1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
|
{-# LANGUAGE DerivingStrategies #-}
{-# LANGUAGE DerivingVia #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE InstanceSigs #-}
{-# LANGUAGE TypeInType #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE MultiWayIf #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE UndecidableInstances #-}
module DerivingVia where
import Data.Void
import Data.Complex
import Data.Functor.Const
import Data.Functor.Identity
import Data.Ratio
import Control.Monad.Reader
import Control.Monad.State
import Control.Monad.Writer
import Control.Applicative hiding (WrappedMonad(..))
import Data.Bifunctor
import Data.Monoid
import Data.Kind
type f ~> g = forall xx. f xx -> g xx
-----
-- Simple example
-----
data Foo a = MkFoo a a
deriving Show
via (Identity (Foo a))
-----
-- Eta reduction at work
-----
newtype Flip p a b = Flip { runFlip :: p b a }
instance Bifunctor p => Bifunctor (Flip p) where
bimap f g = Flip . bimap g f . runFlip
instance Bifunctor p => Functor (Flip p a) where
fmap f = Flip . first f . runFlip
newtype Bar a = MkBar (Either a Int)
deriving Functor
via (Flip Either Int)
-----
-- Monad transformers
-----
type MTrans = (Type -> Type) -> (Type -> Type)
-- From `constraints'
data Dict c where
Dict :: c => Dict c
newtype a :- b = Sub (a => Dict b)
infixl 1 \\
(\\) :: a => (b => r) -> (a :- b) -> r
r \\ Sub Dict = r
-- With `-XQuantifiedConstraints' this just becomes
--
-- type Lifting cls trans = forall mm. cls mm => cls (trans mm)
--
-- type LiftingMonad trans = Lifting Monad trans
--
class LiftingMonad (trans :: MTrans) where
proof :: Monad m :- Monad (trans m)
instance LiftingMonad (StateT s :: MTrans) where
proof :: Monad m :- Monad (StateT s m)
proof = Sub Dict
instance Monoid w => LiftingMonad (WriterT w :: MTrans) where
proof :: Monad m :- Monad (WriterT w m)
proof = Sub Dict
instance (LiftingMonad trans, LiftingMonad trans') => LiftingMonad (ComposeT trans trans' :: MTrans) where
proof :: forall m. Monad m :- Monad (ComposeT trans trans' m)
proof = Sub (Dict \\ proof @trans @(trans' m) \\ proof @trans' @m)
newtype Stack :: MTrans where
Stack :: ReaderT Int (StateT Bool (WriterT String m)) a -> Stack m a
deriving newtype
( Functor
, Applicative
, Monad
, MonadReader Int
, MonadState Bool
, MonadWriter String
)
deriving (MonadTrans, MFunctor)
via (ReaderT Int `ComposeT` StateT Bool `ComposeT` WriterT String)
class MFunctor (trans :: MTrans) where
hoist :: Monad m => (m ~> m') -> (trans m ~> trans m')
instance MFunctor (ReaderT r :: MTrans) where
hoist :: Monad m => (m ~> m') -> (ReaderT r m ~> ReaderT r m')
hoist nat = ReaderT . fmap nat . runReaderT
instance MFunctor (StateT s :: MTrans) where
hoist :: Monad m => (m ~> m') -> (StateT s m ~> StateT s m')
hoist nat = StateT . fmap nat . runStateT
instance MFunctor (WriterT w :: MTrans) where
hoist :: Monad m => (m ~> m') -> (WriterT w m ~> WriterT w m')
hoist nat = WriterT . nat . runWriterT
infixr 9 `ComposeT`
newtype ComposeT :: MTrans -> MTrans -> MTrans where
ComposeT :: { getComposeT :: f (g m) a } -> ComposeT f g m a
deriving newtype (Functor, Applicative, Monad)
instance (MonadTrans f, MonadTrans g, LiftingMonad g) => MonadTrans (ComposeT f g) where
lift :: forall m. Monad m => m ~> ComposeT f g m
lift = ComposeT . lift . lift
\\ proof @g @m
instance (MFunctor f, MFunctor g, LiftingMonad g) => MFunctor (ComposeT f g) where
hoist :: forall m m'. Monad m => (m ~> m') -> (ComposeT f g m ~> ComposeT f g m')
hoist f = ComposeT . hoist (hoist f) . getComposeT
\\ proof @g @m
-----
-- Using tuples in a `via` type
-----
newtype X a = X (a, a)
deriving (Semigroup, Monoid)
via (Product a, Sum a)
deriving (Show, Eq)
via (a, a)
-----
-- Abstract data types
-----
class C f where
c :: f a -> Int
newtype X2 f a = X2 (f a)
instance C (X2 f) where
c = const 0
deriving via (X2 IO) instance C IO
----
-- Testing parser
----
newtype P0 a = P0 a deriving Show via a
newtype P1 a = P1 [a] deriving Show via [a]
newtype P2 a = P2 (a, a) deriving Show via (a, a)
newtype P3 a = P3 (Maybe a) deriving Show via (First a)
newtype P4 a = P4 (Maybe a) deriving Show via (First $ a)
newtype P5 a = P5 a deriving Show via (Identity $ a)
newtype P6 a = P6 [a] deriving Show via ([] $ a)
newtype P7 a = P7 (a, a) deriving Show via (Identity $ (a, a))
newtype P8 a = P8 (Either () a) deriving Functor via (($) (Either ()))
newtype f $ a = APP (f a) deriving newtype Show deriving newtype Functor
----
-- From Baldur's notes
----
----
-- 1
----
newtype WrapApplicative f a = WrappedApplicative (f a)
deriving (Functor, Applicative)
instance (Applicative f, Num a) => Num (WrapApplicative f a) where
(+) = liftA2 (+)
(*) = liftA2 (*)
negate = fmap negate
fromInteger = pure . fromInteger
abs = fmap abs
signum = fmap signum
instance (Applicative f, Fractional a) => Fractional (WrapApplicative f a) where
recip = fmap recip
fromRational = pure . fromRational
instance (Applicative f, Floating a) => Floating (WrapApplicative f a) where
pi = pure pi
sqrt = fmap sqrt
exp = fmap exp
log = fmap log
sin = fmap sin
cos = fmap cos
asin = fmap asin
atan = fmap atan
acos = fmap acos
sinh = fmap sinh
cosh = fmap cosh
asinh = fmap asinh
atanh = fmap atanh
acosh = fmap acosh
instance (Applicative f, Semigroup s) => Semigroup (WrapApplicative f s) where
(<>) = liftA2 (<>)
instance (Applicative f, Monoid m) => Monoid (WrapApplicative f m) where
mempty = pure mempty
----
-- 2
----
class Pointed p where
pointed :: a -> p a
newtype WrapMonad f a = WrappedMonad (f a)
deriving newtype (Pointed, Monad)
instance (Monad m, Pointed m) => Functor (WrapMonad m) where
fmap = liftM
instance (Monad m, Pointed m) => Applicative (WrapMonad m) where
pure = pointed
(<*>) = ap
-- data
data Sorted a = Sorted a a a
deriving (Functor, Applicative)
via (WrapMonad Sorted)
deriving (Num, Fractional, Floating, Semigroup, Monoid)
via (WrapApplicative Sorted a)
instance Monad Sorted where
(>>=) :: Sorted a -> (a -> Sorted b) -> Sorted b
Sorted a b c >>= f = Sorted a' b' c' where
Sorted a' _ _ = f a
Sorted _ b' _ = f b
Sorted _ _ c' = f c
instance Pointed Sorted where
pointed :: a -> Sorted a
pointed a = Sorted a a a
----
-- 3
----
class IsZero a where
isZero :: a -> Bool
newtype WrappedNumEq a = WrappedNumEq a
newtype WrappedShow a = WrappedShow a
newtype WrappedNumEq2 a = WrappedNumEq2 a
instance (Num a, Eq a) => IsZero (WrappedNumEq a) where
isZero :: WrappedNumEq a -> Bool
isZero (WrappedNumEq a) = 0 == a
instance Show a => IsZero (WrappedShow a) where
isZero :: WrappedShow a -> Bool
isZero (WrappedShow a) = "0" == show a
instance (Num a, Eq a) => IsZero (WrappedNumEq2 a) where
isZero :: WrappedNumEq2 a -> Bool
isZero (WrappedNumEq2 a) = a + a == a
newtype INT = INT Int
deriving newtype Show
deriving IsZero via (WrappedNumEq Int)
newtype VOID = VOID Void deriving IsZero via (WrappedShow Void)
----
-- 4
----
class Bifunctor p => Biapplicative p where
bipure :: a -> b -> p a b
biliftA2
:: (a -> b -> c)
-> (a' -> b' -> c')
-> p a a'
-> p b b'
-> p c c'
instance Biapplicative (,) where
bipure = (,)
biliftA2 f f' (a, a') (b, b') =
(f a b, f' a' b')
newtype WrapBiapp p a b = WrapBiap (p a b)
deriving newtype (Bifunctor, Biapplicative, Eq)
instance (Biapplicative p, Num a, Num b) => Num (WrapBiapp p a b) where
(+) = biliftA2 (+) (+)
(-) = biliftA2 (*) (*)
(*) = biliftA2 (*) (*)
negate = bimap negate negate
abs = bimap abs abs
signum = bimap signum signum
fromInteger n = fromInteger n `bipure` fromInteger n
newtype INT2 = INT2 (Int, Int)
deriving IsZero via (WrappedNumEq2 (WrapBiapp (,) Int Int))
----
-- 5
----
class Monoid a => MonoidNull a where
null :: a -> Bool
newtype WrpMonNull a = WRM a deriving (Eq, Semigroup, Monoid)
instance (Eq a, Monoid a) => MonoidNull (WrpMonNull a) where
null :: WrpMonNull a -> Bool
null = (== mempty)
deriving via (WrpMonNull Any) instance MonoidNull Any
deriving via () instance MonoidNull ()
deriving via Ordering instance MonoidNull Ordering
----
-- 6
----
-- https://github.com/mikeizbicki/subhask/blob/f53fd8f465747681c88276c7dabe3646fbdf7d50/src/SubHask/Algebra.hs#L635
class Lattice a where
sup :: a -> a -> a
(.>=) :: a -> a -> Bool
(.>) :: a -> a -> Bool
newtype WrapOrd a = WrappedOrd a
deriving newtype (Eq, Ord)
instance Ord a => Lattice (WrapOrd a) where
sup = max
(.>=) = (>=)
(.>) = (>)
deriving via [a] instance Ord a => Lattice [a]
deriving via (a, b) instance (Ord a, Ord b) => Lattice (a, b)
--mkLattice_(Bool)
deriving via Bool instance Lattice Bool
--mkLattice_(Char)
deriving via Char instance Lattice Char
--mkLattice_(Int)
deriving via Int instance Lattice Int
--mkLattice_(Integer)
deriving via Integer instance Lattice Integer
--mkLattice_(Float)
deriving via Float instance Lattice Float
--mkLattice_(Double)
deriving via Double instance Lattice Double
--mkLattice_(Rational)
deriving via Rational instance Lattice Rational
----
-- 7
----
-- https://hackage.haskell.org/package/linear-1.20.7/docs/src/Linear-Affine.html
class Functor f => Additive f where
zero :: Num a => f a
(^+^) :: Num a => f a -> f a -> f a
(^+^) = liftU2 (+)
(^-^) :: Num a => f a -> f a -> f a
x ^-^ y = x ^+^ fmap negate y
liftU2 :: (a -> a -> a) -> f a -> f a -> f a
instance Additive [] where
zero = []
liftU2 f = go where
go (x:xs) (y:ys) = f x y : go xs ys
go [] ys = ys
go xs [] = xs
instance Additive Maybe where
zero = Nothing
liftU2 f (Just a) (Just b) = Just (f a b)
liftU2 _ Nothing ys = ys
liftU2 _ xs Nothing = xs
instance Applicative f => Additive (WrapApplicative f) where
zero = pure 0
liftU2 = liftA2
deriving via (WrapApplicative ((->) a)) instance Additive ((->) a)
deriving via (WrapApplicative Complex) instance Additive Complex
deriving via (WrapApplicative Identity) instance Additive Identity
instance Additive ZipList where
zero = ZipList []
liftU2 f (ZipList xs) (ZipList ys) = ZipList (liftU2 f xs ys)
class Additive (Diff p) => Affine p where
type Diff p :: Type -> Type
(.-.) :: Num a => p a -> p a -> Diff p a
(.+^) :: Num a => p a -> Diff p a -> p a
(.-^) :: Num a => p a -> Diff p a -> p a
p .-^ v = p .+^ fmap negate v
-- #define ADDITIVEC(CTX,T) instance CTX => Affine T where type Diff T = T ; \
-- (.-.) = (^-^) ; {-# INLINE (.-.) #-} ; (.+^) = (^+^) ; {-# INLINE (.+^) #-} ; \
-- (.-^) = (^-^) ; {-# INLINE (.-^) #-}
-- #define ADDITIVE(T) ADDITIVEC((), T)
newtype WrapAdditive f a = WrappedAdditive (f a)
instance Additive f => Affine (WrapAdditive f) where
type Diff (WrapAdditive f) = f
WrappedAdditive a .-. WrappedAdditive b = a ^-^ b
WrappedAdditive a .+^ b = WrappedAdditive (a ^+^ b)
WrappedAdditive a .-^ b = WrappedAdditive (a ^-^ b)
-- ADDITIVE(((->) a))
deriving via (WrapAdditive ((->) a)) instance Affine ((->) a)
-- ADDITIVE([])
deriving via (WrapAdditive []) instance Affine []
-- ADDITIVE(Complex)
deriving via (WrapAdditive Complex) instance Affine Complex
-- ADDITIVE(Maybe)
deriving via (WrapAdditive Maybe) instance Affine Maybe
-- ADDITIVE(ZipList)
deriving via (WrapAdditive ZipList) instance Affine ZipList
-- ADDITIVE(Identity)
deriving via (WrapAdditive Identity) instance Affine Identity
----
-- 8
----
class C2 a b c where
c2 :: a -> b -> c
instance C2 a b (Const a b) where
c2 x _ = Const x
newtype Fweemp a = Fweemp a
deriving (C2 a b)
via (Const a (b :: Type))
|