1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
|
{-# LANGUAGE GADTs, NamedWildCards, ScopedTypeVariables #-}
bar :: Int -> _ Int
bar x = Foo True () x
addAndOr1 :: _
addAndOr1 (a, b) (c, d) = (a `plus` d, b || c)
where plus :: Int -> Int -> Int
x `plus` y = x + y
addAndOr2 :: _ -> _
addAndOr2 (a, b) (c, d) = (a `plus` d, b || c)
where plus :: Int -> Int -> Int
x `plus` y = x + y
addAndOr3 :: _ -> _ -> _
addAndOr3 (a, b) (c, d) = (a `plus` d, b || c)
where plus :: Int -> Int -> Int
x `plus` y = x + y
addAndOr4 :: (_ _ _) -> (_ _ _) -> (_ _ _)
addAndOr4 (a, b) (c, d) = (a `plus` d, b || c)
where plus :: Int -> Int -> Int
x `plus` y = x + y
addAndOr5 :: (_, _) -> (_, _) -> (_, _)
addAndOr5 (a, b) (c, d) = (a `plus` d, b || c)
where plus :: Int -> Int -> Int
x `plus` y = x + y
addAndOr6 :: (Int, _) -> (Bool, _) -> (_ Int Bool)
addAndOr6 (a, b) (c, d) = (a `plus` d, b || c)
where plus :: Int -> Int -> Int
x `plus` y = x + y
bar :: _ -> _
bar x = not x
alpha :: _
alpha = 3
bravo :: _ => _
bravo = 3
bravo :: _ => _
bravo = 3
barry :: _a -> (_b _a, _b _)
barry x = (Left "x", Right x)
foo :: a ~ Bool => (a, _)
foo = (True, False)
every :: _ -> _ -> Bool
every _ [] = True
every p (x:xs) = p x && every p xs
every :: (_a -> Bool) -> [_a] -> Bool
every _ [] = True
every p (x:xs) = p x && every p xs
bar :: Bool -> Bool
bar x = (x :: _)
bar :: _a -> _a
bar True = (False :: _a)
bar False = (True :: _a)
arbitCs1 :: _ => a -> String
arbitCs1 x = show (succ x) ++ show (x == x)
arbitCs2 :: (Show a, _) => a -> String
arbitCs2 x = arbitCs1 x
arbitCs3 :: (Show a, Enum a, _) => a -> String
arbitCs3 x = arbitCs1 x
arbitCs4 :: (Eq a, _) => a -> String
arbitCs4 x = arbitCs1 x
arbitCs5 :: (Eq a, Enum a, Show a, _) => a -> String
arbitCs5 x = arbitCs1 x
foo :: _ => String
foo = "x"
-- No extra constraints
foo :: _ => a
foo = 3
foo :: _ => a
foo = 3
fall :: forall a . _ -> a
fall v = v
bar :: _a -> _a
bar x = not x
foo :: (forall a. [a] -> [a]) -> _
foo x = (x [True, False], x ['a', 'b'])
foo :: (forall a. [a] -> [a]) -> (_, _ _)
foo x = (x [True, False], x ['a', 'b'])
monoLoc :: forall a. a -> ((a, String), (a, _))
monoLoc x = (g True , g False)
where
g :: t -> (a, String)
g _ = (x, "foo")
-- Test case for (fixed) bug that previously generated the following error message:
-- LocalDefinitionBug.hs:9:16:
-- GHC internal error: ‘a’ is not in scope during type checking, but it passed the renamer
-- tcl_env of environment: [alA :-> Type variable ‘_’ = _,
-- alC :-> Identifier[x::a, <NotTopLevel>],
-- alE :-> Type variable ‘t’ = t,
-- rjF :-> Identifier[monoLoc::a
-- -> ((a, String), (a, _)), <NotTopLevel>]]
-- In the type signature for ‘g’: g :: t -> (a, String)
-- In an equation for ‘monoLoc’:
-- monoLoc x
-- = (g True, g False)
-- where
-- g :: t -> (a, String)
-- g _ = (x, "foo")
-- Fixed by using tcExtendTyVarEnv2 instead of tcExtendTyVarEnv
data NukeMonad a b c
instance Functor (NukeMonad a b) where
fmap = undefined
instance Applicative (NukeMonad a b) where
pure = undefined
(<*>) = undefined
instance Monad (NukeMonad a b) where
return = undefined
(>>=) = undefined
isMeltdown :: NukeMonad param1 param2 Bool
isMeltdown = undefined
unlessMeltdown :: _nm () -> _nm ()
unlessMeltdown c = do m <- isMeltdown
if m then return () else c
monoLoc :: forall a. a -> ((a, String), (a, String))
monoLoc x = (g True , g 'v')
where
-- g :: b -> (a, String) -- #1
g :: b -> (a, _) -- #2
g y = (x, "foo")
-- For #2, we should infer the same type as in #1.
foo :: (_a, b) -> (a, _b)
foo (x, y) = (x, y)
f :: (_) => a -> a -> Bool
f x y = x == y
foo :: _
Just foo = Just id
foo :: Bool -> _
Just foo = Just id
bar :: Bool -> Bool
bar (x :: _) = True
orr :: a -> a -> a
orr = undefined
g :: _
g = f `orr` True
f :: _
f = g
test3 :: _
test3 x = const (let x :: _b
x = True in False) $
const (let x :: _b
x = 'a' in True) $
not x
-- The named wildcards aren't scoped as the ScopedTypeVariables extension
-- isn't enabled, of which the behaviour is copied. Thus, the _a annotation of
-- x, which must be Bool, isn't the same as the _a in g, which is now
-- generalised over.
foo :: _a -> _
foo x = let v = not x
g :: _a -> _a
g x = x
in (g 'x')
showTwo :: Show _a => _a -> String
showTwo x = show x
bar :: _ -> Bool
bar _ = True
data GenParser tok st a = GenParser tok st a
skipMany' :: GenParser tok st a -> GenParser tok st ()
skipMany' = undefined
skipMany :: _ -> _ ()
skipMany = skipMany'
somethingShowable :: Show _x => _x -> _
somethingShowable x = show (not x)
-- Inferred type: Bool -> String
data I a = I a
instance Functor I where
fmap f (I a) = I (f a)
newtype B t a = B a
instance Functor (B t) where
fmap f (B a) = B (f a)
newtype H f = H (f ())
h1 :: _ => _
-- h :: Functor m => (a -> b) -> m a -> H m
h1 f b = (H . fmap (const ())) (fmap f b)
h2 :: _
-- h2 :: Functor m => (a -> b) -> m a -> H m
h2 f b = (H . fmap (const ())) (fmap f b)
app1 :: H (B t)
app1 = h1 (H . I) (B ())
app2 :: H (B t)
app2 = h2 (H . I) (B ())
foo f = g
where g r = x
where x :: _
x = r
unc :: (_ -> _ -> _) -> (_, _) -> _
unc = uncurry
unc :: (_a -> _b -> _c) -> (_a, _b) -> _c
unc = uncurry
foo :: (Show _a, _) => _a -> _
foo x = show (succ x)
bar :: _ -> _ -> _
bar x y = y x
|