCoseries #-}
instance GSerial m V1 where
gSeries = mzero
{-# INLINE gSeries #-}
instance GCoSerial m V1 where
gCoseries = const $ return (\a -> a `seq` let x = x in x)
{-# INLINE gCoseries #-}
instance (Monad m, GSerial m a, GSerial m b) => GSerial m (a :*: b) where
gSeries = (:*:) <$> gSeries <~> gSeries
{-# INLINE gSeries #-}
instance (Monad m, GCoSerial m a, GCoSerial m b) => GCoSerial m (a :*: b) where
gCoseries rs = uncur <$> gCoseries (gCoseries rs)
where
uncur f (x :*: y) = f x y
{-# INLINE gCoseries #-}
instance (Monad m, GSerial m a, GSerial m b) => GSerial m (a :+: b) where
gSeries = (L1 <$> gSeries) `interleave` (R1 <$> gSeries)
{-# INLINE gSeries #-}
instance (Monad m, GCoSerial m a, GCoSerial m b) => GCoSerial m (a :+: b) where
gCoseries rs =
gCoseries rs >>- \f ->
gCoseries rs >>- \g ->
return $
\e -> case e of
L1 x -> f x
R1 y -> g y
{-# INLINE gCoseries #-}
instance {-# OVERLAPPING #-} GSerial m f => GSerial m (C1 c f) where
gSeries = M1 <$> decDepth gSeries
{-# INLINE gSeries #-}
#endif
-- }}}
------------------------------
-- Instances for basic types
------------------------------
-- {{{
instance Monad m => Serial m () where
series = return ()
instance Monad m => CoSerial m () where
coseries rs = constM rs
instance Monad m => Serial m Integer where series = unM <$> series
instance Monad m => CoSerial m Integer where coseries = fmap (. M) . coseries
-- | @since 1.1.3
instance Monad m => Serial m Natural where series = unN <$> series
-- | @since 1.1.3
instance Monad m => CoSerial m Natural where coseries = fmap (. N) . coseries
instance Monad m => Serial m Int where series = unM <$> series
instance Monad m => CoSerial m Int where coseries = fmap (. M) . coseries
-- | @since 1.1.3
instance Monad m => Serial m Word where series = unN <$> series
-- | @since 1.1.3
instance Monad m => CoSerial m Word where coseries = fmap (. N) . coseries
-- | @since 1.1.4
instance Monad m => Serial m Int8 where series = unM <$> series
-- | @since 1.1.4
instance Monad m => CoSerial m Int8 where coseries = fmap (. M) . coseries
-- | @since 1.1.4
instance Monad m => Serial m Word8 where series = unN <$> series
-- | @since 1.1.4
instance Monad m => CoSerial m Word8 where coseries = fmap (. N) . coseries
-- | @since 1.1.4
instance Monad m => Serial m Int16 where series = unM <$> series
-- | @since 1.1.4
instance Monad m => CoSerial m Int16 where coseries = fmap (. M) . coseries
-- | @since 1.1.4
instance Monad m => Serial m Word16 where series = unN <$> series
-- | @since 1.1.4
instance Monad m => CoSerial m Word16 where coseries = fmap (. N) . coseries
-- | @since 1.1.4
instance Monad m => Serial m Int32 where series = unM <$> series
-- | @since 1.1.4
instance Monad m => CoSerial m Int32 where coseries = fmap (. M) . coseries
-- | @since 1.1.4
instance Monad m => Serial m Word32 where series = unN <$> series
-- | @since 1.1.4
instance Monad m => CoSerial m Word32 where coseries = fmap (. N) . coseries
-- | @since 1.1.4
instance Monad m => Serial m Int64 where series = unM <$> series
-- | @since 1.1.4
instance Monad m => CoSerial m Int64 where coseries = fmap (. M) . coseries
-- | @since 1.1.4
instance Monad m => Serial m Word64 where series = unN <$> series
-- | @since 1.1.4
instance Monad m => CoSerial m Word64 where coseries = fmap (. N) . coseries
-- | 'N' is a wrapper for 'Integral' types that causes only non-negative values
-- to be generated. Generated functions of type @N a -> b@ do not distinguish
-- different negative values of @a@.
newtype N a = N { unN :: a } deriving (Eq, Ord, Show)
instance Real a => Real (N a) where
toRational (N x) = toRational x
instance Enum a => Enum (N a) where
toEnum x = N (toEnum x)
fromEnum (N x) = fromEnum x
instance Num a => Num (N a) where
N x + N y = N (x + y)
N x * N y = N (x * y)
negate (N x) = N (negate x)
abs (N x) = N (abs x)
signum (N x) = N (signum x)
fromInteger x = N (fromInteger x)
instance Integral a => Integral (N a) where
quotRem (N x) (N y) = (N q, N r)
where
(q, r) = x `quotRem` y
toInteger (N x) = toInteger x
instance (Num a, Enum a, Serial m a) => Serial m (N a) where
series = generate $ \d -> take (d+1) [0..]
instance (Integral a, Monad m) => CoSerial m (N a) where
coseries rs =
-- This is a recursive function, because @alts1 rs@ typically calls
-- back to 'coseries' (but with lower depth).
--
-- The recursion stops when depth == 0. Then alts1 produces a constant
-- function, and doesn't call back to 'coseries'.
alts0 rs >>- \z ->
alts1 rs >>- \f ->
return $ \(N i) ->
if i > 0
then f (N $ i-1)
else z
-- | 'M' is a helper type to generate values of a signed type of increasing magnitude.
newtype M a = M { unM :: a } deriving (Eq, Ord, Show)
instance Real a => Real (M a) where
toRational (M x) = toRational x
instance Enum a => Enum (M a) where
toEnum x = M (toEnum x)
fromEnum (M x) = fromEnum x
instance Num a => Num (M a) where
M x + M y = M (x + y)
M x * M y = M (x * y)
negate (M x) = M (negate x)
abs (M x) = M (abs x)
signum (M x) = M (signum x)
fromInteger x = M (fromInteger x)
instance Integral a => Integral (M a) where
quotRem (M x) (M y) = (M q, M r)
where
(q, r) = x `quotRem` y
toInteger (M x) = toInteger x
instance (Num a, Enum a, Monad m) => Serial m (M a) where
series = others `interleave` positives
where positives = generate $ \d -> take d [1..]
others = generate $ \d -> take (d+1) [0,-1..]
instance (Ord a, Num a, Monad m) => CoSerial m (M a) where
coseries rs =
alts0 rs >>- \z ->
alts1 rs >>- \f ->
alts1 rs >>- \g ->
pure $ \ i -> case compare i 0 of
GT -> f (M (i - 1))
LT -> g (M (abs i - 1))
EQ -> z
instance Monad m => Serial m Float where
series =
series >>- \(sig, exp) ->
guard (odd sig || sig==0 && exp==0) >>
return (encodeFloat sig exp)
instance Monad m => CoSerial m Float where
coseries rs =
coseries rs >>- \f ->
return $ f . decodeFloat
instance Monad m => Serial m Double where
series = (realToFrac :: Float -> Double) <$> series
instance Monad m => CoSerial m Double where
coseries rs =
(. (realToFrac :: Double -> Float)) <$> coseries rs
-- | @since 1.1
instance (Integral i, Serial m i) => Serial m (Ratio i) where
series = pairToRatio <$> series
where
pairToRatio (n, Positive d) = n % d
-- | @since 1.1
instance (Integral i, CoSerial m i) => CoSerial m (Ratio i) where
coseries rs = (. ratioToPair) <$> coseries rs
where
ratioToPair r = (numerator r, denominator r)
instance Monad m => Serial m Char where
series = generate $ \d -> take (d+1) ['a'..'z']
instance Monad m => CoSerial m Char where
coseries rs =
coseries rs >>- \f ->
return $ \c -> f (N (fromEnum c - fromEnum 'a'))
instance (Serial m a, Serial m b) => Serial m (a,b) where
series = cons2 (,)
instance (CoSerial m a, CoSerial m b) => CoSerial m (a,b) where
coseries rs = uncurry <$> alts2 rs
instance (Serial m a, Serial m b, Serial m c) => Serial m (a,b,c) where
series = cons3 (,,)
instance (CoSerial m a, CoSerial m b, CoSerial m c) => CoSerial m (a,b,c) where
coseries rs = uncurry3 <$> alts3 rs
instance (Serial m a, Serial m b, Serial m c, Serial m d) => Serial m (a,b,c,d) where
series = cons4 (,,,)
instance (CoSerial m a, CoSerial m b, CoSerial m c, CoSerial m d) => CoSerial m (a,b,c,d) where
coseries rs = uncurry4 <$> alts4 rs
-- | @since 1.2.0
instance (Serial m a, Serial m b, Serial m c, Serial m d, Serial m e) => Serial m (a,b,c,d,e) where
series = cons5 (,,,,)
-- | @since 1.2.0
instance (CoSerial m a, CoSerial m b, CoSerial m c, CoSerial m d, CoSerial m e) => CoSerial m (a,b,c,d,e) where
coseries rs = uncurry5 <$> alts5 rs
-- | @since 1.2.0
instance (Serial m a, Serial m b, Serial m c, Serial m d, Serial m e, Serial m f) => Serial m (a,b,c,d,e,f) where
series = cons6 (,,,,,)
-- | @since 1.2.0
instance (CoSerial m a, CoSerial m b, CoSerial m c, CoSerial m d, CoSerial m e, CoSerial m f) => CoSerial m (a,b,c,d,e,f) where
coseries rs = uncurry6 <$> alts6 rs
instance Monad m => Serial m Bool where
series = cons0 True \/ cons0 False
instance Monad m => CoSerial m Bool where
coseries rs =
rs >>- \r1 ->
rs >>- \r2 ->
return $ \x -> if x then r1 else r2
-- | @since 1.2.1
instance Monad m => Serial m Ordering where
series = cons0 LT \/ cons0 EQ \/ cons0 GT
-- | @since 1.2.1
instance Monad m => CoSerial m Ordering where
coseries rs =
rs >>- \r1 ->
rs >>- \r2 ->
rs >>- \r3 ->
pure $ \x -> case x of
LT -> r1
EQ -> r2
GT -> r3
instance (Serial m a) => Serial m (Maybe a) where
series = cons0 Nothing \/ cons1 Just
instance (CoSerial m a) => CoSerial m (Maybe a) where
coseries rs =
maybe <$> alts0 rs <~> alts1 rs
instance (Serial m a, Serial m b) => Serial m (Either a b) where
series = cons1 Left \/ cons1 Right
instance (CoSerial m a, CoSerial m b) => CoSerial m (Either a b) where
coseries rs =
either <$> alts1 rs <~> alts1 rs
instance Serial m a => Serial m [a] where
series = cons0 [] \/ cons2 (:)
instance CoSerial m a => CoSerial m [a] where
coseries rs =
alts0 rs >>- \y ->
alts2 rs >>- \f ->
return $ \xs -> case xs of [] -> y; x:xs' -> f x xs'
-- | @since 1.2.0
instance Serial m a => Serial m (NE.NonEmpty a) where
series = cons2 (NE.:|)
-- | @since 1.2.0
instance CoSerial m a => CoSerial m (NE.NonEmpty a) where
coseries rs =
alts2 rs >>- \f ->
return $ \(x NE.:| xs') -> f x xs'
#if MIN_VERSION_base(4,4,0)
-- | @since 1.2.0
instance Serial m a => Serial m (Complex a) where
#else
-- | @since 1.2.0
instance (RealFloat a, Serial m a) => Serial m (Complex a) where
#endif
series = cons2 (:+)
#if MIN_VERSION_base(4,4,0)
-- | @since 1.2.0
instance CoSerial m a => CoSerial m (Complex a) where
#else
-- | @since 1.2.0
instance (RealFloat a, CoSerial m a) => CoSerial m (Complex a) where
#endif
coseries rs =
alts2 rs >>- \f ->
return $ \(x :+ xs') -> f x xs'
-- | @since 1.2.0
instance Monad m => Serial m Void where
series = mzero
-- | @since 1.2.0
instance Monad m => CoSerial m Void where
coseries = const $ return absurd
instance (CoSerial m a, Serial m b) => Serial m (a->b) where
series = coseries series
-- Thanks to Ralf Hinze for the definition of coseries
-- using the nest auxiliary.
instance (Serial m a, CoSerial m a, Serial m b, CoSerial m b) => CoSerial m (a->b) where
coseries r = do
args <- unwind series
g <- nest r args
return $ \f -> g $ map f args
where
nest :: forall a b m c . (Serial m b, CoSerial m b) => Series m c -> [a] -> Series m ([b] -> c)
nest rs args = do
case args of
[] -> const `liftM` rs
_:rest -> do
let sf = coseries $ nest rs rest
f <- sf
return $ \(b:bs) -> f b bs
-- show the extension of a function (in part, bounded both by
-- the number and depth of arguments)
instance (Serial Identity a, Show a, Show b) => Show (a -> b) where
show f =
if maxarheight == 1
&& sumarwidth + length ars * length "->;" < widthLimit then
"{"++
intercalate ";" [a++"->"++r | (a,r) <- ars]
++"}"
else
concat $ [a++"->\n"++indent r | (a,r) <- ars]
where
ars = take lengthLimit [ (show x, show (f x))
| x <- list depthLimit series ]
maxarheight = maximum [ max (height a) (height r)
| (a,r) <- ars ]
sumarwidth = sum [ length a + length r
| (a,r) <- ars]
indent = unlines . map (" "++) . lines
height = length . lines
(widthLimit,lengthLimit,depthLimit) = (80,20,3)::(Int,Int,Depth)
-- | @since 1.2.0
instance (Monad m, Serial m (f (g a))) => Serial m (Compose f g a) where
series = Compose <$> series
-- | @since 1.2.0
instance (Monad m, CoSerial m (f (g a))) => CoSerial m (Compose f g a) where
coseries = fmap (. getCompose) . coseries
-- }}}
------------------------------
-- Convenient wrappers
------------------------------
-- {{{
--------------------------------------------------------------------------
-- | 'Positive' @x@ guarantees that \( x > 0 \).
--
-- @since 1.0
newtype Positive a = Positive { getPositive :: a }
deriving
( Eq
, Ord
, Functor -- ^ @since 1.2.0
, Foldable -- ^ @since 1.2.0
, Traversable -- ^ @since 1.2.0
)
instance Real a => Real (Positive a) where
toRational (Positive x) = toRational x
-- | @since 1.2.0
instance (Num a, Bounded a) => Bounded (Positive a) where
minBound = Positive 1
maxBound = Positive (maxBound :: a)
instance Enum a => Enum (Positive a) where
toEnum x = Positive (toEnum x)
fromEnum (Positive x) = fromEnum x
instance Num a => Num (Positive a) where
Positive x + Positive y = Positive (x + y)
Positive x * Positive y = Positive (x * y)
negate (Positive x) = Positive (negate x)
abs (Positive x) = Positive (abs x)
signum (Positive x) = Positive (signum x)
fromInteger x = Positive (fromInteger x)
instance Integral a => Integral (Positive a) where
quotRem (Positive x) (Positive y) = (Positive q, Positive r)
where
(q, r) = x `quotRem` y
toInteger (Positive x) = toInteger x
instance (Num a, Ord a, Serial m a) => Serial m (Positive a) where
series = Positive <$> series `suchThat` (> 0)
instance Show a => Show (Positive a) where
showsPrec n (Positive x) = showsPrec n x
-- | 'NonNegative' @x@ guarantees that \( x \ge 0 \).
--
-- @since 1.0
newtype NonNegative a = NonNegative { getNonNegative :: a }
deriving
( Eq
, Ord
, Functor -- ^ @since 1.2.0
, Foldable -- ^ @since 1.2.0
, Traversable -- ^ @since 1.2.0
)
instance Real a => Real (NonNegative a) where
toRational (NonNegative x) = toRational x
-- | @since 1.2.0
instance (Num a, Bounded a) => Bounded (NonNegative a) where
minBound = NonNegative 0
maxBound = NonNegative (maxBound :: a)
instance Enum a => Enum (NonNegative a) where
toEnum x = NonNegative (toEnum x)
fromEnum (NonNegative x) = fromEnum x
instance Num a => Num (NonNegative a) where
NonNegative x + NonNegative y = NonNegative (x + y)
NonNegative x * NonNegative y = NonNegative (x * y)
negate (NonNegative x) = NonNegative (negate x)
abs (NonNegative x) = NonNegative (abs x)
signum (NonNegative x) = NonNegative (signum x)
fromInteger x = NonNegative (fromInteger x)
instance Integral a => Integral (NonNegative a) where
quotRem (NonNegative x) (NonNegative y) = (NonNegative q, NonNegative r)
where
(q, r) = x `quotRem` y
toInteger (NonNegative x) = toInteger x
instance (Num a, Ord a, Serial m a) => Serial m (NonNegative a) where
series = NonNegative <$> series `suchThat` (>= 0)
instance Show a => Show (NonNegative a) where
showsPrec n (NonNegative x) = showsPrec n x
-- | 'NonZero' @x@ guarantees that \( x \ne 0 \).
--
-- @since 1.2.0
newtype NonZero a = NonZero { getNonZero :: a }
deriving (Eq, Ord, Functor, Foldable, Traversable)
instance Real a => Real (NonZero a) where
toRational (NonZero x) = toRational x
instance (Eq a, Num a, Bounded a) => Bounded (NonZero a) where
minBound = let x = minBound in NonZero (if x == 0 then 1 else x)
maxBound = let x = maxBound in NonZero (if x == 0 then -1 else x)
instance Enum a => Enum (NonZero a) where
toEnum x = NonZero (toEnum x)
fromEnum (NonZero x) = fromEnum x
instance Num a => Num (NonZero a) where
NonZero x + NonZero y = NonZero (x + y)
NonZero x * NonZero y = NonZero (x * y)
negate (NonZero x) = NonZero (negate x)
abs (NonZero x) = NonZero (abs x)
signum (NonZero x) = NonZero (signum x)
fromInteger x = NonZero (fromInteger x)
instance Integral a => Integral (NonZero a) where
quotRem (NonZero x) (NonZero y) = (NonZero q, NonZero r)
where
(q, r) = x `quotRem` y
toInteger (NonZero x) = toInteger x
instance (Num a, Ord a, Serial m a) => Serial m (NonZero a) where
series = NonZero <$> series `suchThat` (/= 0)
instance Show a => Show (NonZero a) where
showsPrec n (NonZero x) = showsPrec n x
-- | 'NonEmpty' @xs@ guarantees that @xs@ is not null.
--
-- @since 1.1
newtype NonEmpty a = NonEmpty { getNonEmpty :: [a] }
instance (Serial m a) => Serial m (NonEmpty a) where
series = NonEmpty <$> cons2 (:)
instance Show a => Show (NonEmpty a) where
showsPrec n (NonEmpty x) = showsPrec n x
-- }}}
------------------------------
-- Foreign.C.Types
------------------------------
-- {{{
#if MIN_VERSION_base(4,5,0)
-- | @since 1.2.0
instance Monad m => Serial m CFloat where
series = newtypeCons CFloat
-- | @since 1.2.0
instance Monad m => CoSerial m CFloat where
coseries rs = newtypeAlts rs >>- \f -> return $ \l -> case l of CFloat x -> f x
-- | @since 1.2.0
instance Monad m => Serial m CDouble where
series = newtypeCons CDouble
-- | @since 1.2.0
instance Monad m => CoSerial m CDouble where
coseries rs = newtypeAlts rs >>- \f -> return $ \l -> case l of CDouble x -> f x
#if HASCBOOL
-- | @since 1.2.0
instance Monad m => Serial m CBool where
series = newtypeCons CBool
-- | @since 1.2.0
instance Monad m => CoSerial m CBool where
coseries rs = newtypeAlts rs >>- \f -> return $ \l -> case l of CBool x -> f x
#endif
-- | @since 1.2.0
instance Monad m => Serial m CChar where
series = newtypeCons CChar
-- | @since 1.2.0
instance Monad m => CoSerial m CChar where
coseries rs = newtypeAlts rs >>- \f -> return $ \l -> case l of CChar x -> f x
-- | @since 1.2.0
instance Monad m => Serial m CSChar where
series = newtypeCons CSChar
-- | @since 1.2.0
instance Monad m => CoSerial m CSChar where
coseries rs = newtypeAlts rs >>- \f -> return $ \l -> case l of CSChar x -> f x
-- | @since 1.2.0
instance Monad m => Serial m CUChar where
series = newtypeCons CUChar
-- | @since 1.2.0
instance Monad m => CoSerial m CUChar where
coseries rs = newtypeAlts rs >>- \f -> return $ \l -> case l of CUChar x -> f x
-- | @since 1.2.0
instance Monad m => Serial m CShort where
series = newtypeCons CShort
-- | @since 1.2.0
instance Monad m => CoSerial m CShort where
coseries rs = newtypeAlts rs >>- \f -> return $ \l -> case l of CShort x -> f x
-- | @since 1.2.0
instance Monad m => Serial m CUShort where
series = newtypeCons CUShort
-- | @since 1.2.0
instance Monad m => CoSerial m CUShort where
coseries rs = newtypeAlts rs >>- \f -> return $ \l -> case l of CUShort x -> f x
-- | @since 1.2.0
instance Monad m => Serial m CInt where
series = newtypeCons CInt
-- | @since 1.2.0
instance Monad m => CoSerial m CInt where
coseries rs = newtypeAlts rs >>- \f -> return $ \l -> case l of CInt x -> f x
-- | @since 1.2.0
instance Monad m => Serial m CUInt where
series = newtypeCons CUInt
-- | @since 1.2.0
instance Monad m => CoSerial m CUInt where
coseries rs = newtypeAlts rs >>- \f -> return $ \l -> case l of CUInt x -> f x
-- | @since 1.2.0
instance Monad m => Serial m CLong where
series = newtypeCons CLong
-- | @since 1.2.0
instance Monad m => CoSerial m CLong where
coseries rs = newtypeAlts rs >>- \f -> return $ \l -> case l of CLong x -> f x
-- | @since 1.2.0
instance Monad m => Serial m CULong where
series = newtypeCons CULong
-- | @since 1.2.0
instance Monad m => CoSerial m CULong where
coseries rs = newtypeAlts rs >>- \f -> return $ \l -> case l of CULong x -> f x
-- | @since 1.2.0
instance Monad m => Serial m CPtrdiff where
series = newtypeCons CPtrdiff
-- | @since 1.2.0
instance Monad m => CoSerial m CPtrdiff where
coseries rs = newtypeAlts rs >>- \f -> return $ \l -> case l of CPtrdiff x -> f x
-- | @since 1.2.0
instance Monad m => Serial m CSize where
series = newtypeCons CSize
-- | @since 1.2.0
instance Monad m => CoSerial m CSize where
coseries rs = newtypeAlts rs >>- \f -> return $ \l -> case l of CSize x -> f x
-- | @since 1.2.0
instance Monad m => Serial m CWchar where
series = newtypeCons CWchar
-- | @since 1.2.0
instance Monad m => CoSerial m CWchar where
coseries rs = newtypeAlts rs >>- \f -> return $ \l -> case l of CWchar x -> f x
-- | @since 1.2.0
instance Monad m => Serial m CSigAtomic where
series = newtypeCons CSigAtomic
-- | @since 1.2.0
instance Monad m => CoSerial m CSigAtomic where
coseries rs = newtypeAlts rs >>- \f -> return $ \l -> case l of CSigAtomic x -> f x
-- | @since 1.2.0
instance Monad m => Serial m CLLong where
series = newtypeCons CLLong
-- | @since 1.2.0
instance Monad m => CoSerial m CLLong where
coseries rs = newtypeAlts rs >>- \f -> return $ \l -> case l of CLLong x -> f x
-- | @since 1.2.0
instance Monad m => Serial m CULLong where
series = newtypeCons CULLong
-- | @since 1.2.0
instance Monad m => CoSerial m CULLong where
coseries rs = newtypeAlts rs >>- \f -> return $ \l -> case l of CULLong x -> f x
-- | @since 1.2.0
instance Monad m => Serial m CIntPtr where
series = newtypeCons CIntPtr
-- | @since 1.2.0
instance Monad m => CoSerial m CIntPtr where
coseries rs = newtypeAlts rs >>- \f -> return $ \l -> case l of CIntPtr x -> f x
-- | @since 1.2.0
instance Monad m => Serial m CUIntPtr where
series = newtypeCons CUIntPtr
-- | @since 1.2.0
instance Monad m => CoSerial m CUIntPtr where
coseries rs = newtypeAlts rs >>- \f -> return $ \l -> case l of CUIntPtr x -> f x
-- | @since 1.2.0
instance Monad m => Serial m CIntMax where
series = newtypeCons CIntMax
-- | @since 1.2.0
instance Monad m => CoSerial m CIntMax where
coseries rs = newtypeAlts rs >>- \f -> return $ \l -> case l of CIntMax x -> f x
-- | @since 1.2.0
instance Monad m => Serial m CUIntMax where
series = newtypeCons CUIntMax
-- | @since 1.2.0
instance Monad m => CoSerial m CUIntMax where
coseries rs = newtypeAlts rs >>- \f -> return $ \l -> case l of CUIntMax x -> f x
-- | @since 1.2.0
instance Monad m => Serial m CClock where
series = newtypeCons CClock
-- | @since 1.2.0
instance Monad m => CoSerial m CClock where
coseries rs = newtypeAlts rs >>- \f -> return $ \l -> case l of CClock x -> f x
-- | @since 1.2.0
instance Monad m => Serial m CTime where
series = newtypeCons CTime
-- | @since 1.2.0
instance Monad m => CoSerial m CTime where
coseries rs = newtypeAlts rs >>- \f -> return $ \l -> case l of CTime x -> f x
-- | @since 1.2.0
instance Monad m => Serial m CUSeconds where
series = newtypeCons CUSeconds
-- | @since 1.2.0
instance Monad m => CoSerial m CUSeconds where
coseries rs = newtypeAlts rs >>- \f -> return $ \l -> case l of CUSeconds x -> f x
-- | @since 1.2.0
instance Monad m => Serial m CSUSeconds where
series = newtypeCons CSUSeconds
-- | @since 1.2.0
instance Monad m => CoSerial m CSUSeconds where
coseries rs = newtypeAlts rs >>- \f -> return $ \l -> case l of CSUSeconds x -> f x
#endif
-- }}}
|